
Department of Informatics!

Martin Glinz 
  

Software Quality 
  
Chapter 4  
  

Debugging  
"

© 2014-2016 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material
for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties."

Software Quality "4. Debugging "© 2014 Martin Glinz " 2"

4.1 "Foundations"

4.2 "The Debugging Process"

4.3 "Reproducing Errors"

4.4 "Simplifying and Automating Test Cases"

4.5 "Techniques for Defect Localization"

4.6 "Defect Fixing"

"

3"

Terminology"

Debugging – The process of finding and correcting a defect
that causes an observed error"

Defect (fault) – A faulty element in a program or other artifact"
Error – A deviation of an observed result from the expected /
correct result"
❍  The term bug may denote a defect or an error"
❍  An error may be caused by a combination of multiple

defects "
❍  The very same defect may manifest in more than one error"
❍  „Program“ is meant in a comprehensive way: may be a

single method or a component, or a complete system"
Software Quality "4. Debugging "© 2014 Martin Glinz "

4"

Causes and Effects"

❍  Typically, a defect "
●  does not immediately lead to an error that can be observed,"
●  but to faulty program states,"
●  that propagate"
●  and eventually manifest as observable errors"

❍  The main task of debugging is identifying / reconstructing
the cause-effect chain from a defect to an observable error"

Software Quality "4. Debugging "© 2014 Martin Glinz "

5"

Where defects occur"

❍  Classic: defect is a coding error, caused by a human
mistake"

❍  Alternatively:"
●  Defects in other artifacts: requirements specification, system

architecture, system design, user manual, ..."
●  Defects in the data"
●  Defects in processes"
●  Human mistakes when using or operating a system"

❍  Some defects are not local, but affect a complete system or
sub-system"

Software Quality "4. Debugging "© 2014 Martin Glinz "

6"

Example: A simple sorting problem"

Name: sample"
Author: Andreas Zeller"
Language: C"
Call: ./sample arg1 arg2 ... argn"
Precondition: arg1 arg2 ... argn are integers, n ∈ IN"
Postcondition: The arguments appear in ascending order on
the standard output device"

Executing sample with test data:"
$./sample -5 0 -9!
Output: -9 -5 0!
$ _!

$./sample 11 14!
Output: 0 11!
$ _!

[Zeller 2005]"

Software Quality "4. Debugging "© 2016 Martin Glinz "

✔" ✘"

7"

Program sample: The code"

Software Quality "4. Debugging "© 2014 Martin Glinz "

/* sample.c -- Sample C program to be debugged */!
!
#include <stdio.h>!
#include <stdlib.h>!
!
static void shell_sort(int a[], int size)!
{!
 int i, j;!
 int h = 1;!
!
do {!
 h = h * 3 + 1;!
 } while (h <= size);!
 do {!
 h /= 3;!
 for (i = h; i < size; i++)!
 {!
 int v = a[i];!
 for (j = i; j >= h && a[j - h] > v; j -= h)!
 a[j] = a[j - h];!
 if (i != j)!
 a[j] = v;!
 }!
 } while (h != 1);!
}!

8"

Program sample: The code – 2"

Software Quality "4. Debugging "© 2014 Martin Glinz "

!
int main(int argc, char *argv[])!
{!
 int *a;!
 int i;!
!
 a = (int *)malloc((argc - 1) * sizeof(int));!
 for (i = 0; i < argc - 1; i++)!
 a[i] = atoi(argv[i + 1]);!
!
 shell_sort(a, argc);!
!
 printf("Output: ");!
 for (i = 0; i < argc - 1; i++)!
 printf("%d ", a[i]);!
 printf("\n");!
!
 free(a);!
!
 return 0;!
}"

What now?"

Observation:"
There are input data, for which sample computes a wrong
result"

Question:"
❍  How do we find the defect in the code that causes this

error?"

❍  Is there a way of systematically searching for a defect?"

Software Quality "4. Debugging "© 2014 Martin Glinz " 9"

Software Quality "4. Debugging "© 2014 Martin Glinz " 10"

4.1 "Foundations"

4.2 "The Debugging Process"

4.3 "Reproducing Errors"

4.4 "Simplifying and Automating Test Cases"

4.5 "Techniques for Defect Localization"

4.6 "Defect Fixing"

"

11"

The main steps of the debugging process"

❍  Describe the problem precisely"
●  Sometimes this alone reveals the source of the problem"

❍  Is the problem a software error?  
If yes: "
●  Perform classic debugging"

"If no:"
●  Search and fix the problem elsewhere, e.g."

•  Defects in user manuals"
•  Faulty business processes"
•  Training deficits"

❍  Check the effectiveness of the fix"

Software Quality "4. Debugging "© 2014 Martin Glinz "

12"

The classic software debugging process"

❍  Reproduce the error"
❍  Simplify and (if possible) automate the test case that

produces the error"
❍  Localize the defect that causes the error"

●  Create and test hypotheses"
●  Observe program states"
●  Check the validity of assertions in the program"
●  Isolate cause-effect chains"

❍  Fix the identified defect(s)"

Software Quality "4. Debugging "© 2014 Martin Glinz "

Checking the effectiveness of the fix"

❍  Make sure that the defect has been fixed:"
●  Re-run the test case(s) that resulted in errors"
●  Everything ok now?"

❍  Make sure that the fix did not create any new defects"
●  Run your regression test suite"
●  No new problems found?"

Software Quality "4. Debugging "© 2014 Martin Glinz " 13"

14"

Required infrastructure"

❍  Problem reporting infrastructure"
●  Process for handling problem reports"
●  Tool for problem report administration and tracking  

For example, Bugzilla"

❍  Configuration management system for software artifacts"

Software Quality "4. Debugging "© 2014 Martin Glinz "

Software Quality "4. Debugging "© 2014 Martin Glinz " 15"

4.1 "Foundations"

4.2 "The Debugging Process"

4.3 "Reproducing Errors"

4.4 "Simplifying and Automating Test Cases"

4.5 "Techniques for Defect Localization"

4.6 "Defect Fixing"

"

16"

A sample bug report"

Example: "Mozilla bug report no. 24735 from 1999"

 -> Start mozilla
 -> Go to bugzilla.mozilla.org
 -> Select search for bug
 -> Print to file setting the bottom and right margins to .50
 (I use the file /var/tmp/netscape.ps)
 -> Once it's done printing do the exact same thing again on
 the same file (/var/tmp/netscape.ps)
 -> This causes the browser to crash with a segfault

Goal: Create an as simple as possible test case that
reproduces the reported problem"
Software Quality "4. Debugging "© 2014 Martin Glinz "

[Zeller 2005, p. 55]"

17"

Typical problems "

❍  Reproducing the environment in which the problem occurs"
❍  Reproducing the history trail may be necessary"

❍  For software errors: reproduce a program run that causes
the error; this may include"
●  Input data"
●  Initial persistent data"
●  User interaction, interaction with neighboring systems"
●  Time"
●  Communication with other processes"
●  Process threads"
●  Random data"

Software Quality "4. Debugging "© 2014 Martin Glinz "

18"

Time-dependent errors: a case "

In early 1992 a company installed a new barrier gate control
system in a couple of parking garages. In the morning of
September 12, 1992, the operators of all these garages called
the support line and reported the same problem: the exit
barriers didn’t open anymore."

Software Quality "4. Debugging "© 2014 Martin Glinz "

Hint: The date had been coded with two integers, one for the
year and one for the day of the year."

What caused this problem?"

Software Quality "4. Debugging "© 2014 Martin Glinz " 19"

4.1 "Foundations"

4.2 "The Debugging Process"

4.3 "Reproducing Errors"

4.4 "Simplifying and Automating Test Cases"

4.5 "Techniques for Defect Localization"

4.6 "Defect Fixing"

"

20"

Simplifying"

❍  Given: a test case which reliably causes a reported error"
❍  Goal:"

●  Remove all irrelevant parts of the test case"
●  Automate the simplified test case"

❍  In an optimally simplified test case, all constituents are
relevant, i.e. removing anything from the case no longer
produces the reported error"

❍  How to simplify?"
●  Simplify environment"
●  Reduce history trail"
●  Simplify inputs / interactions"

Software Quality "4. Debugging "© 2014 Martin Glinz "

21"

Automating"

❍  The error-provoking test case must be executed frequently
in the debugging process:"
●  for finding simplifications"
●  for testing hypotheses when systematically locating a defect"

➪ Automation pays off"

❍  Test automation techniques: → Chapter 4 of this course"

Software Quality "4. Debugging "© 2014 Martin Glinz "

22"

Simplify the environment"

❍  Determine which states or conditions in the system’s
environment are relevant and which ones aren’t"
●  Hardware and operating system"
●  State of persistent data"
●  Time"
●  State of neighboring systems"

❍  Irrelevant states and conditions can be safely ignored"
❍  Goal: minimize the effort for setting up the test environment

in which the a test case produces the reported error"

❍  Means: systematic trying"

Software Quality "4. Debugging "© 2014 Martin Glinz "

23"

Simplify the error history"

❍  Can we reduce the number of steps, required for provoking
the error?"

❍  Means: systematic trying"
❍  Example: Mozilla bug report no. 24735 (see above) reports

the following error-provoking sequence of steps: 
Start mozilla; Go to bugzilla.mozilla.org; Select search for bug; Print to
file setting the bottom and right margins to .50; Once it's done printing
do the exact same thing again on the same file.

"Actually, the following steps suffice to provoke the error: 
Start mozilla; Go to bugzilla.mozilla.org; Select search for bug; Press
Alt-P; Left-click on the Print button in the print dialog window."

Software Quality "4. Debugging "© 2014 Martin Glinz "

24"

Simplify inputs"

❍  Example: Mozilla bug report no. 24735 (see above)"
●  The erroneous printing function uses the currently displayed

web page as input"
●  This page consists of 896 lines of html code"

❍  Which parts of this data cause the error and which ones
are irrelevant?"

❍  Means: binary search [Kernighan and Pike 1999]"
●  Partition the set of input data into two halves"
●  Test both halves individually"
●  Recursively continue with that half which provokes the error"

Software Quality "4. Debugging "© 2014 Martin Glinz "

25"

Simplify inputs – 2: An example"

❍  Example: Mozilla bug report no. 24735 (see above)"
❍  Binary search yields a single fault-provoking line of html

code in twelve steps:"

1"
2"
3"
4"
5"
6"
..."
12 "<SELECT NAME="priority" MULTIPLE SIZE=7> 	

✘

✘

✘

✘

✘

✔

✘

[Zeller 2005]"

896 lines"
448 lines"
224 lines"
112 lines"
112 lines"
56 lines"

"
1 lines"

Software Quality "4. Debugging "© 2014 Martin Glinz "

26"

Simplify inputs – 3"

❍  What to do if both halves don’t provoke the error while the
whole does?"

❍  Instead of halves use smaller portions, e.g., quarters"

❍  Continue with eighths, etc."

❍  Result:"

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✘

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✘

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✔

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✔

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✔

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✔

<SELECT NAME="priority" MULTIPLE SIZE=7>" ✘

☞"

✘
<SELECT> "

Software Quality "4. Debugging "© 2014 Martin Glinz "

27"

Automating the simplification"

❍  Simplification can be automated partially"
●  In particular, the technique of binary searching"
●  Applicable for simplification of input data or interaction

sequences"

❍  Example: Zeller’s ddmin delta debugging algorithm 
[Zeller 2005, Chapter 5.4-5.5]"

Software Quality "4. Debugging "© 2014 Martin Glinz "

Another example"

Microsoft PowerPoint 2004 Version 11.0 on MacBook Pro
with Mac OS 10.5.6 crashed during startup if the font Hiragino
Kaku Gothic Pro was disabled in the font collection."

"

28"

Using interval bisection on
the set of all fonts we can
find a minimal set of
deactivated fonts that
causes the error. This set
only contains the font
Hiragino Kaku Gothic Pro."

Software Quality "4. Debugging "© 2014 Martin Glinz "

Software Quality "4. Debugging "© 2014 Martin Glinz " 29"

4.1 "Foundations"

4.2 "The Debugging Process"

4.3 "Reproducing Errors"

4.4 "Simplifying and Automating Test Cases"

4.5 "Techniques for Defect Localization"

4.6 "Defect Fixing"

"

30"

Overview ""

❍  Create and test hypotheses"
❍  Static and dynamic program analysis"

●  Control flow"
●  Data flow"

❍  Analyze program states"
❍  Observe program execution (stepping, breakpointing)"
❍  Dynamically check program assertions"
❍  Determine and isolate cause-effect chains"

❍  Debugging by “gut feeling”"

Software Quality "4. Debugging "© 2014 Martin Glinz "

31"

Creating and testing hypotheses"

❍  The basis of systematic debugging"
❍  Principle: Get insight through theory and experimentation"

1."Create a hypothesis"
2. Derive predictions from hypotheses"
3."Verify predictions experimentally"
4. If predictions and experiment results match"

•  Correctness of hypothesis becomes more probable"
•  Try to further confirm hypothesis"

"Otherwise:"
•  Reject hypothesis"
•  Create new or modified hypothesis; continue with step 2"

❍  Important: record the track of all tested hypotheses"

Theory"

Software Quality "4. Debugging "© 2014 Martin Glinz "

32"

Finding hypotheses"

Possible ways:"
❍  Analysis of problem description"

❍  Static analysis of the code"
❍  Analysis of a erroneous execution run"
❍  Comparison of correct and erroneous execution runs"
❍  Building new hypotheses on the basis of previous ones:"

●  Must be compatible with previously accepted"
●  Must not use assumptions that stem from previously rejected

hypotheses"

Software Quality "4. Debugging "© 2014 Martin Glinz "

33"

Derive and check predictions"

❍  Techniques"
●  Static or dynamic analysis of the code"
●  Observation of system states"
●  Dynamic checking of assertions"

❍  Deductive approach: draw logical conclusions from"
●  existing knowledge"
●  the source code"
●  test cases and test results"

❍  Experimental approach: observe"
●  program execution"
●  program state"

Software Quality "4. Debugging "© 2014 Martin Glinz "

34"

Example: Program sample (cf. 4.1)"

❍  First hypothesis"
Program runs correctly!
Prediction: Entering 11 14 yields 11 14 as result"
Experiment: $!./sample 11 14!
!! ! ! ! Output: 0 11 ! ! !✘!
➥ Hypothesis is rejected"

Software Quality "4. Debugging "© 2014 Martin Glinz "

35"

Example: Program sample (cf. 4.1)"

❍  Second hypothesis"
Program prints wrong variables!
Prediction: "a[0]==11, a[1]==14, but result is"
!! ! ! ! !Output: 0 11 "

Experiment: Replace code for input and sorting by "
a[0] = 11; a[1] = 14; argc = 3;!
Result: " " Output: 11 14 ! ! !✔!
➥ Hypothesis is rejected"

Software Quality "4. Debugging "© 2014 Martin Glinz "

36"

Static and dynamic analysis"

❍  Analyzing the control flow and the data flow of a program 
(see Chapter 3 on data flow testing and Chapter 11 on static analysis
of my Software Engineering course)"

❍  Static Analysis"
●  Yields the potentially possible control and data flows"
●  No program execution required"
●  Independent of any concrete test cases"

❍  Dynamic Analysis"
●  Analyzes a concrete program run (based on a test case)"
●  Yields actual control and data flows for this run"

Software Quality "4. Debugging "© 2016 Martin Glinz "

37"

Example: static vs. dynamic program slicing"

int main() {!
int a, b, sum, mul;!
sum = 0;!
mul = 1;!
a = read ();!
b = read ();!
while (a<=b) {!
sum = sum + a;!
mul = mul * a;!
a = a +1;!
}!
write (sum);!
write (mul);!
}!

Sample program"

int main() {!
int a, b, sum, mul;!
sum = 0;!
mul = 1;!
a = read ();!
b = read ();!
while (a<=b) {!
sum = sum + a;!
mul = mul * a;!
a = a +1;!
}!
write (sum);!
write (mul);!
}!

Static slice of mul in
line 13"

int main() {!
int a, b, sum, mul;!
sum = 0;!
mul = 1;!
a = read ();!
b = read ();!
while (a<=b) {!
sum = sum + a;!
mul = mul * a;!
a = a +1;!
}!
write (sum);!
write (mul);!
}!

Dynamic slice of mul in  
line 13 with a=5, b=2"

Software Quality "4. Debugging "© 2014 Martin Glinz "

38"

Analysis of program states"

❍  The problem: a defect typically"
●  leads to a sequence of erroneous states"
●  that eventually manifest in observable errors"

❍  Check suspicious program states"
●  Instrumentation of the code:"

•  Record variable values"
•  Print or log variable values, maybe using a logging framework

such as LOG4J [Logging Services]"
●  Using a debugger"

•  Compile program in debug mode"
•  Halt execution at critical points (by setting breakpoints)"
•  Inspect current variable values"

Software Quality "4. Debugging "© 2014 Martin Glinz "

39"

Example: Program sample (cf. 4.1)"

❍  Third hypothesis"
Sorting procedure called with wrong parameters!
Prediction: "Values in array a and/or value of argc wrong"
Experiment: "Prior to the call of shell_sort we instrument the "

"source code with"
!printf("Parameters of shell_sort: ");!
!for (i = 0; i < argc; i++)!
! printf("%d ", a[i]);!
!printf ("%d ", argc);!
!printf("\n");!

Result: "Parameters of shell_sort: 11 14 0 3 ✘!
➥ Hypothesis is confirmed"

❍  Alternatively, we could have used a debugger"

Software Quality "4. Debugging "© 2016 Martin Glinz "

Example: Program sample (continued)"

❍  Theory:"The input vector passed to shell_sort contains a
non-allocated variable at the end, which is zero"

❍  Prediction 1: Zero will always appear in the result"
❍  Prediction 2: Any input vector containing only negative

numbers and a zero will produce correct results"
❍  Experiments:"
$./sample 11 5 7 $./sample 11 5 1 !
Output: 0 5 7 ✘ Output: 0 1 5 ✘!
!
$./sample -5 0 -9 $./sample 0 -21 -9 !
Output: -9 -5 0 ✔ Output: -21 -9 0 ✔"
Software Quality "4. Debugging "© 2016 Martin Glinz " 40"

Example: Program sample (continued)"

❍  All experiments confirm the theory"
➥"Evidence that the passing of parameters to shell_sort is

defective"

Software Quality "4. Debugging "© 2016 Martin Glinz " 41"

42"

Observe program execution"

Using a debugger, we can"
❍  Stepwise execute a program or halt it at breakpoints"

●  Compare expected and actual control flow"
●  Inspect parts of system state where appropriate"

❍  Observe variable definition, modification and use"
"

Software Quality "4. Debugging "© 2014 Martin Glinz "

43"

Checking assertions"

❍  Specifying contracts for classes and methods with
assertions:"
●  Preconditions"
●  Postconditions"
●  Invariants"

"Formally specified contracts can be checked dynamically
by a suitable runtime system"

❍  When an assertion is violated, analyze the program state"

Software Quality "4. Debugging "© 2014 Martin Glinz "

44"

Causes and effects"

❍  An observation:"
●  In the decade of 1950 to1960 the decline of the population of

storks in Europe is strongly correlated with the increasing
number of tarmac roads"

❍  Question:"
●  Is the increasing number of tarmac roads the / a cause for

the disappearance of storks?"

❍  Testing for causality: a is a cause for b iff"
●  b occurs if a has occurred previously"
●  b does not occur if a has not occurred previously"
●  All other variables are kept constant"

Software Quality "4. Debugging "© 2014 Martin Glinz "

45"

Causes and effects – 2"

❍  Experimental proof of (or evidence for) causality"
●  Generally rather difficult: Problem of controlled experiments"
●  For debugging, it is doable: "

•  Controlled environment"
•  Test case reproducible"

❍  In debugging, a cause for an error f can be viewed as the
difference between"
●  a test case exhibiting the error f" " "(1)"
●  a test case that runs correctly " " "(2)"

❍  Again, we look for a minimal cause"
➥ Search a minimal difference between (1) and (2)"
Software Quality "4. Debugging "© 2014 Martin Glinz "

46"

Example: Program sample (cf. 4.1)"

❍  Fourth hypothesis"
shell_sort should be called with argc-1 (instead of argc)!
Prediction: "Result is correct"
Experiment: "Execute with modified source code (or modify

state of running program with a debugger)"
Result: "Output: 11 14 !✔!
➥ Hypothesis is confirmed"

❍  From the first hypothesis we know that calling shell_sort
with argc leads to an error"

❍  The difference in the code is „-1“ in line 36"
❍  This is a minimal cause of the error"
Software Quality "4. Debugging "© 2014 Martin Glinz "

47"

Identifying and isolating cause-effect chains"

❍  The immediate cause of an error normally is not a defect,
but an erroneous program state, eventually caused by a
defect"
●  Identify cause-effect chains"
●  and isolate them from the irrelevant rest of the program"

❍  Time-consuming: Requires creation and test of many
hypotheses"

❍  Systematic procedure needed"
❍  Automatable: Zeller’s Delta Debugging algorithm [Zeller

2002] "

Software Quality "4. Debugging "© 2014 Martin Glinz "

Minimal difference = minimal cause"

48"

Isolating causes with Delta Debugging"

❍  Difference between isolation and simplification:"
●  Simplification: Find a minimal error-provoking test case"
●  Isolation: Find an error-provoking and an error-free test case

with a minimal difference"

❍  Example: Isolation of minimal error cause in this input:"
" "

Error-provoking: "5;6;2:1; "✘

Error-free: "Ø (empty input) "✔ ""
"5;6;2:1; "✔

"5;6;2:1; "✔

"5;6;2:1; "✔

Reduce erroneous 
case"

Extend error-free  
case"

Software Quality "4. Debugging "© 2014 Martin Glinz "

49"

Debugging by gut feeling"

❍  To some extent, experienced software engineers develop  
an ability to “smell” the cause of an error"

❍  In many cases, debugging by intuition is faster than any
systematic debugging procedure"

❍  Problem: "
●  We need to stop intuitive debugging at the right time when it

does not succeed..."
●  ...and then switch to systematic debugging"

❍  Suggested procedure"
●  For a strictly limited time, debug by intuition"
●  If success: Eureka! else: stop and start systematic debugging"

Software Quality "4. Debugging "© 2014 Martin Glinz "

Software Quality "4. Debugging "© 2014 Martin Glinz " 50"

4.1 "Foundations"

4.2 "The Debugging Process"

4.3 "Reproducing Errors"

4.4 "Simplifying and Automating Test Cases"

4.5 "Techniques for Defect Localization"

4.6 "Defect Fixing"

"

51"

Fixing a localized defect"

If a defect has been located"
❍  Estimate severity of defect"

❍  Determine what and how much has to be fixed"
❍  Estimate impact on other parts of the system"
❍  Make the required modifications to the code and/or the

documentation carefully and systematically"

❍  Avoid quick-and-dirty patching of code "

Software Quality "4. Debugging "© 2014 Martin Glinz "

52"

Check effectiveness of problem resolution"

❍  Make sure that the reported problem no longer exists 
In case of software errors:"
●  Inspect the modified code and documentation "
●  Test the modified units"

•  using the error-provoking test case(s)"
•  by writing more unit test cases"

❍  Check for unexpected side effects"
●  Adapt the regression test suite to the modified code "
●  Perform a regression test"

❍  Create a new configuration / release"

Software Quality "4. Debugging "© 2014 Martin Glinz "

Learning from the fixed defect"

Defects are typically due to mistakes by humans"
❍  Try to determine / guess the reasons why somebody made

the mistake(s) that led to the defect"
❍  Investigate if there are any similar defects in the source

code that stem from the same kind of mistake"
❍  Are there any constructive means to avoid such defects in

the future, e.g., by"
●  changing a process"
●  training people"

Software Quality "4. Debugging "© 2014 Martin Glinz " 53"

References"

S.C. McConnell (1993). Code Complete: A Practical Handbook of Software Construction. Redmond:
Microsoft Press."

B.W. Kernighan, R. Pike (1999). The Practice of Programming. Reading, Mass.: Addison-Wesley."
M. Weiser (1992). Programmers Use Slices When Debugging. Communications of the ACM 25(7):446–
452."
A. Zeller (2002). Isolating Cause-Effect Chains from Computer Programs. Proceedings of the 10th ACM
SIGSOFT Symposium on the Foundations of Software Engineering. Charleston, South Carolina.1–10."
A. Zeller (2005). Why Programs Fail: A Guide to Systematic Debugging. Amsterdam: Morgan Kaufmann
and Heidelberg: dpunkt."
"

Bugzilla. http://www.bugzilla.org"
Logging Services. http://logging.apache.org"
"
"
"

"
Software Quality "4. Debugging "© 2014 Martin Glinz " 54"

