
The International Journal of Robotics

Research 

http://ijr.sagepub.com 

A Robust Descriptor for Tracking Vertical Lines in Omnidirectional Images and Its Use in Mobile 
Robotics 

Davide Scaramuzza, Roland Siegwart and Agostino Martinelli 
The International Journal of Robotics Research 2009; 28; 149 

DOI: 10.1177/0278364908099858 

The online version of this article can be found at: 
http://ijr.sagepub.com/cgi/content/abstract/28/2/149 

Published by: 

http://www.sagepublications.com 

On behalf of: 

Multimedia Archives 

Additional services and information for The International Journal of Robotics Research can be found at: 

Email Alerts: http://ijr.sagepub.com/cgi/alerts 

Subscriptions: http://ijr.sagepub.com/subscriptions 

Reprints: http://www.sagepub.com/journalsReprints.nav 

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav 

Citations http://ijr.sagepub.com/cgi/content/refs/28/2/149 

Downloaded from http://ijr.sagepub.com at EIDGENOSSISCHE TECHNISCHE on January 28, 2009 

http://www.ijrr.org/multimedia.html
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/28/2/149
http://ijr.sagepub.com


Davide Scaramuzza 
Roland Siegwart 
Swiss Federal Institute of Technology (ETH),

Tannenstrasse 3,

8092 Zurich,

Switzerland

davide.scaramuzza@ieee.org, rsiegwart@ieee.org


Agostino Martinelli 
INRIA Rhône-Alpes,

655 avenue de l’Europe

Montbonnot,

38334 Saint Ismier Cedex,

France

agostino.martinelli@inrialpes.fr


Abstract 

In this paper we introduce a robust descriptor for matching vertical 
lines among two or more images from an omnidirectional camera. 
Furthermore, in order to make such a descriptor usable in the frame­
work of indoor mobile robotics, this paper introduces a new simple 
strategy to extrinsically self-calibrate the omnidirectional sensor with 
the odometry reference system. In the first part of this paper we de­
scribe how to build the feature descriptor. We show that the descriptor 
is very distinctive and is invariant to rotation and slight changes in il­
lumination. The robustness of the descriptor is validated through real 
experiments on a wheeled robot. The second part of the paper is de­
voted to the extrinsic self-calibration of the camera with the odom­
etry reference system. We show that by implementing an extended 
Kalman filter that fuses the information from the visual features with 
the odometry, it is possible to extrinsically and automatically cali­
brate the camera while the robot is moving. In particular, it is theoret­
ically shown that only one feature suffices to perform the calibration. 
Experimental results validate the theoretical contributions. 

KEY WORDS—omnidirectional camera, visual tracking, fea­
ture descriptor, extrinsic camera calibration. 
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A Robust Descriptor for 
Tracking Vertical Lines 
in Omnidirectional 
Images and Its Use in 
Mobile Robotics 

1. Introduction 

1.1. Motivation and Contribution 

One of the biggest challenges in mobile robotics is designing 
autonomous vehicles able to perform high-level tasks despite 
the quality/cost of the sensors. Vision sensors and encoder sen­
sors are in general cheap and suitable for indoor navigation. In 
particular, regarding vision, an omnidirectional camera is very 
effective owing to the panoramic view it provides from a sin­
gle image. In this paper, we introduce a robust descriptor for 
matching vertical lines among two or more images from an 
omnidirectional camera. Furthermore, in order to make such a 
descriptor usable in combination with encoder data, we also in­
troduce a new simple strategy for extrinsically self-calibrating 
the omnidirectional sensor with the odometry reference sys­
tem. 

The main contributions of this paper are therefore as fol­
lows: (1) we introduce a new descriptor for matching vertical 
lines among two or more images from an omnidirectional cam­
era1 and (2) we introduce a simple strategy to extrinsically cal­
ibrate an omnidirectional camera with the odometry system. 

1.2. Previous Work 

One of the most important problems in vision-based robot nav­
igation systems is the search for correspondences in images 
taken from different viewpoints. In the last few decades, the 
feature correspondence problem has been investigated largely 
for standard perspective cameras. Furthermore, several works 
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have provided robust solutions for wide-baseline stereo match­
ing, structure from motion, ego-motion estimation and ro­
bot navigation (Lindeberg 19981 Baumberg 20001 Mikolajczyk 
and Schmid 20011 Matas et al. 20021 Mikolajczyk and Schmid 
20021 Kadir et al. 20041 Lowe 20041 Tuytelaars and Van Gool 
2004). Some of these works normalize the region around each 
detected feature using a local affine transformation, which at­
tempts to compensate for the distortion introduced by the per­
spective projection. However, such methods cannot be applied 
directly to images taken by omnidirectional imaging devices 
because of the non-linear distortions introduced by their large 
field of view. 

In order to apply those methods, one needs first to generate 
a perspective view out of the omnidirectional image, provided 
that the imaging model is known and that the omnidirectional 
camera possesses a single effective viewpoint (Nayar 1997). 
An application of this approach was given by Mauthner et 
al. (2006). There, the authors generate perspective views from 
each region of interest of the omnidirectional image. This im­
age unwrapping removes the distortions of the omnidirectional 
imaging device and enables the use of state-of-the-art wide-
baseline algorithms designed for perspective cameras. Never­
theless, other researchers have attempted to apply to omnidi­
rectional images standard feature detectors and matching tech­
niques which have been traditionally employed for perspec­
tive images. Micusik and Pajdla (2006), for instance, checked 
the candidate correspondences between two views using the 
RANSAC algorithm. 

Finally, other works have been developed, which extract 
one-dimensional features from new images called Epipolar 
plane images, under the assumption that the camera is mov­
ing on a flat surface (Briggs et al. 2006). These images are 
generated by converting each omnidirectional picture into a 
one-dimensional circular image, which is obtained by aver­
aging the scan lines of a cylindrical panorama. Then, one-
dimensional features are extracted directly from such kinds of 
images. 

In this paper, we deal with real-world vertical features be­
cause they are predominant in structured environments. In our 
experiments, we used a wheeled robot equipped with a cata­
dioptric omnidirectional camera with the mirror axis perpen­
dicular to the plane of motion (Figure 1). If the environment 
is flat, this implies that all world vertical lines are mapped to 
radial lines on the camera image plane. 

The use of vertical line tracking is not new in the robot­
ics community. Since the beginning of machine vision, robot­
icians have been using vertical lines or other sorts of image 
measure for autonomous robot localization or place recogni­
tion. Several methods dealing with automatic line matching 
have been proposed for standard perspective cameras and can 
be divided into two categories: those that match individual line 
segments1 and those that match groups of line segments. Indi­
vidual line segments are generally matched on their geometric 
attributes (e.g. orientation, length, extent of overlap) (Medioni 

Fig. 1. The robot used in our experiments equipped with en­
coder sensors, omnidirectional camera and two laser range 
finders. 

and Nevatia 19851 Ayache 19901 Zhang 1994). Crowley and 
Stelmazyk (1990), Deriche and Faugeras (1990) and Hutten­
locher et al. (1993) use a nearest line strategy which is bet­
ter suited to image tracking where the images and extracted 
segments are similar. Matching groups of line segments has 
the advantage that more geometric information is available 
for disambiguation. A number of methods have been devel­
oped around the idea of graph-matching (Ayache and Faugeras 
19871 Horaud and Skordas 19891 Gros 19951 Venkateswar and 
Chellappa 1995). The graph captures relationships such as 
“left of”, “right of”, cycles, “collinear with”, etc., as well as 
topological connectedness. Although such methods can cope 
with more significant camera motion, they often have a high 
complexity and again they are sensitive to error in the segmen­
tation process. 

In addition to these methods, other approaches to individ­
ual line matching exist, which use some similarity measure 
commonly used in template matching and image registration

Downloaded from http://ijr.sagepub.com at EIDGENOSSISCHE TECHNISCHE on January 28, 2009 

http://ijr.sagepub.com


Scaramuzza, Siegwart, and Martinelli / A Robust Descriptor for Tracking Vertical Lines 151 

(e.g. sum of squared differences (SSD), simple or normal­
ized cross-correlation (NCC), image histograms1 see Gonza­
lez and Woods (2002)). An interesting approach was proposed 
by Baillard et al. (1999). In addition to using the topological 
information of the line, the authors also used the photometric 
neighborhood of the line for disambiguation. Epipolar geom­
etry was then used to provide a point-to-point correspondence 
on putatively matched line segments over two images and the 
similarity of the line’s neighborhoods was then assessed by 
cross-correlation at the corresponding points. 

A novel approach, using the intensity profile along the 
line segment, was proposed by Tell and Carlsson (2000). Al­
though the application of the method was to wide baseline 
point matching, the authors used the intensity profile between 
two distinct points (i.e. a line segment) to build a distinctive de­
scriptor. The descriptor is based on affine invariant Fourier co­
efficients that are directly computed from the intensity profile. 
Another approach designed for wide baseline point matching 
on affine invariant regions was proposed by Goedeme et al. 
(2004) and its application on robot localization with omnidi­
rectional imagery was demonstrated by Sagues et al. (2006). 

The methods cited above were defined for perspective im­
ages but the same concepts have been also used by roboti­
cians in omnidirectional images under certain circumstances. 
The use of omnidirectional vision even facilitated the task be­
cause of the 3602 field of view (Yagi and Yachida 19911 Bras­
sart et al. 20001 Prasser et al. 2004). However, to match verti­
cal lines among different frames only mutual and topological 
relations have been used (e.g. neighborhood or ordering con­
straints) sometimes along with the similarity measures cited 
above (e.g. SSD, NCC). 

Finally, another important issue to be addressed when us­
ing a vision sensor in mobile robotics is the extrinsic calibra­
tion of the camera with respect to the robot odometry, i.e. the 
estimation of the parameters characterizing the transformation 
between the two references attached on the robot (robot origin) 
and on the vision sensor. When a given task is performed by 
fusing vision and odometry data, the performance will depend 
on this calibration. The problem of sensor-to-sensor calibra­
tion in robotics has received significant attention recently and 
a number of approaches have been developed (e.g. for IMU– 
camera (Mirzaei and Roumeliotis 2007), robot body–camera 
(Hesch et al. 2008) or laser scanner–camera (Zhang and Pless 
20041 Scaramuzza et al. 2007b) calibration). However, very 
little attention has been devoted to determining the odometry– 
camera transformation. This is necessary in order to correctly 
fuse visual information and dead-reckoning in robot localiza­
tion and mapping. In this paper, we focus on auto-calibration, 
that is, without user intervention. 

1.3. Outline 

In this paper we propose two contributions. In the first part of 
the paper, we describe how we build our robust descriptor for 

vertical lines. We show that the descriptor is very distinctive 
and is invariant to rotation and slight changes of illumination. 

In the second part of the paper, we introduce a strategy 
based on the extended Kalman filter (EKF) to perform auto­
matically the estimation of the extrinsic parameters of the om­
nidirectional camera during the robot motion. The strategy is 
theoretically validated through an observability analysis which 
takes into account the system non-linearities. In particular, it is 
theoretically shown that only one feature suffices to perform 
the calibration. This paper extends our two previous works 
(Martinelli et al. 20061 Scaramuzza et al. 2007a). 

The present document is organized as follows. First, we de­
scribe our procedure to extract vertical lines (Section 2) and 
build the feature descriptor (Section 3). In Section 4 we pro­
vide our matching rules while in Sections 5 and 6 we char­
acterize the performance of the descriptor. In Section 7, we 
describe the calibration problem, while in Section 8 we pro­
vide the equations to build the EKF. In Section 9, we present 
experimental results which validate both the theoretical contri­
butions. 

2. Vertical Line Extraction 

Our platform consists of a wheeled robot equipped with a cata­
dioptric omnidirectional camera (see Figure 1). The main ad­
vantage of this type of camera is that it provides a 3602 field 
of view in the azimuth plane. In our arrangement, we set the 
camera–mirror system perpendicular to the floor where the ro­
bot moves. This setting guarantees that all vertical lines are 
mapped to radial lines on the camera image plane (Figure 2). 
In this section, we provide details of our procedure to extract 
prominent vertical lines. Our procedure consists of five steps. 

The first step towards vertical line extraction is the detec­
tion of the image center (i.e. the point where all radial lines 
intersect). As the circular external boundary of the mirror is 
visible in the image, we used a circle detector to determine the 
coordinates of the center. Note that because the diameter of 
the external boundary is known and does not change dramati­
cally during the motion, the detection of the center can be per­
formed very efficiently and with high accuracy on every frame 
(this guarantees to cope also with the vibrations of the plat­
form). The circle detection algorithm works in the following 
way: first, the radius of the circle has to be computed from a 
static image. Then, for each frame we use a circular mask (the 
same radius of the circle to be detected) which is convolved 
with the binary edge image. The output of this convolution is 
an accumulator matrix where the position of the maximum co­
incides with the position of the circle center. 

The second step is the computation of the image gradients. 
We compute the two components Ix, Iy of the image gradi­
ent by convolving the input image I with the two 3 3 3 Sobel 
masks. From Ix, Iy, we can calculate the magnitude M and the 
orientation 11 of the gradients as

Downloaded from http://ijr.sagepub.com at EIDGENOSSISCHE TECHNISCHE on January 28, 2009 

http://ijr.sagepub.com


152 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2009 

Fig. 2. An image taken by our omnidirectional camera. We 
used a KAIDAN-360-One-VR hyperbolic mirror and a SONY 
CCD camera the resolution of 640 3 480 pixels. The camera 
used in shown in Figure 1. 

Fig. 3. Edge image of Figure 2. 

1 
M 4 Ix 

2 5 Iy 
22 11 4 atan3Iy4Ix56 (1) 

Then, we perform a thresholding on M, 11 by retaining those 
vectors whose orientation looks towards (or away from) the 
image center up to 652. This 102 tolerance allows us to handle 
the effects of floor irregularities on the appearance of vertical 
lines. After this thresholding, we apply edge thinning and we 
obtain the binary edge map depicted in Figure 3. 

The third step consists of detecting the most reliable verti­
cal lines. To this end, we divide the omnidirectional image into 

Fig. 4. Number of binary pixels voting for a given orientation 
angle. 

720 predefined uniform sectors, which give us an angular res­
olution of 0.52 . By summing up all binary pixels that vote for 
the same sector, we obtain the histogram shown in Figure 4. 
Then, we apply non-maxima suppression to identify all local 
peaks. 

The final step is histogram thresholding. As observed in 
Figure 3, there are many potential vertical lines in structured 
environments. In order to keep the most reliable and stable 
lines, we put a threshold on the number of pixels of the ob­
served line. As observed in Figure 4, we set our threshold equal 
to 50% of the maximum allowed line length, i.e. Rmax 7 Rmin. 
An example of vertical lines extracted using this threshold is 
shown in Figure 5.  

3. Building the Descriptor 

In Section 4, we describe our method for matching vertical 
lines between consecutive frames while the robot is moving. 
To make the feature correspondence robust to false positives, 
each vertical line is given a descriptor which is very distinctive. 
Furthermore, this descriptor is invariant to rotation and slight 
changes of illumination. In this way, finding the correspondent 
of a vertical line can be done by looking for the line with the 
closest descriptor. In the following sections, we describe how 
we built our descriptor. 

3.1. Rotation Invariance 

Given a radial line, we divide the space around it into three 
equal non-overlapping circular areas such that the radius ra of
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Fig. 5. Extraction of the most reliable vertical features from an 
omnidirectional image. 

Fig. 6. Extraction of the circular areas. To achieve rotation in­
variance, the gradient orientation 11 of all points is redefined 
relative to the angle of the radial line 7 . 

each area is equal to 3Rmax 7 Rmin546 (see Figure 6). Then, we 
smooth each area with a Gaussian window with 8G 4 ra43 
and compute the image gradients (magnitude M and orienta­
tion 11) within each of these areas. Concerning rotation invari­
ance, this is achieved by redefining the gradient orientation 11
of all points relatively to the angle of the radial line 7 (see Fig­
ure 6). 

Fig. 7. The two sections of a circular area. 

3.2. Orientation Histograms 

To make the descriptor robust to false matches, we split each 
circular area into two parts and consider each one individually 
(Figure 7). In this way, we preserve the information about what 
we have on the left- and right-hand sides of the feature. 

For each side of each circular area, we compute the gradient 
orientation histogram (Figure 8). The whole orientation space 
(from 79 to 9) is divided into  Nb equally spaced bins. In order 
to decide how much of a certain gradient magnitude m belongs 
to the adjacent inferior bin b and how much to the adjacent 
superior bin, each magnitude m is weighted by the factor 317 
�5, where  

� 7 b 
2 (2)� 4 Nb 29 

with � being the observed gradient orientation in radians. 
Thus, m31 7 �5  will vote for the adjacent inferior bin, while 
m� will vote for the adjacent superior bin. 

According to what we mentioned so far, each bin contains 
the sum of the weighted gradient magnitudes which belong to 
the correspondent orientation interval. We observed that this 
weighted sum made the orientation histogram more robust to 
image noise. Finally, observe that the orientation histogram 
is already rotation invariant because the gradient orientation 
has been redefined relative to the angle of the radial line (Sec­
tion 3.1). 

To recap, in the end we have three pairs of orientation his­
tograms: 2 3 

H1 4 H12L2H12R 2 2 3 
H2 4 H22L2H22R 2 2 3 
H3 4 H32L2H32R 2 (3) 

where the subscripts L, R identify respectively the left and 
right section of each circular area.
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Fig. 8. An example of gradient orientation histograms for the left- and right-hand sides of a circular area. 

3.3. Building the Feature Descriptor 

From the computed orientation histograms, we build the final 
feature descriptor by stacking all three histogram pairs as fol­
lows: 

H 4 [H12 H22 H3] 6 (4) 

To have slight illumination invariance, we pre-normalize each 
histogram Hi to have unit length. This choice relies on the hy­
pothesis that the image intensity changes linearly with illumi­
nation. However, non-linear illumination changes can also oc­
cur due to camera saturation or due to illumination changes 
that affect three-dimensional surfaces with different orienta­
tions by different amounts. These effects can cause a large 
change in relative magnitude for some gradients, but are less 
likely to affect the gradient orientations. Therefore, we reduce 
the influence of large gradient magnitudes by clipping the val­
ues in each unit histogram vector so that each bin is no larger 
than 0.1, and then renormalizing to unit length. This means that 
matching the magnitudes for large gradients is no longer as 
important, and that the distribution of orientations has greater 
emphasis. The value 0.1 was determined experimentally and is 
justified in Section 6. 

To recap, our descriptor is an N -element vector containing 
the gradient orientation histograms of the circular areas. In our 
setup, we extract three circular areas from each vertical fea­
ture and use 32 bins for each histogram1 thus the length of the 
descriptor is 

4. Feature Matching 

As every vertical feature has its own descriptor, its correspon­
dent in consecutive images can be searched among the fea­
tures with the closest descriptor. To this end, we need to define 
a dissimilarity measure (i.e. distance) between two descrip­
tors. 

In the literature, several measures have been proposed for 
the dissimilarity between two histograms H 4 8hi 9 and K 4 
8ki 9. These measures can be divided into two categories. The 
bin-by-bin dissimilarity measures only compare the contents 
of the corresponding histogram bins, that is, they compare hi 

and ki for all i , but not hi and ki for i �4 j . The  cross-bin 
measures also contain terms that compare non-corresponding 
bins. Among the bin-by-bin dissimilarity measures are the 
Minkoski-form distance, the Jeffrey divergence, the � 2 statis­
tics and the Bhattacharya distance. Among the cross-bin mea­
sures, one of the most widely used is the quadratic-form dis­
tance. An exhaustive review of all of these methods is given by 
Raman et al. (2005) and Rubner et al. (2000, 2001). 

In our work, we tried the dissimilarity measures mentioned 
above but the best results were obtained using the L2 dis­
tance (i.e. Euclidean distance) that is a particular case of the 
Minkoski-form distance. Therefore, in our experiments we 
used the Euclidean distance as a measure of the dissimilarity 
between descriptors, which is defined as 

N 4 3 areas  3 2 parts  3 32 bins 4 1926 (5) 
d3H2 K5 4 

N7 
4556 �hi 7 ki �26 (6)

Observe that all feature descriptors are the same length. i41 
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By the definition of distance, the correspondent of a feature, 
in the observed image, is expected to be that, in the consecu­
tive image, with the minimum distance. However, if a feature 
is no longer present in the next image, there will be a closest 
feature anyway. For this reason, we defined three tests to de­
cide whether a feature correspondent exists and which one the 
correspondent is. Before describing these tests, let us introduce 
some definitions. 

Let 8A12A22 6 6 6 2ANA9 and 8B12B22 6 6 6 2BNB 9 be two sets 
of feature descriptors extracted at time tA and tB , respectively, 
where NA, NB are the number of features in the first and sec­
ond image. Then, let 

Di 4 8d3Ai 2B j 52 j 4 12 22 6 6 6 2 NB9 (7) 

be the set of all distances between a given Ai and all B j 3 j 4 
12 22 6 6 6 2 NB5. Finally, let minDi 4 mini 3Di 5 be the minimum 
of the distances between given Ai and all Bj and SminDi the 
distance to the second closest descriptor. 

4.1. Test 1 

The first test checks that the distance from the closest descrip­
tor is smaller than a given threshold, that is, 

minDi � F16 (8) 

By this criterion, we actually set a bound on the maximum 
acceptable distance to the closest descriptor. 

4.2. Test 2 

The second test checks that the distance from the closest de­
scriptor is smaller than the mean of the distances from all other 
descriptors, that is, 

minDi � F2 � �Di �2 (9) 

where �Di � is the mean value of Di and F2 clearly ranges from 
zero to one. This criterion comes from experimental results. 

4.3. Test 3 

Finally, the third test checks that the distance from the closest 
descriptor is smaller than the distance from the second closest 
descriptor SminDi : 

minDi � F3 � SminDi 2 (10) 

where F3 clearly ranges from zero to one. As in the previous 
test, the third test raises from the observation that, if the correct 
correspondence exists, then there must be a big gap between 
the closest and the second closest descriptor. 

Table 1. The Distances between the Descriptor A1 at Time 
tA and All Descriptors Bj , j 4 12 22 6 6 6 2 NB at Time tB 6 

B1 B2 B3 B4 B5 

0.57 0.72 0.74 0.78 0.83


Table 2. The Parameters used by Our Algorithm with their 
Empirical Values. 

F1 4 1605 F2 4 0675 F3 4 068 

In Table 1, we show an example of real comparison among 
the distances between descriptor A1 at time tA and all descrip­
tors B j at time tB . Observe that descriptor B1 is not the correct 
correspondent of A1. In fact, it passes tests 1 and 3 but not 
test 2. 

Factors F1, F2, F3 were determined experimentally. The 
values used in our experiments are shown in Table 2. The mo­
tivation for this choice of values is given in Section 6. 

5. Comparison with other Image Similarity 
Measures 

A good method to evaluate the distinctiveness of the descrip­
tors in the observed image is to compute a similarity matrix S 
where each element S3i2 j5 contains the distance between the 
i th and j th descriptor. That is, 

S3i2 j5 4 d3Hi 2H j 52 (11) 

where Hi is the descriptor of the i th radial line and distance d 
is defined as in (6). Observe that to build this matrix we com­
pute the descriptor of the radial line for every 7 � [022 3602]. 
We used a 7 increment of 12 and thus i 4 12 22 6 6 6 2 360. Fur­
thermore, note that S is symmetric and that S3i2 j5 4 0 for  
i 4 j . The similarity matrix computed for the image of Fig­
ure 6 is shown in Figure 9. 

In this section, we want to compare our descriptor with two 
other image similarity measures that are well known in image 
registration and are also commonly used for matching indi­
vidual lines. These are SSD and zero-mean normalized cross-
correlation (ZNCC) (their definitions are given by Gonzalez 
and Woods (2002)). When using SSD and ZNCC for compar­
ing two patterns, the pattern descriptor can be seen as the pat­
tern intensity. In our case, we take as a pattern the rectangular 
region around the observed radial line as shown in Figure 10. 
As we did to build the similarity matrix for our descriptors, we 
compare a given pattern Pi with pattern P j using either SSD 
or ZNCC and build the respective similarity matrices, that is, 

SSSD3i2 j5 4 SSD3Pi 2P j 52 (12) 

SZNCC 3i2 j5 4 ZNCC3Pi 2P j 52 (13)
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Fig. 9. Similarity matrix for descriptors. 

Fig. 10. This is the same image as Figure 6 after unwrapping 
into a cylindrical panorama. The rectangular region used to 
compute SSD and ZNCC is also shown. 

The two similarity matrices for the image in Figure 6 are 
shown in Figures 11 and 12. Concerning the size win of the 
patterns for computing SSD and ZNCC, we chose win 4 2ra . 
Observe that this choice is reasonable as 2ra is also the size 
(diameter) of the three circular areas used to build our de­
scriptor. Furthermore observe that, for SSD, the maximum 
similarity between two patterns occurs when SSD 4 0. Con­
versely, for ZNNC, maximum similarity (correlation) occurs 
when ZNCC 4 11 however, observe that Figure 12 has been in­
verted to enable comparison with Figures 9 and 11 (this means 
that black indicates maximum similarity and white the mini­
mum similarity). 

To interpret the similarity matrix, consider points along the 
diagonal axis in Figure 9. Each point is perfectly similar to 
itself, so all of the points on the diagonal are dark. Starting 
from a given point on the diagonal, one can compare how its 
correspondent descriptor relates to its neighbors forwards and 
backwards by tracing horizontally or vertically on the matrix. 
To compare a given descriptor Hi with descriptor Hi5n, simply  
start at point 3i2 i5 on the matrix and trace horizontally to the 
right to 3i2 i 5 n5. 

Fig. 11. Similarity matrix for SSD. 

Fig. 12. Similarity matrix for ZNCC. 

In the similarity matrix for SSD, one can see large blocks of 
dark which indicate that there are repeating patterns in the im­
age or that the patterns are poorly textured. Rectangular blocks 
of dark that occur off the diagonal axis indicate reoccurring 
patterns. This can be better understood by observing Figure 10. 
As observed, there are poorly textured objects and repeating 
structure. 

Similar comments can be made regarding the similarity ma­
trix for ZNCC. However, observe that the behavior of ZNCC 
is better than SSD: first, the size of the blocks along or off the 
diagonal axis is smaller1 then, points on the diagonal are much 
darker than points off the diagonal. 

Regarding the similarity matrix of our descriptor the diag­
onal axis is well demarcated, in fact points on the diagonal are 
much darker than those off the diagonal1 the contrast with the 
regions off the diagonal is higher than ZNCC. Finally, observe
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Fig. 13. Influence of saturation on correct matches. 

that blocks along or off the diagonal axis are much smaller or 
lighter than SSD and ZNCC1 this indicates that even on poorly 
textured surfaces our descriptor is distinctive enough. This is 
mainly due to use of the gradient information and to the fact of 
having split the region around the line in three areas instead of 
taking the entire region as whole. 

6. Performance Evaluation 

In this section, we characterize the performance of our descrip­
tor on a large image dataset by taking into account the sensi­
tiveness to different parameters, which are image saturation, 
image noise, number of histogram bins and the use of overlap­
ping circular areas. Furthermore, we also motivate the choice 
of the values of F1, F2 and F3 shown in Table 2. 

6.0.1. Ground Truth 

To generate the ground truth for testing our descriptor, we used 
a database of 850 omnidirectional pictures that is a subset of 
the video sequence (1,852 images) used in Section 9.1. First, 
we extracted verticals lines from each image. Then we manu­
ally labeled all of the corresponding features with the same ID. 
The images were taken from the hallway of our department. 
Figure 21 shows three sample images from our dataset. The 
images show that the illumination conditions vary strongly. 
Owing to large windows, a mixture of natural and artificial 
lighting produces difficult lighting conditions such as high­
lights and specularities. 

In the following sections, we characterize the performance 
of our descriptor. We would like to remark that the features 
of each image were matched against all of the other images of 
the dataset where the same features appeared. Furthermore, the 

Fig. 14. Influence of noise level (%) on correct matches. The 
correct matches are found using only the nearest descriptor in 
the database. 

images of our dataset were taken such that each vertical line 
could be continuously observed for at least 2 meters of transla­
tional motion. This means that the features were matched also 
among images with strong baseline (up to 2 meters). 

6.0.2. Image Saturation 

As we mentioned in Section 3.3, we limit the values of the 
histogram vectors to reduce the influence of image saturation. 
The percentage of correct matches for different threshold val­
ues is shown in Figure 13. The results show the percentage of 
features that find a correct match to the single closest neighbor 
in  the entire database.  As  the graph shows,  the maximum  per­
centage of correct matches is reached when using a threshold 
value equal to 0.1. In the remainder of this paper, we always 
use this value. 

6.0.3. Image Noise 

The percentage of correct matches for different amounts of 
Gaussian image noise (from 0% to 10%) is shown in Figure 14. 
Again, the results show the percentage of correct matches 
found using the single nearest neighbor in the entire database. 
As this graph shows, the descriptor is resistant even to large 
amounts of pixel noise. 

6.0.4. Histogram Bins and Circular Areas 

There are two parameters that can be used to vary the complex­
ity of our descriptor: the number of orientation bins (Nb) in  the  
histograms and the number of circular areas. Although in the
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Fig. 15. Influence of number of bins on correct matches. 

explanation of the descriptor we used three non-overlapping 
circular areas, we evaluated the effect of using five overlap­
ping areas with 50% overlap between two circles. The results 
are shown in Figure 15. As the graph shows, there is a slight 
improvement in using five overlapping areas (the amelioration 
is only 1%). Also, the performance is quite similar using 8, 16 
or 32 orientation bins. Following this considerations, the best 
choice would seem to use three areas and eight histogram bins 
in order to reduce the dimension of the descriptor. However, 
we chose to use 32 orientation bins. For 32 bins, in fact, we had 
the biggest separation between the probability density func­
tions (PDFs) of correct and incorrect matches shown in Fig­
ures 16, 17 and 18. Finally observe that we considered powers 
of two due to computational efficiency. The final computation 
time of the entire process (feature extraction, descriptor com­
putation and matching) took less than 20 ms on a dual-core 
laptop computer. 

6.0.5. Matching Rules 

Figure 16 shows the PDF for correct and incorrect matches in 
terms of the distance to the closest neighbor of each keypoint. 
In our implementation of the first rule, we chose F1 4 1605. As 
observed in the graph, by this choice we reject all matches in 
which the distance to the closest neighbor is greater than 1605, 
which eliminates 50% of the false matches while discarding 
less than 5% of correct matches. 

Similarly, Figure 17 shows the PDFs in the terms of the ra­
tio of closest to average-closest neighbor of each keypoint. In 
our implementation of the second rule, we chose F2 4 0675. 
As observed in the graph, by this choice we reject all matches 
where the ratio between the closest neighbor distance and the 
mean of all other distances is greater than 0675, which elimi­
nates 45% of the false matches while discarding less than 8% 
of correct matches. 

Fig. 16. The PDF that a match is correct according to the first 
rule. 

Fig. 17. The PDF that a match is correct according to the sec­
ond rule. 

Finally, Figure 18 shows the PDFs in terms of the ratio of 
closest to second-closest neighbor of each keypoint. In our im­
plementation of the third rule, we chose F3 4 0681 in this way 
we reject all matches in which the distance ratio is greater than 
068, which eliminates 92% of the false matches while discard­
ing less than 10% of correct matches. 

7. Camera–Robot Self-calibration: The Problem 

Accurate extrinsic calibration of a camera with the odome­
try system of a mobile robot is a very important step towards
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Fig. 18. The PDF that a match is correct according to the third 
rule. 

precise robot localization. This stage is usually poorly docu­
mented and is commonly carried out by manually measuring 
the position of the camera with respect to the robot frame. In 
this section, we describe a new method that uses an EKF to 
extrinsically and automatically calibrate the camera while the 
robot is moving. The approach is similar to that presented by 
Martinelli et al. (2006) where just a single landmark (a source 
of light) was tracked during the motion to perform calibration. 
In this section, we extend the method of Martinelli et al. (2006) 
by providing the EKF equations to cope with multiple features. 
The features in use are vertical features which are extracted 
and tracked as described in the previous sections. 

In order to simplify the problem, we make the following 
assumptions: we assume that the robot is moving in a flat en­
vironment and that it is equipped with an omnidirectional cam­
era whose z-axis is parallel to the z-axis of the robot, that is, 
the mirror axis is perpendicular to the floor. According to this, 
the three-dimensional camera–odometry calibration problem 
becomes a two-dimensional problem. 

Our first goal is the estimation of the three parameters �, �, 
� which characterize the rigid transformation between the two 
references frames attached to the robot and to the camera (see 
Figure 19). The second goal is to perform calibration automat­
ically and while the robot is moving. The available data are the 
robot wheels displacements ��R and ��L (see later) delivered 
by the encoder sensors and the bearing angle observations � of 
several features in the camera reference frame (Figure 19). 

As we consider the case of a mobile robot moving in a 
two-dimensional environment, its configuration is described 
through the state XR 4 [xR2 yR2 7R]T containing its position 
and orientation (as indicated in Figure 19). Furthermore, we 
consider the case of a robot equipped with a differential drive 

system. The robot configuration XR can then be estimated by 
integrating the encoder data. In particular, we have 8 9 

xRi51 4 xRi 5 ��i cos 7Ri 5 
�7 i 

2 
2 

8 9 

yRi51 4 yRi 5 ��i sin 7Ri 5 
�7 i 

2 
2 

7Ri51 4 7Ri 5 �7 i 2 (14) 

where quantities �� and �7 are related to the displacements 
��R and ��L (of the right and left wheel,respectively) directly 
provided by the encoders through 

��R 5 ��L ��R 7 ��L�� 4 2 �7  4 2 (15)
2 e 

where e is the distance between the wheels. 
For a particular bearing angle observation �, we obtain the 

following analytical expression (see Figure 19): 

� 4 9 7 � 7 7R 7 � 5 �2 (16) 

with 8 9 

� 4 tan71 yR 5 � sin37R 5 �5 
6 (17) 

xR 5 � cos37R 5 �5 

8. EKF-based Calibration 

An intuitive procedure to determine parameters �, �, � is 
to use the data from the encoders to estimate the robot 
configuration (provided that the initial robot configuration is 
known). Then, by measuring the bearing angle � at several 
different robot configurations (at least three), it is possible to 
obtain parameters �, �, � by solving a non-linear system in 
three unknowns. However, the drawback of this method is that, 
when the robot configuration is estimated by using only the en­
coder data, the error integrates over the path. This means that 
this procedure can be applied only for short paths and there­
fore the achievable accuracy on the estimation of �, �, � is 
limited. Furthermore, the initial robot configuration has to be 
known with high accuracy. 

One way to overcome these problems is to integrate the en­
coder data with the bearing angle measurements to estimate 
the robot configuration. This can be done by introducing an 
augmented state Xa containing the robot configuration and the 
calibration parameters �, �, �: 

Xa 4 [xR2 yR2 7R2 �2 �2�]T6 (18) 

An EKF can be adopted to estimate the state Xa . The  in­
puts u of the dynamics of this state are provided directly by 
the encoder data and the observations z are the bearing angles 
provided by the vision sensor. However, as was pointed out by
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Fig. 19. The two reference frames attached to the robot and to the camera. The five parameters estimated by the EKF 
(D2 72 �2 �2�) are also indicated. 

Martinelli et al. (2006), by considering the system state Xa as 
defined in (18) the system is not observable, that is, it does not 
contain all of the necessary information to perform the estima­
tion with an error which is bounded. Conversely, Martinelli et 
al. (2006) proved that the system becomes observable if, in­
stead of considering Xa , we introduce a new state X defined as 
follows: 

X 4 [D2 72 �2 �2 �]T2 (19) 

with D 4 
� 

x2 
R 5 y2 

R and 8 9 

7 4 7R 7 tan71 yR 

xR 

(see Figure 19). Note also that D is the distance from the ob­
served feature. 

Observe that, without loss of generality, we can use X in­
stead of Xa . In fact,  Xa contains the whole robot configuration 
whose estimation is not our goal, indeed we just want to esti­
mate parameters �, �, � . 

8.1. Observability Properties with Respect to the Robot 
Trajectory 

In control theory, a system is defined as observable when it is 
possible to reconstruct its initial state by knowing, in a given 
time interval, the control inputs and the outputs (Isidori 1995). 
The observability property has a very practical meaning. When 
a system is observable it contains all of the necessary informa­
tion to perform the estimation with an error which is bounded 
(Isidori 1995). 

In this section, we investigate the observability properties 
for the state X with respect to the robot trajectories. Our analy­
sis takes into account the system non-linearities. Indeed, the 
observability analysis changes dramatically from linear to non­
linear systems (Isidori 1995). First of all, in the non-linear 
case, the observability is a local property. For this reason, 
in a non-linear case the concept of the local distinguishabil­
ity property was introduced by Hermann and Krener (1977). 
The same authors introduced also a criteria, the observability 
rank condition, to verify whether a system has this property. 
This criteria plays a very important role since in many cases 
a non-linear system, whose associated linearized system is not 
observable, has however the local distinguishability property. 
Note that it is the distinguishability property which implies 
that the system contains the necessary information to have a 
bounded estimation error (actually, provided that the locality 
is large enough with respect to the sensor accuracy). 

The dynamics of our system are described by the following 
equations: 

D� 4 � cos 72  

sin 727� 4 � 7 
� 
D 

�� 4 �� 4 �� 4 06 (20) 

Our system is affine in the input variables, i.e. the previous 
equations can be written in the following compact form: 

M7 
X� 4 f 3X2 u5 4 fk3X5uk2 (21)

k41 
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where M is the number of the input controls (which are in­
dependent). In our case M 4 2 and the controls are u1 4 � , 
u2 4 � and 

f1 4 

� 

cos 72  7 
sin 7 

D 
2 02 02 0 

�T 

2 

f2 4 [02 12 02 02 0]T 6 (22) 

The observation is defined by the equation 8 9 

� i 4 tan71 7�i sin37 i 5 �i 5 7 7 i 7 �i 7� i 6 (23)7Di 7 �i cos37 i 5 �i 5 

We now want to recall some concepts of the theory of 
Hermann and Krener (1977). We adopt the following nota­
tion. We indicate the K th-order Lie derivative of a field � 
along the vector fields �i12 �i22  6 6 6  2 �iK with L�

K
i1 2�i2 26662�iK 

� . 
Note that the Lie derivative is not commutative. In particular, 
in L�

K
i1 2�i2 26662�iK 

� it is assumed to differentiate along �i1 first 
and along �iK at the end. Let us indicate with � the space 
spanned by all of the Lie derivatives L K 

fi1 2 fi2 26662 fiK
h3X5�t40 

(i12 6 6  6 2  iK 4 12 22 6  6 6 2  M and the functions are defined fi j 

in (22)). Furthermore, we denote with d� the space spanned 
by the gradients of the elements of �. 

In this notation, the observability rank condition can be ex­
pressed in the following way: the dimension of the observable 
sub-system at a given X0 is equal to the dimension of d�. 

Martinelli et al. (2006) showed that the state X satisfying 
the dynamics in (20) is observable when the observation is 
that given in (23). Here we want to investigate the observabil­
ity properties depending on the robot trajectory. In particular, 
we consider separately the case of straight motion and pure ro­
tations about the robot origin. Furthermore, we consider sepa­
rately the case when the observed feature is far from the robot 
and the case when it is close. Before considering the mentioned 
cases separately we observe that � depends on X through the 
ratio � � D4� and the sum � � 7 5 �: 8 9 

sin � 7 � 7 �6  (24)� 4 atan 
� 5 cos � 

The case of far feature and close feature corresponds re­
spectively to have � � 1 and  � � 1. In the first case the 
expression of � can be approximated with 

4 77 7 � 7 �6  (25) 

8.1.1. Pure Rotations and Far Feature 

This motion is obtained by setting u1 4 0. Hence, the Lie 
derivatives must be calculated only along the vector f2. The  
observation is that given in (25). It is easy to realize that the 
dimension of d� is 1 (the first-order Lie derivative is equal to 

71, i.e. is a constant). This result is intuitive: the observation in 
(25) does not provide any information on D and � and it is not 
able to distinguish among 7 , � and � . Furthermore, the pure 
rotation does not provide any additional information. Hence, it 
is only possible to observe the sum 7 5 � 5 � . 

8.1.2. Straight Motion and Far Feature 

This motion is obtained by setting u2 4 0. Hence, the Lie 
derivatives must be calculated only along the vector f1. We  
note that f1 depends only on 7 and D. Furthermore,  � 4 
77 7 � (having defined � � � 5 �). Hence, the best we can 
hope is that the following quantities are observable: D, 7 , �. In  
Appendix A we show that this is the case. 

8.1.3. Pure Rotation and Close Feature 

Let us consider the state X� � [�2 � 2 �2 �2 �]T. When  X� 4 
� f2 we have X� � 4 � f2. On the other hand, f2 is independent 
of X�. Furthermore, the expression in (24) depends only on �, 
� and � . Hence, the best we can hope is that the quantities �, 
� and � are observable. In Appendix A we show that this is 
the case. 

8.1.4. Straight Motion and Close Feature 

This is the hardest case. A priori, it is not possible to exclude 
that the entire state X is observable. However, a direct com­
putation of the dimension of d� (see Appendix A) shows that 
this dimension is smaller than 5, meaning that X is not observ­
able. 

We conclude this section with the following important re­
mark. It is possible to estimate the parameters �, � and � by 
combining a straight motion far from the feature with pure ro­
tations close to the feature. Indeed, by performing the first tra­
jectory it is possible to observe the sum � 5� , D and 7 . Once  
the robot starts to rotate, D does not change. Furthermore, the 
sum � 5 � is time independent. On the other hand, with the 
pure rotation �, � and � are observable. Therefore, from the 
values of � and D it is possible to determine �, and from � 
and the sum � 5 � it is possible to determine �. 

8.2. The Filter Equations 

By using D, 7 and Equation (14), we obtain the following dy­
namics for the state X: 

Di51 4 Di 5 ��i cos 7 i 2 

��i7 i51 4 7 i 5 �7 i 7 sin 7 i 2
Di 
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�i51 4 �i 2 �1 
i 

�i51 4 �i 2 �2 
i 

h 3Xi 5 4 

���������


���������


66� i51 4 � i 2 (26) 6 

� Z 
i 

where, from now on, subscript i will be used to indicate the 
time. 7�i sin37 i

15�i 5 7 71 
i 7 �i 7 � itan71 

7Di 
17�i cos371 

i 5�i 5Similarly, the bearing angle observations � i (16) can be 
read as 

�����������


����������� 

7�i sin37 i
25�i 5 7 72 

i 7 �i 7 � itan71 
7Di 

27�i cos372 
i 5�i 5 4 6 (30)98 667�i sin37 i 5 �i 5 

7Di 7 �i cos37 i 5 �i 5 
� i 4 tan71 67 7 i 7 �i 7 � i 6 (27) 

7�i sin37 i
Z5�i 5 7 7 i

Z 7 �i 7 � itan71 
7Di

Z7�i cos37 i
Z5�i 5 

Observe that so far we have taken into account only the ob­
servation of a single feature. As we want to cope with multiple 
features, we need to extend the definition of X (19) as follows: 

X 4 [D12 712 D22 722 6  6 6 2  DZ 2 7  Z 2  �2 �2�]T2 (28) 

where the superscript identifies the observed feature and Z is 
the number of features. 

Before implementing the EKF, we need to compute the dy­
namics function f and the observation function h, both de­
pending on the state X. From (26) and using (28), the dynamics 
f of the system can be written as 

The previous equations, along with a statistical error model 
of the odometry (we used that by Chong and Kleeman (1997)), 
allow us to implement an EKF to estimate X. In order to im­
plement the standard equations of the EKF, we need to com­
pute the Jacobians Fx and Fu of the dynamics (29) with respect 
to the state X and with respect to encoder readings (��R and 
��L). Furthermore, we need to compute the Jacobian H of the 
observation function (30) with respect to X. These  matrices  
are required to implement the EKF (Bar-Shalom and Fortmann 
1988) and are given in Appendix A. 

Finally, to make the method robust with respect to the sys­
tem non-linearities, we inflate the covariance matrix charac­
terizing the non-systematic odometry error. As in the Chong– 
Kleeman model (Chong and Kleeman 1997), it is assumed that 
the true distance traveled by each wheel during a given time 
step is a Gaussian random variable. In particular, it is assumed 

Di 
1 5 ��i cos 71 

i that its mean value is that returned by the wheel encoder and 
the variance increases linearly with the absolute value of the 
traveled distance: 

��R4L 4 N3��e
R4L52 (31)R4L2 K ��
e 

where the subscript R/L denotes the right and left wheel, re­
spectively, the superscript e indicates the value returned by 

�������������������������������


�������������������������������


71 
i 5 �7 i 7 ��i sin 7 i 

1 
D1 

i 

Di 
2 5 ��i cos 72 

i 

72 
i 5 �7 i 7 ��i sin 7 i 

2 
D2 

i 

666 

Di
Z 5 ��i cos 7 Z 

i 

7 i
Z 5 �7 i 7 ��i sin 7 i

Z 
DZ 

i 

�i 

�i 

the encoder and K is a parameter characterizing the non-
systematic error whose value is needed to implement the filter. 

Xi51 4 f 3Xi 2 ui 5 4 2 (29) 

In order to inflate this error, we adopt a value for K increased 
by a factor of five with respect to that estimated by previous 
experiments (Martinelli et al. 2007). 

9. Experimental Results 

� i In our experiments, we adopted a mobile robot with a dif­
ferential drive system endowed with encoder sensors on the 
wheels. Furthermore, we equipped the robot with an omnidi­

with u 4 [��R2 ��L]T. Regarding the observation function h, rectional camera consisting of a KAIDAN 3602 One VR hy-
from (27) we have perbolic mirror and a SONY CCD camera the resolution of
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Fig. 20. Floorplan of the institute showing the robot path. 

640 3 480 pixels. Our platform is depicted in Figure 1. Finally, 
observe that the entire algorithm ran in real-time. In particu­
lar, all processes (image capture, feature extraction, descrip­
tion computation, feature matching) could be computed in less 
than 20 ms on a dual-core laptop computer. 

9.1. Results on Feature Tracking by using the Proposed 
Descriptor 

In this section, we show the performance of our feature ex­
traction and matching method by capturing pictures from our 
robot in a real indoor environment. Furthermore, we show that 
the parameters of the descriptor generalize also outside of the 
chosen dataset used for “learning” in Section 6. 

The robot was moving at about 0615 m s71 and was acquir­
ing frames at 3 Hz, meaning that during straight paths the trav­
eled distance between two consecutive frames was 5 cm. The 
robot was moved in the hallway of our institute along the path 
shown in Figure 20. A total of 1,852 frames were extracted 
during the whole path. Figure 21 shows three sample images 
from the dataset. The images show that the illuminations con­
ditions vary strongly. 

Fig. 21. Omnidirectional images taken at different locations. 

The result of feature tracking is shown only for the first 
150 frames in Figure 22. The video sequence from where this 
graph was generated can be found in the multimedia extension 
of this paper (see Appendix B). In the video, every vertical 
line is labeled with the corresponding number and color with 
which it appears in Figure 22. The graph shown in Figure 22 
was obtained using only the three matching rules described in 
Sections 4.1, 4.2 and 4.3. No other constraints, such as mutual 
and topological relations, have been used. This plot refers to a 
short path of the whole trajectory while the robot was moving 
in a straight line (between frames 0 and 46), then rotating 1802 

(between frames 46 and 106) and then moving straight again. 
As observed, most of the features are correctly tracked over 
the time. Indeed, most of the lines appear smooth and homo­
geneous. The lines are used to connect features that belong to 
the same track. When a new feature is detected, this feature is 
given a label with progressive numbering and a new line (i.e.
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Fig. 22. Feature tracking during the motion of the robot. The y-axis is the angle of sight of each feature and the x-axis is the
frame number. Each circle represents a feature detected in the observed frame. Lines represent tracked features. Numbers appear
only when a new feature is detected. This plot corresponds to the video contained in the multimedia extension of this paper (see
Appendix B).

Table 3. Recognition rate.

Frame interval Number of matches Rate of correct matches Rate of false matches Rate of false new entries
(%) (%) (%)

0–200 735 97.48 0.53 1.98

200–400 972 98.58 0.20 1.22

400–600 823 98.68 0.35 0.96

600–800 857 97.83 0.80 1.37

800–1,000 685 98.13 0.57 1.29

1,000–1,200 740 98.40 0.26 1.33

1,200–1,400 906 98.26 0.43 1.30

1,400–1,600 784 97.75 0.62 1.62

1,600–1,852 771 98.34 0.76 1.89

track) starts from it. In this graph, there are three false matches
that occur at the points where two tracks intersect (e.g. at the
intersection between tracks 1 and 58, between tracks 84 and
86 and between tracks 65 and 69). Observe that the three huge

jumps in the graph are not false matches1 they are only due to
the angle transition from 79 to 9 .

Observe that our method was able to match features even
when their correspondents were not found in the previous
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Fig. 23. Laser points reprojected onto the omnidirectional image before calibration. The edges in the omnidirectional image do 
not correctly intersect the corners of the laser scan. 

Fig. 24. The path performed by the robot during self-calibration, i.e. straight path followed by a rotation. 

frames. This can be seen by observing that sometimes cir­
cles are missing on the tracks (look, for instance, at track 52). 
When a correspondence is not found in the previous frame, our 
tracking algorithm starts looking into all previous frames (ac­
tually up to 20 frames back) and stops when a correspondence 
is found. 

By examining the graph, one can see that some tracks 
are suddenly given different numbers. For instance, observe 
that feature 1, which is the first detected feature and starts at 
frame 0, is tracked correctly until frame 120 and is then labeled 
as feature 75. This is because at this frame no correspondence 
was found and the feature was then labeled as a new entry (but, 
in fact, is a false new entry). Another example is feature 15 that 

is then labeled as feature 18 and 26. By a careful visual in­
spection, one can find only a few other examples of false new 
entries. Indeed, tracks that at a first glance seem to be given 
different numbers, belong in fact to other features that are very 
close to the observed feature. 

After visually inspecting every single frame of the whole 
video sequence (composed of 1,852 frames), we found 35 false 
matches and 101 false new entries. The detection rate over the 
entire dataset is shown in Table 3 at intervals of 200 frames. 
Comparing these errors with the 7,408 corresponding pairs de­
tected by the algorithm over the whole video sequence, we 
had 168% of mismatches. Furthermore, we found that false 
matches occurred every time the camera was facing objects
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Fig. 25. The values of �, �, � , 8� 
2, 8� 

2, 8� 
2 as a function of the frame number. The distance traveled between two frames is 

about 368 cm.  

with a repetitive texture (as in Figure 10 or in the second image 
of Figure 21). Thus, ambiguity was caused by the presence of 
vertical elements which repeat almost identically in the same 
image. On the other hand, a few false new entries occurred 
when the displacement of the robot between two successive 
images was too large. However, observe that when a feature 
matches with no other feature in previous frames, it is better to 
believe this feature to be new than commit a false matching. 

As we already mentioned above, the results reported in this 
section were obtained using only the three matching rules de­

scribed in Sections 4.1, 4.2 and 4.3. Obviously, the perfor­
mance of tracking could be further improved by adding other 
constraints such as mutual and topological relations among 
features. 

9.2. Calibration Results 

In our experiments, we adopted the same mobile robot and 
omnidirectional camera described in Section 9.1. Furthermore,
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Fig. 26. Laser points reprojected onto the omnidirectional image after calibration. The edges in the omnidirectional image appro­
priately intersect the corners of the laser scan. 

two laser range finders (model SICK LMS 200) were also in­
stalled on the robot. Observe that these laser scanners are used 
in our experiments just for comparison and are considered al­
ready calibrated with the odometry system according to the 
specifications provided by the manufacturer. 

For our experiments, we positioned the omnidirectional 
camera on our robot as in Figure 1 and we measured its posi­
tion relative to the robot manually. We measured the following 
values: � � 0 rad,  � � 062 m and � � 0 rad. Figure 23 shows 
the laser points reprojected onto the omnidirectional image us­
ing the above values. As observed, because the relative pose 
of the camera and the robot references is not measured accu­
rately, the edges in the omnidirectional image do not correctly 
intersect the corners of the laser scan. However, we used these 
rough values to initialize our EKF. 

The trajectory chosen for the experiments consisted of a 
straight path, approximately 263 m long, and a 1802 rotation 
about the center of the wheels. The trajectory is depicted in 
Figure 24. For this experiments, about 10 vertical lines were 
tracked. 

The values of �, �, � estimated during the motion are plot­
ted as a function of the frame number in Figure 25. The covari­
ances 8� , 8� , 8� are also plotted. Observe that after about 60 
frames (corresponding to about 263 m of navigation) the para­
meters start suddenly to converge to a stable value. The result­
ing estimated parameters are � 4 70634 rad, � 4 0623 m and 
� 4 0633 rad. The sudden jump starting at frame 60 actually 
occurs when the robot starts to rotate. 

As demonstrated in Section 8.1, when the robot accom­
plishes a straight trajectory far from the feature, it is possible 
to observe the sum � 5 � , D and 7 . Once the robot starts to 

rotate, D does not change. Furthermore, the sum �5� is time 
independent. On the other hand, with the pure rotation �, � 
and � are observable. Therefore, as the robot starts to rotate 
the value of � is determined from the values of � and D. Fur-
thermore, both � and � are determined. Note that during the 
jump the sum � 5� is constant. As it was already pointed out 
by Martinelli et al. (2006), the convergence is very fast when 
the robot performs trajectories alternating short straight paths 
and pure rotations about the robot origin. 

Furthermore, extensive simulations by Martinelli et al. 
(2006), show that even when the estimation process starts by 
first moving the robot along a straight path (i.e. during this 
initial phase the overall state is unobservable) the EKF is al­
ways able to recover, at the end, the true values of the pa­
rameters. Several experiments and many simulations showed 
consistency among the results. 

Figure 26 shows the laser points reprojected onto the om­
nidirectional after calibration. As observed, the calibration pa­
rameters are well estimated. Indeed, the edges in the omnidi­
rectional image appropriately intersect the corners of the laser 
scan. 

10. Conclusion 

In this paper, we have presented a robust method for matching 
vertical lines among omnidirectional images. Furthermore, in 
order to make such a method usable in the framework of in­
door mobile robotics, we introduced a new simple strategy to 
extrinsically self-calibrating the omnidirectional sensor with 
the odometry reference system.
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Concerning the first part, the basic idea to achieve robust It is sufficient to show that the gradients d L0�, d L1 
f �, 

feature matching consists of creating a descriptor which is very dL2 
f f  � are independent. 

distinctive. Furthermore, this descriptor is invariant to rotation We have 
and slight changes of illumination. The performance of the de­
scriptor was validated through a deep analysis and an experi- L0� 4 � 4 77 7 �2 
ment of feature tracking was also carried out. The performance 
of tracking was very good as many features were correctly de- dL0� 4 [0271271]2 

tected and tracked over a long time. Furthermore, because the 
results were obtained using only the three matching rules de- L1 

f � 4 
sin 7 

2 
scribed in Section 4, we expect that the performance would be D 

notably improved by adding other constraints such as mutual 
sin 7 cos 7and topological relations among features. d L1 

f � 4 7 2 2 0 2 
D2 DConcerning the second part, we adopted the visual track­

ing method to implement our strategy of camera–robot self-
sin 27 

2 
D2

calibration. The novelty of the method is the use of an EKF L2 
f f  � 4 7  

that automatically estimates the calibration parameters while 
the robot is moving. The present strategy had already been pro­
posed in our previous work (Martinelli et al. 2006). In our pre-

cos 27 
d L2 

f f  � 4 2
sin 27 

272 2 0 6 
D3 D2 

vious work we provided the equations and performed several 
experiments on both simulated and real data by tracking only The determinant of the matrix containing these gradients is 
a single feature. In that work, we also showed that by choosing 

dL0�suitable trajectories (alternating straight path with pure rota­
tions), it is possible to estimate the calibration parameters with 
high accuracy by moving the robot along very short paths (a 

sin 7 
dL1 

f �det 4 2 2 
D4 

few meters). In this paper, we extended our previous work to 
cope with multiple features and showed that by tracking mul­
tiple features the convergence is faster than using a single fea­
ture. Furthermore, the calibration parameters start to converge 
when the robot undergoes a pure rotation after moving along a 
straight path. Although experiments have been conducted us­
ing an omnidirectional camera, more generally the proposed 
method can be adopted to calibrate any robot bearing sen­
sor. 

The two contributions introduced in this paper allow the 

d L2 
f f  � 

which is different from zero when 7 �4 n9 

A.2. Pure Rotation and Close Feature 

We want to prove that the state X rc � [�2 � 2�]T satisfying the 
dynamics X� rc 4 � f with f 4 [02 12 0]T is observable when 
the observation is 98 

sin� 
� 4 atan 7 � 7 �6  

use of an omnidirectional camera in the framework of mobile 
robotics, in particular in combination with odometry data. 

� 5 cos � 

It is sufficient to show that the gradients d L0�, d L1 
f �, 
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d L2 
f f  � 

By assuming � �  1 (i.e.  D � �) these gradients are inde-
Appendix A pendent and the observability holds. 

A.1. Straight Motion and Far Feature 
A.3. Straight Motion and Close Feature 

We want to prove that the state Xsf � [D2 72 �]T satisfying 
the dynamics X� sf 4 � f with f 4 [cos 727 sin 74D2 0]T is The state X satisfying the dynamics: X� 4 � f1 with f1 defined 
observable when the observation is � 4 77 7 �. in (22) is not observable when the observation is
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98 
sin � 

� 4 atan 7 � 7 �6  with 
� 5 cos � 

1 7�� sin 7 i 

2
To prove this we compute the determinant Ai 4 �� 

Di 2 sin 7 i 17 
�� 

Di 
cos 7 i 

cos 7 i cos 7 i 

2 2 

d L0� ����������� 

�����������


d L1 
f1 
� 

d L2 
f1 f1 

d L3 
f1 f1 f1

6

Bi 4 

1 sin 7 i 1 sin 7 
6 (32)

det 

e 
7 7 7 

2Di e 2Di 

The Jacobian H of the observations is 
dL4 

f1 f1 f1 f1 
� 

H11 H21 0 0 � � �  0 0 H31 H41 71 ����������� 

����������� 

This computation was performed by using the symbolic 
tool of Matlab and the result obtained is zero. 0 0 H12 H22 � � �  0 0 H32 H42 

6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 

0 0 0 0 � � �  H1Z H2Z H3Z H4Z 71 

H 4 

A.4. Jacobians 
with 

The Jacobians Fx and Fu of the dynamics are H1i 4 
7� sin37 i 5 �5 

Di 2 5 2� Di cos37 i 5 �5 5 �2 
2 

A1 0 � � �  0  0 0 0  ����������������������


2


7Di� cos37 i 5 �5 7 Di 2 

H2i 4 2 
Di 2 5 2� Di cos37 i 5 �5 5 �2 

H3i 4 
7Di� cos37 i 5 �5 7 Di 2 

2 
Di 2 5 2� Di cos37 i 5 �5 5 �2 

Di sin37 i 5 �5 
H4i 4 6 

Di 2 5 2� Di cos37 i 5 �5 5 �2 

Appendix B: Index to Multimedia Extensions 

Fx 4 

����������������������


0 A2 � � �  0  0 0 0  

6 6 6 6 6 66 6 6 6 6 66 6 6 6 6 6 

0 0 � � �  AZ 0 0 0  

0 0 � � �  0  1 0 0  

0 0 � � �  0  0 1 0  

0 0 � � �  0  0 0 1  
The multimedia extension page is found at http://www.ijrr.org 

and 
Table of Multimedia Extensions 

B1 

Extension Type Description 

1 Video Feature tracking 
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