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Abstract

This project relies on the system Bob and its face verification experiment setup. We develop the
generic and specific interfaces for using the pre-trained deep neural face recognition models as the
feature extractors and construct the corresponding baselines for each interface. They are tested
by different databases, including LFW, AR_Face, MEDS, MOBIO, morph. We also develop a face
detection package based on the Tinyface framework. Those works are now fixing and waiting to
integrate into the Bob master branch and should be available to use shortly.
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Chapter 1

Introduction

Facial recognition (FR) has a long history and is one of the most prominent combinations of both
machine learning and image processing. There are three steps in the general face recognition.

1. Face detection and alignment A face detector locates the faces in a given image and returns
the coordinates of a bounding box and/or facial landmarks for each one of them. And the goal
of face alignment is to scale and crop face images, in the same way using a set of reference points
located at fixed locations in the image.

2. Feature Extraction Traditional methods rely on hand-crafted features, such as edges and tex-
ture descriptors, combined with machine learning techniques, like principal component analysis,
linear discriminant analysis, or support vector machines. However, with the rapid development
of machine learning and deep learning, the above methods have been superseded. Deep neural
networks, like convolution neural networks (CNNs), can be trained with very large datasets to
learn the best features of the data [Saez-Trigueros et al., 2018].

3. Score Computation FR can be classified into face verification and face identification. In both
cases, a set of known subjects are enrolled and stored in the system (or the gallery). Then a new
facial image of a subject (the probe) is presented. Algorithms like cosine distance or L2 distance
will be used to compute the one-to-one similarity between the gallery and probe to determine
whether the two images are of the same subject, whereas face identification computes one-to-
many similarity to determine the specific identity of a probe face.

Most face recognition researches are designed for business purpose, which makes their results
non-reproducible. But the reproducibility is a key property of scientific research and essential
for the evaluation purpose. To satisfy this need, Bob is developed by the biometric security &
privacy group at Idiap Research Institute. It is an open-source toolbox, which is designed for
signal processing and machine learning1[Anjos et al., 2012]. The source codes are stored on the
GitLab page. Bob covers plenty of biometric research works and easy to understand because
it uses the Python environment integrated with the C++ library. In particular, for this project,
Bob provides an excellent environment to compare the facial recognition algorithms because of
the reproducibility of the results [Günther et al., 2012]. It provides a complete construction of
the face recognition/verification environment, includes Database, Preprocessor, Extractor, and
Algorithm. Bob contains the traditional face detection and feature extraction (face recognition)
methods and is continually introducing the pre-trained deep neural networks for the above steps.

In this project, our main task is to create the interfaces for different neural network frame-
works, so that the most common pre-trained face recognition networks could work as the feature
extractors in the face verification experiment. We also need to write a package for some face detec-
tion pre-trained models as the face annotator. Further, to make them usable, we need to appropri-

1https://www.idiap.ch/software/bob/
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ately document the source codes of the interfaces, implementing them with sample pre-trained
models as baselines. And finally, our work needs to pass the pipeline tests for the Continuous
Integration (CI) framework of Idiap Research Institute.



Chapter 2

Preliminary

2.1 bob.bio.base
bob.bio.base is the base package for the biometric recognition experiments and we need this
package to ensemble the experiment configuration, including the databases, and run them prop-
erly. We are mainly working on package bob.bio.face, which allows us to run the face recog-
nition experiments with reproducible results. The tools that we need in this package will be ex-
plained in Section 2.3. In addition to the face verification, bob.bio.vein and bob.bio.spear
are packages for vein and speaker recognition experiments, respectively.

2.2 Experiment Pipeline
A general experiment pipeline consists of three sub-pipelines: Training, Enrollment, and Scoring.
We do not focus on the training pipeline. The data will be preprocessed, that is, be aligned and
cropped to remove the noise, and their features will be extracted. Then for some of the data called
Reference subject will be registered and their features will be enrolled into the gallery through
the Enrollment pipeline, and the rest of the data called Probe subject will be compared with the
reference subject in the gallery by computing the similarity of their features through the Scoring
pipeline. Finally, an evaluation will be done for the comparing results.

2.3 bob.bio.face

2.3.1 Databases
We use Labeled Faces in the Wild Database [Huang et al., 2007] for the general testing of the
new extractor packages and the alignments of baselines. This database is designed for the face
verification experiment and it contains over 13,000 images. In particular, 1680 people have more
than one image for testing purposes. Just like its name, the images contain at least one person, but
not necessarily the frontal pose, some occlusions are possible. They are taken in the wild without
restriction (at least partially frontal) and labeled with the person’s name.

We use the following databases to test the baselines: morph, MEDS/MEDS_II, arface, mobio. The
details for those databases are introduced in Chapter 6 (Milestone 4).
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2.3.2 Preprocessor
After receiving the input images with annotations, we need to preprocess the inputs to ease the
feature extraction and eliminate the possible background noises. There are multiple preprocessors
in bob.bio.face package, and we focus on using bob.bio.face.preprocessor.FaceCr-
op throughout our project. Figure 2.1 exhibits a face crop example from Bob1. In particular, we
crop the largest face (Figure 2.1 left) into required size, i.e. parameter cropped_size, with
the annotated eyes aligned to the given eye locations, i.e. parameter cropped_positions, as
shown in Figure 2.1 right. In other words, it is a geometric normalization based on the eye loca-
tions that will be applied on the face hand-labeled eye annotations 2. The cropped_positions
should be adjusted with different cropped_size to improve the performance of the experi-
ments. The details will be discussed in Chapter 4 (Milestone 2).

Figure 2.1: Example FaceCrop and Alignment

2.3.3 Extractor
As defined in Bob, the extractor grabs the features of the preprocessed images. The dimensionality
of the result vectors will be reduced to ease the classification procedures in the next step, that is,
calculating the differences between individual vectors. The typical extractors like Discrete Cosine
Transform (DCTBlocks), Gabor jets in a grid structure (GridGraph), and Local Gabor Binary Pattern
Histogram Sequences (LGBPHS) are introduced and applied in bob.bio.face package2. To
adapt to the deep learning era, the extractors introduced in Chapter 3 (Milestone 1) are aimed to
import the pre-trained feature extraction models and weights for multiple interfaces.

2.3.4 Algorithm
After extractions, the algorithm should be applied to compute the score of the experiment, i.e. the
similarities of the registered faces. We use cosine distance or scipy.spatial.distance.
cosine as the experiment algorithm throughout this project. It can be called from bob.bio.base.
pipelines.vanilla_biometrics.Distance() which enrolls the model, i.e. representation

1https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.base/doc/guide.html
2https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.bio.face/doc
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of identities, by storing their feature vectors and scores the similarities by computing the distance
of the model to the probe by the cosine distance function.

2.3.5 Evaluation
Package bob.bio.base contains six evaluation plots. They are designed for different exper-
iments. For example, DIR (detection & identification rate) works well for open-set face iden-
tification while for closed-set identification, the CMC is usually employed. In this project, the
experiment uses a threshold value to decide whether a similarity score could indicate that the
two samples are from the same person. We use the Receiver Operation Characteristic (ROC) plot
for the evaluation of the results. It is a True Match Rate (TMR) by False Match Rate (FMR) curve.
Thus, for each FMR, we pursue a higher corresponding TMR.





Chapter 3

Milestone 1

We are supposed to get familiar with the Bob system, in particular the packages bob.bio.base
and bob.bio.face, and set up the environment. We should be able to run the baselines and get
the evaluation plots.

3.1 Setup Working Environment

3.1.1 System and Software
The entire work is done by the Linux or macOS (Intel Core) environment. It is possible to use GPU
if the OS has access, but it is not required. The coding is based on the Python (>=3.7) Programming
Language, and MiniConda is used to set up the environment.

3.1.2 Required Packages
We created an environment called bob9b through MiniConda and installed the following pack-
ages to initiate it:

$ conda create --name bob9b --override-channels
--channel=http://www.idiap.ch/software/bob/conda/label/beta
--channel=http://www.idiap.ch/software/bob/conda
--channel=defaults distributed
bob.bio.base, bob.buildout, bob.db.arface, bob.db.gbu, bob.db.ijbc,
bob.db.lfw, bob.db.replay, bob.db.replaymobile, bob.db.xm2vts,
bob.extension, bob.ip.base, bob.io.image, bob.ip.facedetect,
bob.ip.gabor, bob.learn.activation, bob.learn.linear,
bob.learn.tensorflow, bob.measure, bob.pipelines, boost, joblib,
matplotlib, pytorch, scikit-image, scikit-learn

Further, we git clone the bob.bio.face package, which is specialized for the facial image
verification and identification experiments. In this package, develop.cfg includes all depen-
dencies, i.e. necessary Bob repositories, for the local package installation, and then use command
buildout to install the package in development mode and be able to use the libraries in the
conda environment bob9b. The changes we make in bob.bio.face will be explained in Chap-
ter 4. In Chapter 5, we work on package bob.ip.facedetect. To co-develop this package
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in our environment, we add a few lines (below) to develop.cfg and then use command $
buildout -c develop.cfg.

develop = src/bob.ip.facedetect
eggs = bob.ip.facedetect
[sources]
bob.ip.facedetect = git git@gitlab.idiap.ch:bob/bob.ip.facedetect

3.1.3 Problems and Solutions

$ conda list
We tried to install the environment locally on both macOS (Intel Core) and Linux and com-

pared the packages installed, which were not identical. Most of the differences did not impact
our project and were ignored.

Not installed in Mac Not installed in Linux Installed but Different Version

_libgcc_mutex bob.db.atnt bob.learn.tensorflow
astunparse bob.db.mnist gast
blinker gettext setuptools
cachetools keras-applications tensorboard
cudotoolkit libcxx tensorflow
dbus libgfortran tensrflow-base
expat libiconv tensorflow-estimator
fontconfig llvm-openmp
glib
google-auth
google-auth-oauthlib
gst-plugins-base
gstreamer
ld_impl_linux-64
libgcc-ng
libgfortran-ng
libuuid
libxcb
libxml2
oauthlib
pcre
pyasn1
pyasn1-modules
pyjwt
pyqt
qt
requests-oauthlib
rsa
sip
tensorboard-plugin-wit

Table 3.1: conda list results for Linux and MacOS

However, bob.db.atnt and tensorflow were essential for the setup. In particular, Linux
showed an error and asked us to install bob.db.atnt package, which was supposed to be in
one of the channels. It was easy to solve the problem by adding bob.db.atnt in the command
conda create -name bob9b shown above, or using conda install command. If the same
problem occurs for other packages, the second method is easier to apply.

And for macOS, the installed tensorflow version was lower than 2.0.0, so we got the
following error:
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ModuleNotFoundError: No module named ’tensorflow.contrib’

We solved this problem by using pip install instead of calling the package within the conda
environment.

$ conda remove tensorflow
$ pip3 install tensorflow==2.3.0

We could not give an explicit reason for those problems yet, but only the alternative solutions.
Apple M1 chip - Solved

As of the time, we write this report, we haven’t successfully created the environment bob9b on
the Macbook with the Apple M1 chip. One of the reasons was that we could only use miniforge
to install the package tensorflow, but miniforge results in installation conflicts with most of
bob packages. As mentioned above, we had to install tensorflow package outside of the conda
environment, which was not applicable for Apple M1 chip, and miniforge did not support
bob systems. We also tried to install a virtual Linux system through Parallel, but the environment
created was not succeeded yet. Our final solution was to use VSCode remote ssh for Idiap. Though
we still could not run Bob experiments locally in macOS with Apple M1 chip, it is possible to build
the virtual Linux System to use Bob.

3.2 Run Baseline Experiment

3.2.1 Baseline facenet-sanderberg
To test the environment, we use bob.bio.face.config.baseline.facenet_sanderberg
as the baseline test. The baseline test and the rest of the project using the following command
line:

$ ./bin/bob bio pipelines vanilla-biometrics [DATABASE_NAME]
[BASELINE] -vvv -o [OUTPUT-PATH] -c

where we use lfw_restricted for [DATABASE_NAME] and facenet-sanderberg for
[BASELINE]. We mainly use the aligned LFW database to test our work. In Bob, each database
can have different protocols, which are designed for different experiment purposes. They are all
applicable for this project with slightly different results. In particular, we only use "view1" for
all the experiments with the LFW database to make the results comparable. This aligned database
has the annotation "eye-centers" and provides the eye locations in each image. That means
the faces are aligned so that their eyes are symmetric horizontally and the midpoint of eyes is
horizontally centered. LFW also contains a database with raw images, which will be used in
Chapter 5.

facenet-sanderberg presents a typical face verification experiment. It uses FaceCrop()
as the preprocessor, a pre-trained tensorflow deep neural network1 as an extractor, and cosine

1https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.bio.face/doc/baselines.html
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distance as the algorithm. The performance of this baseline test is good since, for FMR = 10−2,
the TMR is greater than 96%, which indicates relatively high security of the verification procedure.

Figure 3.1: Resulting ROC plot of facenet-sanderberg experiment

3.2.2 Parallel Execution and GPU

The above baseline test takes about 10 minutes to run locally. Depends on the pre-trained models
(especially for Annotators (Chapter 5)), some experiments may take more than an hour. It is
possible to speed up this procedure by adding code at the end of the command line above. We
could do it locally, add -dask-client local-parallel, or through the remote ssh in any
console (we use VScode in this project), add -dask-client sge. The former requires the OS to
have GPU available. For convenience, we use the Idiap remote ssh instead.

3.2.3 Problems and Solutions

LFW

While we ran the baseline in February 2021, the resulting FMR started with 10−6, which is not
possible since LFW only contains thousands of peoples and 10−6 requires more samples. This
problem was fixed by Dr. Tiago Pereira. Further, for the protocols that have the evaluation set,
like "view2" in LFW, add -g eval to the command line above can run the experiment on the
evaluation set.

Parallel Execution

-dask-client local-parallel resulted in an ImportError. Dr. Tiago Pereira sug-
gested to use conda upgrade, as shown below.
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ImportError: Error while finding loader for
’bob.pipelines.config.distributed.local_parallel’
(<class ’ModuleNotFoundError’>: No module named
’bob.pipelines.config’)

# Solution
$ conda clean -a
$ conda upgrade bob.pipelines -c
https://www.idiap.ch/software/bob/conda/label/beta/
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Milestone 2

A general experiment can be split into three stages: Preprocessing, Extracting, and applying the
algorithm. In this chapter, we focus on the first and second stages. We are supposed to create the
frameworks to use the pre-trained face recognition neural networks in Bob as the feature extractor.
In this way, users can use their pre-trained models to capture features in the experiment. All the
codes we created are viewed and modified by Dr. Tiago Pereira before merging to the master
branch. We will explain the differences when necessary.

4.1 Embeddings/Extractors

4.1.1 Framework
We create three specialized interfaces for the frameworks TensorFlow, PyTorch, and MxNet,
and a generic interface for other models. Each class consists of five functions,

def __init__(self, **kwargs)
def _load_model(self)
def transform(self, X)
def __getstate__(self)
def _more_tags(self)

The initialization function mainly includes the parameter weights (called checkpoint_path
in the modified version), sometimes the parameters config and use_gpu are included. weights
is the path to the binary file that contains the trained weights/parameters. config refers to the
path to the text file that contains network configuration, but it is not required for all frameworks.
Similarly, each framework has its method to initiate GPU and we make the initiation possible but
do not provide the parameter that decides how many GPUs that need to work.

Method _load_model reads the pre-trained model, and method transform normalizes the
input images X, forwards them into the model, and returns the extracted features. Initialized
parameters preprocessor and memory_demanding are added by Dr. Pereira. The former is
a function that will transform the data before being forwarded. The default is dividing by 255.
The default of memory_demanding is False, which indicates that there is enough memory to
forward a lot of data once in the function transform. If it is True, the transform method will
run one sample at a time. The last two functions are used to form the pipeline and the same for
all the frameworks. Table 4.1 shows all the supported models for each interface.
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FrameWork Supported Models

MxNet MxNet
PyTorch PyTorch (Load Model OR Call from Library)
TensorFlow TensorFlow
OpenCV (Generic) Caffe, TensorFlow, Torch, Darknet, DLDT, ONNX

Table 4.1: Supported pre-trained model

MxNet A MxNet model requires to have the pre-trained weights, .params, and network config-
uration file, .json. The class MxNetModel initializes three parameters,

weights : str or None
PATH/To/WEIGHTS, default=None

config : str or None
PATH/TO/CONFIG, default=None

use_gpu : True or False.
If gpu is available, set True, default=False

While using MxNet to read the model, both weights and config are required. We define a
default model, Arcface Insightface1 [Deng et al., 2019] in case that either weights or config is
None. In general cases, the cropped images should be normalized (Here, divided by 255) before
passing into the model. Most experiments could improve the performance from 50% to >95%
at 10−2FMR through this step. This is common sense, but not true for all the face recognition
models (extractors). The default model we use exhibits an opposite result [Deng et al., 2019]. The
inputs X received from the preprocessor are in format numpy.array. We only need to convert
them into format mxnet.ndarrary, and switch the outputs back to numpy.array for the next
step. If X is divided by 255, then the TMR is 10% at 10−2FMR as shown in Figure 4.1. This rule is
applicable for all face recognition models in Arcface Insightface [Deng et al., 2019].

X = check_array(X, allow_nd=True)
X = mx.nd.array(X)
return self.model(X,).asnumpy()

PyTorch There are two ways to import the pre-trained networks in the PyTorch framework. First,
class PyTorchLoadedModel looks similar to the MxNetModel, which requires both weights
(.pth) and config (.py) documents. If the GPU is available, then in _load_model function, it
will be initiated. The default model we use is an AFFFE model [Günther et al., 2017]. This time
the inputs should be a tensor to fit in the model, and the normalization has a positive impact
on the performance, see the code below. The result of the default model will be shown in the next
section.

1https://github.com/deepinsight/insightface
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Figure 4.1: Arcface InsightFace [Deng et al., 2019]: Comparison of example normalization

Figure 4.2: PyTorchAFFFE [Günther et al., 2017]: Comparison of example normalization
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X = check_array(X, allow_nd=True)
X = torch.Tensor(X)
X = X/255
return self.model(X).detach().numpy()

The second class PyTorchLibraryModel is used when the pre-trained model is saved in the
pytorch Library. We test this class using pre-trained InceptionResNetV1 model from facenet_
pytorch Library1. That is, we need to install the required library, which contains the weights and
structure, before using it. For some other libraries, there is no need to install the library but down-
load the weights from the library instead. When users using PyTorchLibraryModel, they need
to initialize the parameter model in the configuration to define which pre-trained/downloaded
model to use, see example below.

from facenet_pytorch import InceptionResnetV1
model = InceptionResnetV1(pretrained=’vggface2’).eval()
extractor_transformer = PyTorchLibraryModel(model=model)

TensorFlow For a general tensorflowmodel, we use method tf.keras.models.load_model
to implement it. The parameter self.weights (generally called filename), which contains
one of the following: String, pathlib.Path object, the path to the saved model, or h5py.File object. So
we ask users to define the directory to the folder that contains those elements as the only param-
eter for the class TensorFlowModel. The default model we use is InceptionResNet 2. The input
X would be converted into a tensor with the channel_last format through to_channels_last
command, and the normalization has a positive impact on the performance. The result of the
default model will be shown in the next section.

X = check_array(X, allow_nd=True)
X = tf.convert_to_tensor(X)
X = to_channels_last(X)
X = X/255
return self.model.predict(X)

Generic OpenCV When the given model does not fit any of the interfaces above, like .caffemodel
and .onnx, we use OpenCV to create a generic interface. This class, OpenCVModel, supports six
types of models, as listed in Table 4.1. To be compatible with multiple interfaces, the initialized
parameters contain both weights and config, but only when both are not specified, the default
model1 will be called. The command cv2.dnn.readNet() can deal with the case that config
is None. A normalization is followed to improve the performance as usual. Dividing by 255 is
not ideal for our default model. The modified version chooses to convert inputs into RGB format,
but the performance on the LFW database does not improve a lot.

1https://github.com/timesler/facenet-pytorch
2https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.bio.face/doc/baselines.html#deep-

learning-baselines
1https://www.robots.ox.ac.uk/ vgg/software/vgg_face/
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cv2.dnn.readNet(self.weights,self.config) #Import Network

# Old version
X = np.array(X)
X = X/255

# New version
caffe_average_img = [129.1863, 104.7624, 93.5940]
X[:, :, :, 0] -= caffe_average_img[0]
X[:, :, :, 1] -= caffe_average_img[1]
X[:, :, :, 2] -= caffe_average_img[2]
# To BGR
X = X[:, ::-1, :, :].astype("float32")

# forward
self.model.setInput(X)
return self.model.forward()

In the modified version, the above four classes are set as the base class and the default models
are moved into their subclass. For example, the base class for MxNet is MxNetTransformer()
and it has a subclass ArcFaceInsightFace_LResNet100() which imports an ArcFace MxNet
model. Further, within the same file, the template, or baseline we use in Section 4.2, is defined.

4.1.2 Problems and Solutions
Default Models We got stuck on where to put the default model. It was ideal to let users change
the default without changing the class in the embeddings. However, no default defined in the
__init__ function will make testing of the embedding difficult. The details of testing will be
discussed in chapter 7.2. So we have to give up the possibilities for changing the default. This
problem was solved by Pereira in the modified version.

4.2 Baselines

4.2.1 Construct Baseline
The baseline in this report refers to the complete face verification experiment. Listing 4.1 is
an example baseline implementing MxNet Interface. In this experiment, we call the database,
lfw_restricted, in the Terminal command line as shown in Section 3.2.1, and all the other
components are defined in a .py file. First, in line 11 to line 21, we check whether the database
is hand-annotated or given a fixed position of eyes. We will explain how to use the annotator to
annotate the database in the next section. Second, we define the preprocessing step, i.e. FaceCrop()
only in this project. Line 23 defines cropped_positions, which are the coordinates in the
cropped image. The annotated points should be put to those two coordinates1. There are multiple
choices for the cropped_positions, and it depends on whether those coordinates are provided

1https://www.idiap.ch/software/bob/docs/bob/bob.bio.face/stable/implemented.html#bob.bio.face.preprocessor.
FaceCrop
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in the annotations, for example, mouth location and nose location. We mainly focus on eye loca-
tions, i.e. {’leye’, ’reye’}, since the locations of eyes are relatively fixed in each face. Line
24 instantiates the FaceCrop(), in particular, the cropped_image_size should follow the re-
quired input shape of the pre-trained network in the extractor. Third, we instantiate the extractor.
If the users want to pass their own pre-trained network, then they have to define weights, i.e.
path to the parameter weights, and config, i.e. path to the .json configuration file, respectively.
Otherwise, the extractor will use the default model automatically. Then, the algorithm is defined
in line 33. The preprocessor and extractor are combined like a transformer pipeline in lines 36 to
40. And finally, we pass the transformer and algorithm to the VanillaBiometricsPipe for the
complete experiment.

4.2.2 Result ROC plots
For each of the five classes we created in Section 4.1.1 (except case 2 in PyTorch), we run a cor-
responding baseline experiment. The example MxNet model requires a (112× 112) input image,
(224×224) for the example PyTorch model, (160×160) for the example TensorFlow model, (224×
224) for the example Caffe model using Generic interface. Though the cropped_positions
vary while cropped size changes, the relative position of the eyes on the cropped image does
not change. As the default, we use ratio (0.64, 0.38), that is, x-measure of leye is 0.64 ∗ width
(second integer in cropped_image_size), same for reye. We do not fix a relative position for
y-measure, but we choose to use some y-measures that are above the middle but not too extreme.
The choices of x-y measures depend on the network. The cropped images should look similar
to the training samples of the network. Figure 4.2 shows the resulting ROC plot for each exper-
iment. It seems that only the vgg_face Caffe model does not have a good performance, which is
reasonable since it is relatively out-of-date. The other three experiments have at least 90% TMR
at 10−2 FMR.

Figure 4.3: Resulting ROC plot of 4 baselines
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1 import bob.bio.base

2 from bob.bio.base.pipelines.vanilla_biometrics import Distance

3 from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometricsPipeline

4 from bob.bio.face.preprocessor import FaceCrop

5 from bob.bio.face.embeddings.MxNetModel import MxNetModel

6 from bob.pipelines import wrap

7 import scipy.spatial

8 from sklearn.pipeline import make_pipeline

9

10 # Annotator & Preprocessor

11 memory_demanding = False

12 if "database" in locals():

13 annotation_type = database.annotation_type

14 fixed_positions = database.fixed_positions

15 memory_demanding = (

16 database.memory_demanding if hasattr(database, "memory_demanding") else False

17 )

18

19 else:

20 annotation_type = None

21 fixed_positions = None

22

23 cropped_positions={’leye’:(49,72), ’reye’:(49,38)}

24 preprocessor_transformer = FaceCrop(cropped_image_size=(112,112), cropped_positions=

cropped_positions, color_channel=’rgb’,fixed_positions=fixed_positions)

25

26 # Extractor

27 weights = None # PATH/TO/WEIGHTS

28 config = None # PATH/TO/CONFIG

29

30 extractor_transformer = MxNetModel(weights=weights,config=config)

31

32 # Algorithm

33 algorithm = Distance(distance_function = scipy.spatial.distance.cosine,

is_distance_function = True)

34

35 # Chain the Transformers together

36 transformer = make_pipeline(

37 wrap(["sample"], preprocessor_transformer,transform_extra_arguments=

transform_extra_arguments),

38 wrap(["sample"], extractor_transformer)

39 # Add more transformers here if needed

40 )

41

42 # Assemble the Vanilla Biometric pipeline and execute

43 pipeline = VanillaBiometricsPipeline(transformer, algorithm)

44 transformer = pipeline.transformer

Listing 4.1: MxNet Baseline

4.2.3 Problems and Solutions
Performance of Baseline For each baseline test, we ran at least 20 times with different eye loca-
tions. It is necessary to choose cropped_positions that makes the face horizontally centered
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in the image, for all cropped_image_size. Ideally, the centered eye positions should result
in the best performance, but an exception exists. We found this during experiments. Table 4.2
and Figure 4.3 are for reference only. It contains the best eye locations for the baselines. None of
them has exactly centered eyes. Notice that pytorch-pipe and opencv-pipe have the same
cropped_image_size but different cropped_positions. We also tried to use the default
preprocessor method defined by Dr. Pereira instead of dividing by 255, but the performance
is worse. This might be caused by the low quality of embedding models, as the performance is
restricted by the out-of-date property.

Table 4.2: Eye locations relative to different image sizes (optimal)

Baseline image size Ratio of height Ratio of leye Ratio of reye

mxnet-pipe (112, 112) 0.44 0.64 0.34
pytorch-pipe-v1 (224, 224) 0.49 0.64 0.43
pytorch-pipe-v2 (224, 224) 0.49 0.64 0.43
tensorflow-pipe (160, 160) 0.50 0.63 0.38
opencv-pipe (224, 224) 0.44 0.51 0.34

Figure 4.4: Resulting ROC plot of 4 baselines with Optimal eye positions
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Milestone 3

We are supposed to implement several face detection algorithms, including MTCNN, TinyFace,
Faster-RCNN, and HyperFace. MTCNN has been introduced in package bob.ip.facedetect
and we cannot figure out the compatible source codes for Faster-RCNN and HyperFace. Thus,
we mainly develop the TinyFace inside bob.ip.facedetect and make it usable in bob.bio.
face.

5.1 Face Annotator
Depending on the databases, sometimes we need to annotate the faces before proceeding to the
preprocessors. In other words, we need to know where the face is before crop the image according
to its location. And if there are multiple faces in one image, the cropping should be based on the
largest one. For example, LFW database all_images_aligned_with_funneling has anno-
tations "eye-centers", and database all_images needs an explicit annotator. In the former
case, eyes have been annotated and the images are aligned so that faces are centered. The latter
is the raw images with possible skewed eyes. In general, annotations of an image include the lo-
cations of faces, usually the top-left and bottom-right coordinates of the bounding boxes, of eyes,
of mouth, and nose, but not all of them are required as the annotation results. The annotator will
be used when there is no alignment applied on the LFW database and it helps locate the faces.

5.1.1 bob.ip.facedetect
bob.ip.facedetect is a package that includes classifiers and functions to detect whether the
given image contains a face1. If so, the information of the detected face(s) should be saved and
passed into the next stage (preprocessor). For example, bob.ip.facedetect.mtcnn.MTCNN
is an annotator that detects face using Multi-task Cascaded Convolutional Networks (MTCNN)
[Zhang et al., 2016]. This class reads in the pre-trained MTCNN model and passes the image into
the model. It returns a dictionary that includes eight keys: topleft, bottomright, reye,
leye, nose, mouthright, mouthleft, quality. The annotator will be used when the
line 20 and line 21 in Listing 4.1 are both None. To deal with this case, bob.ip.facedetect.mtc
nn.MTCNN is called and re-initiated in bob.bio.face as BobIpMTCNN. And we only need to ini-
tiate this annotator within the FaceCrop().

1https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.facedetect/doc/index.html
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from bob.bio.face.annotator import BobIpMTCNN
annotator_transformer = BobIpMTCNN()
preprocessor_transformer = FaceCrop(cropped_image_size=(112,112),
cropped_positions={’leye’:(49,72), ’reye’:(49,38)},
color_channel=’rgb’, annotator=annotator_transformer)

5.2 Face Detection Model: TinyFace
We define a new annotator, tinyface.TinyFacesDetector, in bob.ip.facedetect. It is a
model introduced by Peiyun Hu and Deva Ramanan to find the small faces in an image1 [Hu and
Ramanan, 2017]. The original model is in .matlab format. Then from github2, we converted the
original model into the mxnet format.

5.2.1 bob.ip.facedetect.tinyface.TinyFacesDetector
This package is originally designed by chinakook2 with a MIT License and we modify it to fit
in the Bob system. With MIT License, we are allowed to obtain a copy of the model and modify
the code. So the model has been saved in the Idiap data for further use3. First, we add the
checkpoint_path in __init__, which allows to download the model automatically through
the link3. Second, we assume the input images are Bob format (and possibly RGB), the following
codes are added before the original code:

# In case the input raw_img is not in three-channel format, convert
it into RGB.
from bob.ip.color import gray_to_rgb
if len(raw_img.shape) == 2:

raw_img = gray_to_rgb(raw_img)
assert img.shape[0] == 3, img.shape

# The original code expects raw_img is BGR, convert it.
from bob.io.image import to_matplotlib
raw_img = to_matplotlib(raw_img)
raw_img = raw_img[..., ::-1]

This class contains one parameter prob_thresh, which is supposed to be a float and it
represents a trade-off ratio between false positives and missed detections. The pre-trained tiny-
face model is initialized in the __init__ function, and all faces should be detected in func-
tion detect and it returns a list of annotations which contains the topleft, bottomright,
reye, leye. Notice that the tinyface model can only detect the face and provide a bounding
box, and does not capture further details of the faces. Since the eye locations are relatively fixed
in human faces, we estimate reye and leye using the bounding box coordinates. Through ex-
periments, the ratio (0.37, 0.3), (0.37, 0.7) works best, where the first entry is the ratio to the height
of the detected face, and the second entry refers to the width of each eye.

1https://github.com/peiyunh/tiny
2https://github.com/chinakook/hr101_mxnet
3https://www.idiap.ch/software/bob/data/bob/bob.ip.facedetect/master/tinyface_detector.tar.gz
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5.2.2 Call in Configuration in bob.bio.face

To use this face detector as an annotator in package bob.bio.face, we define a class bob.bio.
face.annotator.BobIpTinyface. It initializes bob.ip.facedetect.tinyface.TinyF-
acesDetector, passes the RGB image that is in Bob format into function annotate and returns
the annotation results for the largest face. prob_thresh is a parameter in class TinyFacesDete-
ctor and to make it usable while calling BobIpTinyface(), we add a class property for it:

@property
def prob_thresh(self):

return self.tinyface.prob_thresh

Adding following command in the configuration to apply BobIpTinyface:

from bob.bio.face.annotator import BobIpTinyface
annotator_transformer = BobIpTinyface(prob_thresh=0.51)
preprocessor_transformer = FaceCrop(cropped_image_size=(112,112),
cropped_positions={’leye’:(49,72), ’reye’:(49,38)},
color_channel=’rgb’, annotator=annotator_transformer)

Figure 5.1 compares the results for three experiments with similar setup: LFW Database,
FaceCrop(), MxNetModel(), Distance(). Listing 5.1 exhibits an example to apply an annota-
tor to a general database. The aligned case uses the aligned database all_images_aligned_with_
funneling, thus no annotator applied, and the other use raw database all_images with anno-
tator BobIpMTCNN and BobIpTinyface. It seems that the experiment with an aligned database
performs best, followed by the annotator BobIpTinyface, and the worst is the annotator BobI-
pMTCNN. The differences between them can be ignored. It is not surprising to suppose that aligned
by true eyes should give the most secure result, and if there is no face with weird postures, then
aligned by the detected eyes and estimated eyes would not result in a large difference. The good
news is, in the LFW database, the worst case we get is 98% TMR in 10−2 FMR.

5.2.3 Problems and Solutions

Swapped x-y Coordinates returns by class TinyFacesDetector

In the entire Bob system, the images are represented in (y, x) format, instead of (x, y) in the gen-
eral quadrants. The only exception is in the class bob.ip.facedetect.tinyface.TinyFaces-
Detector. Although the length and width of the detected faces do not differ a lot, the impacts
on the estimated eye locations resulted in an obvious difference in output. Before we noticed this
problem, the initial TMR for setup in Figure 5.2 was at most 80%. This problem has been fixed.
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1 # Annotator & Preprocessor

2 memory_demanding = False

3 if "database" in locals():

4 annotation_type = database.annotation_type

5 fixed_positions = database.fixed_positions

6 memory_demanding = (

7 database.memory_demanding if hasattr(database, "memory_demanding") else False

8 )

9 else:

10 annotation_type = None

11 fixed_positions = None

12

13 if annotation_type = None:

14 annotator_transformer = BobIpTinyface(prob_thresh=0.51)

15 fixed_positions = None

16 else:

17 annotator_transformer = annotation_type

18 fixed_positions = fixed_positions

19

20 cropped_positions={’leye’:(49,72), ’reye’:(49,38)}

21 preprocessor_transformer = FaceCrop(cropped_image_size=(112,112), cropped_positions=

cropped_positions, color_channel=’rgb’,fixed_positions=fixed_positions,annotator=

annotator_transformer)

Listing 5.1: Applying Annotator Example

Figure 5.1: Comparing ROC plots of experiments without annotator, using MTCNN, and Tiny-
Face (Arcface Insightface MxNet embedding)
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Milestone 4

It is necessary to check whether the extractors in Chapter 4 (Milestone 2) work for different
databases, instead of designed only for the LFW database. We choose four databases available
in Idiap Resource1 and use the default protocol. Fortunately, all of them contain the annotation
"eye-centers", so we do not have to define the annotator in FaceCrop().

6.1 Database AR_Face
AR_Face database is created by Aleix M Martinez and Robert Benavente2. It contains more than
4,000 images for 126 people. Each person has more than 26 images, includes different facial ex-
pressions, illumination conditions, and occlusions, but there is no restriction for the other features
of the person. Those pictures are taken under control and have a time span. In the experiment,
we chose to use the raw colored images instead of the gray version. We use protocol "all" for
this database3.

Figure 6.1: Resulting ROC plot of experiment using AR_Face database with Arcface Insightface
MxNet embedding

1https://www.idiap.ch/software/bob/
2http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
3https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/bob/bio/face/config/database/arface.py
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6.2 Database MEDS/MEDS_II
The MEDS_II database is developed by NIST. The original database contains 518 identities, but
they are classified by gender and race, which results in the extremely unbalanced distribution of
images. The Idiap chose to use a subset of the database, i.e. 383 identities (White and Black men
only), who consist of more than one sample. We use the default protocol "verification_fold1"
for the experiment, "verification_fold2" and "verification_fold3" are available1.

Figure 6.2: Resulting ROC plot of experiment using MEDS database with ArcFace InsightFace
MxNet embedding

6.3 Database mobio
The MOBIO database is not designed for face verification only. It is a video database that contains
152 identities. The data is collected from mobile phones (NOKIA N93i) and laptop computers
(standard 2008 MacBook). The Idiap chooses to grasp the image from the video for face recogni-
tion experiments. Those samples have time spans. We use the default protocol "mobile0-male-female"
for the experiment2.

6.4 Database morph
The MORPH dataset is relatively old, but it contains more samples than the above databases.
This is a quite large database. It takes us more than 5 hours to run the mxnet-pipe with morph
and the resulting score file is 4GB large. There are 13,000 identities with 55,000 samples. Those
identities are classified by gender and ethnicity. The interface in Bob contains three verification
protocols, which means that the distributions of identities are different in each protocol. We use
the default protocol "verification_fold1" for the experiment3.

1https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/bob/bio/face/database/meds.py
2https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/bob/bio/face/database/mobio.py
3https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/bob/bio/face/database/morph.py
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Figure 6.3: Resulting ROC plot of experiment using mobio database with arcface insightface
mxnet embedding

Figure 6.4: Resulting ROC plot of experiment using morph database with arcface insightface
mxnet embedding
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It seems that the general performance of the databases in this chapter is better than the LFW
database. This makes sense since LFW has more variation and difficulties for verification. The
nature of each database decides its performance in the same experiment environment.

6.5 Problems and Solutions
No CPU Allocated

Before we noticed the fact that those databases have annotations, we applied BobIpTinyface
as the annotator. Usually, the experiment could not be run and be killed in the middle. We sup-
posed the problem happened because the neural network in the annotator took too much memory.
Then the system killed the experiment automatically. The experiments without an annotator ran
smoothly.
Image format for AR_Face

The images saved in AR_Face are .ppm format. However, in bob.bio.face.config.data-
base.arface, the read in format is .png, which results in the "Could not found" error. The
problem was reported by Prof. Dr. Manuel Günther and we are still waiting for the fixes now.
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Milestone 5

All the newly introduced packages are needed to be tested to make sure that they can work
properly, and be well-documented to make them easy to understand and use. Further, we need to
integrate the new packages into the Bob ecosystem including the Continuous Integration system.

7.1 Tests

7.1.1 bob.ip.facedetect
Based on Chapter 5.1, annotators are used to capturing the faces in the given image. There are two
different situations: an image with one face and an image with multi-faces. Thus, the annotator
should return the bounding box and landmarks for each face, respectively. Here we define 3 tests
for TinyFace annotator: Returns the correct coordinates for the testing image; Annotates one face
correctly; Detects multiple faces in one image.

7.1.2 bob.bio.face
In this project, we need to test separately for each extractor we defined above. Before extract-
ing the image, it should be preprocessed first. So we implement the Facecrop function from
test_preprocessors.py. Before writing a test, we need to run the preprocessor and ex-
tractor first to get the results as the reference. We use methods HDF5File, test_utils from
bob.io.base so that we can convert the result of the feature into a .hdf5 file:

from bob.io.base import HDF5File, test_utils

outfile = HDF5File("bob/bio/face/test/data/pytorch_v2.hdf5", ’w’)
outfile.set(’pytorch_v2.hdf5’, feature)

For each extractor, we need to make sure whether the extractor’s format is right. Then we compare
the features resulting from the image extracted with the reference.

Next, we focus on tests for five baselines. In the original test file, we call method “run_base
line” to test:



30 Chapter 7. Milestone 5

@pytest.mark.slow
@is_library_available("opencv-python")
def test_opencv_pipe():

run_baseline("opencv-pipe", target_scores=None)

7.1.3 Problems and Solutions
Swapped x-y measures in test_baselines.py

Both the original tests and our newly added baseline tests failed without clear reasons. Some-
times the error message suggested that there was a swap for eye positions. We checked the base-
line and the methods originally defined in test_baselines.py. It comes out that the annota-
tion for eyes has swapped x-y measures while generating samples in method get_fake_sample_
set. So we switched the x-y measures to fix the bug.

7.2 Documentation and Continuous Integration (CI)
Documentation is necessary to explain our work and make code usable for other users. The
entire webpage of Bob is generated by Sphinx. In Bob, we need to take care of two pages, one for
the explanations in text and one for the source codes. The latter was done by

.. automodule :: and/or .. autosummary::

In particular, Chapter 4 and 5 introduce new packages which require documentation to use.
After done with Tests and Documentation, the source codes and those changes should be inte-

grated into the Continuous Integration (CI) framework of Idiap. Specifically, we need to commit
all changes, push them into the GitLab page, and make sure that all pipeline tests turn green.
Then our work could be merged into the master branch.

7.2.1 bob.ip.facedetect.tinyface
As mentioned in Chapter 5, we introduce a class TinyFacesDetector, which is a modified
version of the code from GitHub, to read in the tinyface model and pass the images to detect
the faces. To exhibit the performance of the class, we refer to the page for MTCNN. We provide
an example code1 on how to use bob.ip.facedetect.tinyface.TinyFacesDetector to
detect multiple faces in one image. In the example page for MTCNN, the code is executable and
the resulting image is generated automatically while compiling. It does not work for us since
mxnet is not in the default Bob environment. As the documentation should pass the Continuous
Integration (CI) of Bob, we move the import mxnet inside the function, instead of as the global
variable, and avoid running the function with mxnet in the CI pipeline. Thus, the resulting image
with bounding boxes here (Figure 7.1) is uploaded separately.

Basic explanation of parameters and functions are added within the class TinyFacesDetect-
or. We follow the original format of bob.ip.facedetect to use only

.. automodule:: bob.ip.facedetect.tinyface

in py_api.rst, which is the summarization page for all available modules in package bob.ip.
facedetect, to generate a readable layout of the class, which can explain the parameters and
available functions.

1https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.facedetect/doc/tinyface.html
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Figure 7.1: Multi-Face Detection results using TinyFace

7.2.2 bob.bio.face.embeddings

Similarly, we create an explanation page, i.e. deeplearningextractor.rst, and modify the
source code page, i.e. implemented.rst, which has the same role as py_api.rst above. In
Milestone 2, we have introduced five embeddings. For the source code page, we add a short
description of each class and its parameters before initialization __init__(self, **kwargs).
Among four functions, only transform(self, X) was publicly available, since this is the only
one that accepts the inputs other than self. The description, accepted inputs, and expected
outputs are added at the beginning of the function. In implemented.rst, we have given the
entire path of each class for the autosummary and automodule, since they are not registered in
init.py of embeddings. We follow the convention for other embeddings. Again, importing of
new packages like mxnet and cv2 are moved inside the functions to avoid the failed pipelines
for CI.

deeplearningextractor.rst explains how to import and use the pre-trained feature-
extraction models in a face verification experiment. It contains four sections: general introduction
to the extractor and its derivation, using the pre-trained networks to extract features, named em-
beddings; step by step instruction for using each embedding in the experiment configuration;
baselines for each embedding and its resulting ROC plot; special case suggestion. The last section
is designed in case that none of the above interfaces are compatible with the user’s model. We
suggest the users use MMDNN, i.e. the acronym of Model Management and Deep Neural Net-
work1, to convert the model into the available interfaces. If the converted version is too old to fit
in the Bob environment, .onnx should be a good choice and GenericOpenCV is designed to deal
with it. So we suggest the users use ONNX as their alternative.

We also modify some other details in bob.bio.face page. First, we list the baselines men-
tioned in Chapters 4 and 5 in baselines.rst. Second, the baseline for pytorch-pipe-v1 ap-
plied the AFFFEmodel which is not from GitHub, so we add a reference for it in references.rst.
Further, since an extra webpage deeplearningextractor.rst is created, its name is added
into the index.rst for consistency. There might be some differences after the modification by
Dr. Pereira.

1https://github.com/microsoft/MMdnn
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7.2.3 Problems and Solutions
Incompatible Packages

The incompatible packages are the main reasons for the failed pipeline test in CI. In our project,
it failed because of mxnet and cv2. Both of them are not in the default environment of the CI
framework, so it is impossible to run the files that are imported them globally. As mentioned
above, moving the importing command inside the function is a good idea and should be applied
in all cases.
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Conclusion

Bob has a relatively complete and understandable construction of face verification experiments.
We develop some add-ons for that structure. First, we create four .py files with five classes to
read in the pre-trained neural networks and forward the images to extract features. For mod-
els in mxnet, tensorflow, pytorch format, it is a good choice to call MxNetModel(),
TensorFlowModel(), PyTorchLoadedModel(), PyTorchLibraryModel(), respectively.
For the model in other formats, call OpenCVModel() if it is able to read by opencv, or try to con-
vert them into format .ONNX first. Second, we try to extend the face annotator package. By
modifying the source code from GitHub 1, we introduce the pre-trained TinyFace models for face
detection. This model is designed for detecting the small faces in the image and only provides
the bounding box coordinates, so we estimate the eye locations to stabilize the performance. To
test the above changes, we create the baseline tests for each extractor interface and one for the
annotator BobIpTinyface(). Users should be able to use them by simply calling them in the
configuration file of the experiment. We provide a detailed explanation for each package on the
Bob website. All the baselines have a good performance on database LFW except for VGGFace,
whose performance is quite low. Packages are tested on the other databases for generality. All
the above-mentioned changes are pushed into the bob.ip.facedetect and bob.bio.face
packages and are waiting for CI before they become available to the public.

1https://github.com/chinakook/hr101_mxnet
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