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Abstract— In this work, we propose a novel RFID-based
hybrid metric-topological Simultaneous Localization and Map-
ping (SLAM) algorithm which enables autonomous naviga-
tion in GPS-denied environments. A method based on the
normalized-cut is proposed for online clustering of strongly
connected Radio Frequency Identification (RFID) tags to form
topological nodes. A particle filter together with a sensor model
which characterizes the received signal strength (RSS) as well
as the tag detection probability is used to create metric submaps
for each topological node.

The hybrid framework is highly scalable, simplifies path
planning and promises precision and robustness. The algorithm
requires only odometry and RFID measurements to localize the
RFID tags with a relative accuracy of approximately 0.3 meters.
The ideas presented here are supported by experimental results.

I. INTRODUCTION

Underground mining remains difficult, hazardous work. In
South African hard-rock mines, trained personnel execute
safety inspections of the hanging wall after each blast at great
personal risk. In this aspect, an autonomous robot could assist
in improving safety. The Mobile Intelligent Autonomous
Systems Group (MIAS) at the Center for Scientific and
Industrial Research (CSIR) in South Africa therefore took
the initiative to develop the necessary algorithms to allow a
platform to autonomously explore and map hazardous areas
in a mine. This project is called the Mining Safety Platform.

Due to the absence of GPS, reliable magnetic readings
and unique landmarks, autonomous mapping and localization
is challenging in underground environments. To solve this
problem, we propose the use of passive RFID tags to provide
labelled landmarks that can be artificially introduced into
the target environment. The advantages of RFID technology
include robustness, the low cost of single tags (contrary
to the cost of the antenna) and the fact that RFID tags
return a unique ID upon interrogation which resolves the
correspondence problem. Additionally, many systems supply
a received signal strength (RSS) measurement which is
highly observation-angle dependent but may still be used as
a rough distance metric embedded in a filtering framework.

In brief, our technique works as follows: We use the RSS
value of simultaneously observed RFID tags to estimate their
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Fig. 1: A topological graph (red nodes and black edges) connects metric
submaps of clustered RFID tags (blue) and thereby forms a hybrid metric-
topological map.

relative proximity. The tags are then successively clustered
into groups using a novel method based on the normalized
cut. Each cluster then forms a topological node of the map.
By generating disjoint metric submaps for each topological
node, we obtain a hybrid metric-topological representation
of the environment (see Fig. 1). The relative tag positions in
the metric submaps are estimated by a particle filter using
the RSS information combined with a sensor model. During
mapping, the robot’s position within a submap is estimated
using odometry only. We allow this assumption since the size
of a submap is bounded and we can trust odometry over short
distances. We perform SLAM on the topological level, while
on the metric level, we only perform mapping.

The remainder of this paper is organized as follows: First,
we give an overview of related work in Sect. II. Sect. III
and Sect.IV describe the two main building blocks of the
algorithm: the topological and metric mapping. These two
parts are combined in Sect. V to form the hybrid algorithm.
Finally, in Sect. VI, we show experimental results of the
algorithm.

II. RELATED WORK

The literature on RFID localization and mapping can be
divided into three main groups depending on how the tags are
used. The first group creates a sensor model to estimate the
tag positions. Hähnel et al. [1] use the FastSLAM algorithm
with laser data to create a map of the environment and to
derive the position of the robot. A particle filter is then used
to estimate the observed RFID tag positions. A sensor model
which incorporates the tag-detection probability relative to
the robot is used to reweight the particles. It is shown that
given the RFID tag positions, the necessary particles for
global localization are reduced from 10’000 to 50. Joho et
al. [2] extended the idea by incorporating the RSS in the
sensor model. Furthermore, the sensor model is learnt by
a bootstrapping procedure. Using this method, a mean tag
location error of approximately 29 cm is achieved. Using



the same sensor model the robot can also locate itself
within previously generated maps with a mean error of
approximately 37 cm.

The second group does not try to locate the RFID tag
positions but characterizes the sensed tag information at
visited places in the environment. Vorst et al. [3] describe
an approach where RFID fingerprints are compared to data
obtained during a training phase. The robot can locate itself
by finding the most similar fingerprint from the training
data to the currently observed one. Seco [4] extends the
idea of descriptors for particular locations and uses Gaussian
processes to estimate the received signal strength between
calibration points.

The third group uses RFID tags for robust detection of
loop closures. Vorst and Zell [5] presented an offline graph
SLAM algorithm to optimize the robot trajectory. RFID fin-
gerprints are thereby used to improve loop closure detection.
Lavigne et al. [6] use sparsely distributed RFID tags for reli-
ably mapping large-scale underground tunnel networks with
an occupancy grid. Kleiner et al. [7] investigated SLAM with
sparsely distributed short range RFID tags to map disaster
areas jointly with humans and robots. A graph of RFID tags
is generated with the edge value set to the estimated distance
between the corresponding RFID tags. The graph constructed
by this distance information is globally optimized to form a
consistent map using a maximum likelihood principle.

Topological and metric maps are two fundamentally dif-
ferent map representations. Metric maps use geometric infor-
mation to describe the environment as precisely as possible
whereas topological maps [8] concentrate on characteristics
which are most relevant to the robot for localization. A
topological graph specifies two things: nodes and the con-
nectivity between nodes. Nodes specify areas of interest to
the robot, e.g. a room, whereas an edge between two nodes
in the graph indicates that the robot can traverse from one
room to the other without visiting an intermediate room,
e.g. a hallway. Hybrid methods [9], [10], [11] have been
proposed to deal with large and complex robot environments.
Hybrid maps consist of a global topological map with local
metric submaps attached to each node. In this case, the
anticipation of creating large scale consistent metric maps
is dropped since the topological relationship between neigh-
bouring maps is enough to successfully navigate between the
“rooms” in the environment. Accurate path planning within
each room however is still possible due to the local metric
submaps. Raoui et. al [12] have previously demonstrated the
usability of RFID-based hybrid metric and topological maps
for self-localization of a trolley robot in a shopping center.
However, both the topological areas and the tag positions
were assumed to be known a priori.

III. TOPOLOGICAL SLAM

Our topological nodes are specified by groups of RFID
tags where each RFID tag can only be part of a single
topological node. As the robot explores the environment and
detects RFID tags, newly observed tags are either assigned to
an existing topological node or form a new topological node
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themselves. Possible approaches described in the literature
to assign observed features (e.g. RFID tags) to a topological
node either add a fixed number of features to each node
[11] or add features to a node until localization of the robot
performs poorly [9]. Our approach, however, follows Blanco
et al. [13] and uses the normalized cut criterion to group
observations that are strongly connected. Integrated with the
hybrid metric-topological algorithm, this will increase the
statistical independence between metric submaps which we
will generate in a later stage for each topological node.
We extend the offline algorithm by Blanco et al. [13] to
RFID measurements and propose an online version of this
approach.

A. Normalized Cuts

The Normalized Cut was first proposed by Shi and Malik
[14] as a solution to the image segmentation problem in
computer vision. The algorithm examines similarities be-
tween nearby pixels and separates groups of pixels that are
connected by weak similarities. The pixels are described by
a weighted undirected graph G = (V,E) where the weight
wij on each edge Eij is a function of the similarity between
two pixels, i.e. nodes Vi and Vj . The goal is to separate
the graph into a disjoint set of nodes with high similarity
measure among the nodes inside a set and low similarity
measure across different sets.

In graph theory, a cut is defined as the total weight of the
edges that connect two disjoint sets A,B where A∪B = V
and A ∩B = ∅:

cut(A,B) =
∑

i∈A,j∈B
wij (1)

Figure 2 illustrates a weighted undirected graph with a
possible cut that separates the nodes into two groups. Using
the minimum cut as a segmentation criterion, however, does
not result in reasonable clusters because the criteria favours
small sets of isolated nodes in the graph. Therefore, Shi and
Malik proposed a new measure of disassociation between
two groups: The normalized cut (Ncut) is defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (2)

where the total connection weight from nodes in A to all
nodes in the graph V is defined as,

assoc(A, V ) =
∑

i∈A,j∈V
wij , (3)



and analogous for assoc(B, V ). The fitness of a segmen-
tation is better reflected by the normalized cut, because it
looks for connections which are weak compared to all of the
connections both inside and emanating from a segment.

It is easy to verify that the minimum possible value of
the normalized cut (2) is zero when there is no connection
between the two segments. The worst possible cut has the
value 2 in the case that the nodes in a segment are only
connected to nodes in the other segment. Unfortunately,
the problem of finding the exact min-Ncut segmentation is
NP-complete [14]. Therefore, Shi and Malik propose an
approximate approach, which produces near-optimal cuts and
is based on solving a generalized eigenvalue system. This
approach is summarized below.

We are looking for a partition of the graph V into two
disjoint sets A and B. Let x be an N = |V | dimensional
indicator vector with xi = 1 if node i is part of group A and
xi = −1 otherwise. W is an N × N symmetrical weight
matrix with W (i, j) = wij and D is an N × N diagonal
matrix with d(i) =

∑
j wij , the total connection from node

i to all other nodes, on its diagonal. Shi and Malik [14]
show that the eigenvector belonging to the second smallest
eigenvalue of the generalized eigensystem

D−
1
2 (D−W)D−

1
2 z = λz (4)

is the real valued solution of the normalized cut problem.
Since the eigenvector can take on continuous values, a
splitting point to partition it into two parts must be chosen.
One can take for instance zero or the median value as
the splitting point. Another approach is to find the lowest
normalized cut value by checking all possible splitting points.
For our implementation we chose the last option. In order to
split the graph into multiple groups we apply the algorithm
recursively as proposed by Blanco [13].

B. Topological SLAM Using the Normalized Cut Criterion

Our algorithm requires two weighted undirected graphs;
the nodes of the first graph G = (T,E) are the observed
RFID tags ti and the edge weight between two tags in the
graph reflect our estimate on how close the two tags are
located together. This co-occurrence graph G is extended in
an online fashion as new tags are observed. Simultaneously,
we split the co-occurrence graph into partitions using the
min-Ncut criterion. The group of tags in each partition form
a node in the second, overlaying graph (see Fig. 3). The
overlaying graph is our topological map.

If two tags are observed simultaneously, the edge in the
co-occurrence graph between the tags ti and tj takes the
value

wij =
RSS(ti) ·RSS(tj)

RSS(ti) +RSS(tj)
. (5)

The weight needs to be high if both tags are observed with
a high RSS value and a low if one or both tags have a low
RSS value. Note that the RSS value is a positive scalar value
which is a measure of the radio frequency signal power as
received at the receiver.
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Fig. 3: All tags (blue circles) within a submap are assigned to a topological
node (red circle). The min-Ncut criterion tells whether newly observed tags
are assigned to an existing submap or form a new submap themselves.
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Fig. 4: Before applying the cut, existing submaps are reduced to single
virtual nodes, thereby it is guaranteed that existing submaps are not
partioned.

In order to implement an online version of the normalized
cut algorithm, we make the following design choices

1) As soon as a tag is assigned to a group, it remains in
a group with its group members.

2) Two groups can be merged but never partitioned.
Our online normalized cut algorithm works as follows:

The robot moves around and registers the RSS(ti) of each
detected tag ti. Every ∆tcooc (2 sec in our implementation),
the robot computes the weights according to (5) between all
tags that it discovered during the last period. A weight is
only stored in the co-occurrence graph if it is larger than the
existing weight. Every ∆tcut (12 sec in our implementation),
the recursive min-Ncut algorithm is applied to test if the
graph can be partitioned in two or more groups of tags.
Multiple groups are created if the normalized cut value of
their connecting weights, computed with (2), is lower than a
threshold θ.

In order to not split up a previously-created group, we
reduce every existing group to a single virtual tag before
we perform the recursive min-Ncut algorithm (Fig. 4). The
weight between a virtual tag and every newly observed tag is
set to the average weight between the new tag and all tags in
the existing group. This choice allows us to add every newly
observed tag to the group that it is most connected to. By
choosing the mean connectivity the expanse of each group
is bounded; since the distance between newly observed tags
and the center of the group exceeds the range of the RFID
reader, the mean connectivity drops fast. The same principle
is applied to weights between virtual tags; we also choose
the average of all weights that connect the two groups. Two
groups are merged only if their average inter-connection is
above threshold θ. Given the virtual tags, we must check
before merging if in each group one or more virtual tags
exist. If there is no virtual tag, a new group is created; if
there is a single virtual tag, all newly observed tags are added
to this group and if there are multiple virtual tags, all groups
and newly observed tags are merged with the group that
already contains the most tags. In case the algorithm returns
a non-valid separation with a normalized cut value above θ,
we merge all tags together.



Fig. 5: The metric mapping process using a particle filter. The final average
error in the tag position estimate is 0.29 m.

In order to keep the computational complexity from in-
creasing with the size of the map, we maintain a list of
active tags which were observed during the last period
∆tcut. Additionally, an active tag activates all its member
tags in its group. By using the list of active tags and the
reduction to virtual tags, the complexity of the eigenvalue
problem in the recursive min-Ncut algorithm can be kept low,
especially since the connectivity matrix is symmetric and
only the second largest eigenvector is required. The reduced
connectivity matrix W in our experiments did not exceed the
size of 15×15. This however depends on the density of tags
and the value for ∆tcut. The connectivity between nodes in
the topological graph is addressed by the same ordered list of
active tags. When the robot moves from one topological node
to another, the two nodes are connected in the topological
graph.

IV. METRIC MAPPING

The second building block of the hybrid algorithm is a
method to produce a metric submap of RFID tag locations.
We use a particle filter to locate the RFID tags. This approach
to locate RFID-tags was first proposed by Hähnel et al. [1]
and is summarized as follows.

A. Particle Filter for RFID Tag Localization

We represent our belief of the tag position xtag by a set of
random samples which are drawn from the posterior distribu-
tion p(xtag|z1:t). Where z1:t are the collected measurements
from timestep 1 until t. Each sample xtag from the posterior
distribution is a hypothesis of the true tag position at time t.
This representation is approximate, but it is nonparametric,
and therefore we can represent a broad range of distributions.
We call the samples particles and represent them by

Xtag := x
[1]
tag, x

[2]
tag, . . . , x

[N ]
tag , (6)

where N is the number of particles. We assume that consec-
utive measurements are independent, given the pose of the
tag, and formulate the recursive Bayesian filtering scheme:

p(x|z1:t) = αp(zt|x)p(x|z1:t−1), (7)
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Fig. 6: Likelihood of tag position relative to the robot for given RSS.

where the key term in this equation is the likelihood p(zt|x),
it specifies the probability of making observation zt given
the position x of the tag relative to the robot. The likelihood
function is specified by the sensor model which is discussed
in the next section. The second term p(x|z1:t−1) is the pos-
terior from the previous timestep and α is a time-dependent
normalizing factor. Note that the relative position of the tag
to the robot is a function of the robot position and orientation
as well as the tag position: x = x(xtag, xrobot). Given a prior
guess of the particle positions p(x), we can use the recursive
formula (7) to iteratively incorporate new measurements and
update our estimate on the tag position. More details on the
implementation of a particle filter are given in [15].

B. Sensor Model

We adopt the approach by Joho et al. [2] for the sensor
model p(z|x) which specifies the likelihood of observation
z, given the position x of a particle relative to the robot. The
source of information is modeled explicitly by two variables;
the logarithmic received signal strength s = log(RSS) and
the binary variable d which models the detection of a specific
tag. We can write and expand the sensor model as follows:

p(z|x) = p(s, d|x) = p(s|d,x) · p(d|x)

∝ 1

σx,y
√

2π
exp

(
− (s− µx,y)2

2σ2
x,y

)
· px,y

(8)

The sensor model is a product of the probability that we
observe a tag at position x relative to the robot and the
probability that we observe the logarithmic signal strength
s of a tag at that very relative position. Further, Joho et
al. model the received signal strength at a relative position
x = (x, y)T with a Gaussian distribution with mean µx,y

and variance σx,y and the detection probability at a relative
position is abbreviated with px,y . The sensor model is
implemented by discretizing the space relative to the robot
with a grid. In each grid cell we store the mean µx,y , the
variance σx,y and the detection probability px,y . In order
to learn the sensor model, we placed the RFID tags in a
regular arrangement around the robot. For three different
orientations of the tags we made 6000 measurements each.
We chose different orientations in order to increase the
variation of the received signal strength and thereby simulate
the signals which the robot will encounter in practice. Figure
6 illustrates the probability of tag position given an observed
signal strength.The low precision exhibited in these models



is one of the main challenges in RFID-based localization and
mapping.

V. HYBRID METRIC-TOPOLOGICAL SLAM

Given the two building blocks that allow us to cluster
observed RFID tags into topological nodes and to create
metric submaps for each node, we can now formulate the
full hybrid metric-topological SLAM algorithm.

A. The Hybrid Algorithm

We maintain an active metric map which is continuously
extended and improved as RFID tags are observed (see Sect.
IV). A fixed number of the latest observations (10 in our
implementation) define in which topological nodes the robot
is currently located, these are the active nodes. The number
of active nodes can be more than one if the robot is traversing
submaps. In parallel, we run the topological SLAM algorithm
(see Sect. III). If the topological algorithm returns a feasible
min-Ncut or if the robot has moved to another topological
node, the active metric map is partitioned. We remove tags
which do not belong to the currently active nodes and
save those parts as submaps of the corresponding nodes.
If a topological node already possesses a submap, the new
submap is merged with the old map in order to improve it.
The process of merging submaps is described in the next
section.

Every timestep
• Update active metric map

Every ∆tcooc

• Update tag co-occurrence graph
Every ∆tcut

• Check if cut of tag co-occurrence graph is possible
⇒ If YES: Perform cut and update topological map.
If two nodes are merged, the metric maps must also
be merged

• Partition active metric map
• Compute active nodes
• Store metric map of non-active nodes and merge

with old map if necessary

We perform SLAM only on the topological level where the
last observed RFID tags define the current topological node.
On the metric level however, we are always in “mapping
mode” due to the low precision of the RSS as a distance
metric (see Fig. 6). We propose to improve the existing
submaps by remapping and merging them with the existing
submaps.

A side result of our algorithm is the ability to mark the
location of neighbouring tags in each submap (Fig. 10). We
store in each submap the whole active map but assign each
tag an indicator if it belongs to the submap or if it is from
a neighbouring node. Neighbouring tags in submaps can be
used as direction indicators to find neighbouring submaps.

In an extended framework, the robot can leave the “map-
ping mode” and use the same sensor model from Sect. IV
to locate itself in the submap (see [1], [2]). The robot can

reach its goal by first searching for the shortest path in the
topological map (e.g. with A∗ search) and then by local path
planning in the metric submaps.

B. Merging of Submaps

In order to improve a submap, we propose to map it again
and merge it with the existing one. We are given the set of
n tags in both maps {xi, x′i} with known correspondences
and tag position distributions: xi ∼ pi(x) and x′i ∼ p′i(x).
The desired rotation and translation {R, t}, which optimally
aligns the second map with the first one is the one that
maximizes the overlap between the two maps. Therefore,
we can write:

{R, t} = arg max
R,t

n∑
i=1

∫∫
pi(x) p′i(x|R, t) dx (9)

If we model the particle distribution for each tag with a
Gaussian, i.e. pi(x) ' N (µi,Σi), a closed-form solution
can be found for the integral. The product of two Gaussians
gives an un-normalized Gaussian [16]:

N (µi,Σi) N (µ′i,Σ
′
i) = Z · N (µ̂i, Σ̂i). (10)

The value of the integral in the optimization function
amounts exactly to the normalization factor Z:

Z =
1

2π
|Σi + Σ′i|−

1
2

· exp
(
− 1

2
(µi − µ′i)T (Σi + Σ′i)

−1(µi − µ′i)
)
.

(11)

We initialize the alignment using a least squares method
and then solve (9) using the Nelder-Mead simplex algorithm
[17] to obtain {R, t}.

The distribution of the merged tag positions is directly
derived from Equation (10). The fused Gaussians have mean
and variance:

µ̂i = Σ̂i(Σ
−1
i µi + Σ′−1i µ′i)

Σ̂i = (Σ−1i + Σ′−1i )−1.
(12)

This alignment procedure gives a higher weight on tags
with high position certainty both in the alignment and the
fusion step.

VI. EXPERIMENTAL EVALUATION

To evaluate our approach, we mounted an ALIEN ALR-
9900+ RFID antenna at the front of a Pioneer platform from
Mobile Robots and distributed 25 tags in the environment in
3 different arrangements (see Figures 7, 8 and 5). The robot
was steered by a human operator and collected RFID as well
as odometry measurements. We used the presented algorithm
in an offline stage to reconstruct the robot’s path given
this information. It was necessary to drive the robot very
slowly at approximately 10 cm/s in order to receive enough
sensor measurements to produce good results. The detection
frequency is however dependent on the total number of
observed tags.

Figures 7 and 8 illustrate the performance of the online
min-Ncut algorithm. The images in the left show the true
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only, the middle image shows the matrix representation of the partitioned
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Fig. 8: This example illustrates how the algorithm bounds the size of the
submaps. Due to the limited range of the antenna, the average connectivity
between the two nodes (mean of all values in the top right corner of the
connectivity matrix) will not cross the specified threshold θ with further
exploration.

tag positions (magenta), the robot pose (blue circle), the
topological graph (red circles and black lines) as well as the
robot trajectory, estimated by odometry only (blue line). In
the middle we can see the matrix representation of the co-
occurrence graph with the active nodes colored green and
on the right is the partitioning of the observed tags. In the
first row of Figure 7, the robot observes tags from node 5, 6
and 7 simultaneously and therefore the algorithm merges the
nodes in the next min-Ncut evaluation. The final result in the
lower row illustrates the performance of the online min-Ncut
algorithm. Reasonable clusters are generated. Figure 7 shows
that the size of the submaps are bounded. Further mapping
does not lift the average connectivity between the nodes over
the threshold θ since the tags in the top right corner cannot
be observed together with the tags in the bottom left corner.

In the purely metric part we achieved a final average tag
position error of 0.29 m (see Fig. 5). Thereby, we achieved
the same order of accuracy as the results by Joho et al. [2].

Figure 9 illustrates the result of the hybrid algorithm. The
average estimation error is 0.31 meters. In the environment of
Figure 5 we achieved a localization accuracy of 0.18 m using
the hybrid approach with two submaps. The final accuracy
of the maps in Figure 8 was 0.20 m. Since the submaps are
not bound to a global reference frame and only indicate the
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Fig. 9: Final estimation error for the relative tag positions of the submaps
in Fig. 7. The average error for all submaps is 0.31 m.
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Fig. 10: Final submaps of environment in Figure 5. The mean tag position
error is 0.29 m. The black marks illustrate the approximate location of
adjacent tags which do not belong to the submap. This information can be
used for submap traversal.

relative position of the tags, we measured this error by fitting
the true positions as good as possible on the local submaps.

The result of the algorithm is promising given the fact
that the final odometry error is 4.5 meters in Figure 7. The
experiments were conducted in a large open space on a planar
surface and the tags were stiched to the floor. We assume that
the accuracy of the mapping is lower if many obstacles are
present since they are currently not modeled with the sensor
model. The experiments further showed that the algorithm



successfully improved existing maps. The results of the tag
localization are similar to the basic metric mapping algorithm
of Section IV for small environments. If the basic mapping
algorithm was applied to the environment in Figure 7, the
map would exhibit large errors due to the large odometry
error. By using the hybrid framework, the accuracy of local
maps is independent of the globally accumulated odometry
error. Even the kidnapped robot problem can be handled.

However, the hybrid framework also introduces a problem.
When the robot moves out of a node and into another
submap without mapping the previous node thoroughly, an
inaccurate submap is stored. We can improve the submap
by later remapping but the robot will have to remap it from
the beginning. Therefore, the mapping result in the hybrid
algorithm may be worse than the basic mapping algorithm,
at least in the beginning.

The experiments in three different environments have
shown that the hybrid algorithm is indeed able to construct
accurate local maps as well as a topological graph that
connects the submaps. We consider the proposed algorithm
as a valid solution to map vast environments equipped with
RFID tags with odometry only since the accuracy does not
deteriorate with the total size of the environment.

VII. CONCLUSION

In this paper a novel RFID SLAM algorithm was demon-
strated which is based on a hybrid metric-topological map-
ping algorithm. The framework allows for the creation of
large-scale maps with odometry and RFID sensors only.
The average estimation error in the metric submaps is
approximately 0.3 meters and the diameter of the submaps
is bounded to approximately two to three times the range
of the RFID antenna. The hybrid metric-topological frame-
work provides a compact world model which does not
seek global metric consistency but provides precision in
important regions as well as robustness. Important regions
may be defined by areas with higher tag density, where
improved localisation accuracy becomes available. This may
be exploited in environments where several work areas are
connected by passageways. In the passages/corridors, the
robot would only need an RFID tag every few meters to
find its way between high accuracy regions or work areas.
In these work areas, the density of the RFID tags can be
used to indicate areas of importance. Furthermore, due to
the hybrid nature of the map, if the tags within a work area
are changed, the map may be easily updated to reflect these
changes without affecting the whole map.
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