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On the Comparison of Gauge Freedom Handling in
Optimization-based Visual-Inertial State Estimation

Zichao Zhang, Guillermo Gallego, Davide Scaramuzza

Abstract—It is well known that visual-inertial state estimation
is possible up to a four degrees-of-freedom (DoF) transformation
(rotation around gravity and translation), and the extra DoFs
(“gauge freedom”) have to be handled properly. While different
approaches for handling the gauge freedom have been used in
practice, no previous study has been carried out to systematically
analyze their differences. In this paper, we present the first
comparative analysis of different methods for handling the gauge
freedom in optimization-based visual-inertial state estimation. We
experimentally compare three commonly used approaches: fixing
the unobservable states to some given values, setting a prior on
such states, or letting the states evolve freely during optimization.
Specifically, we show that (i) the accuracy and computational time
of the three methods are similar, with the free gauge approach
being slightly faster; (ii) the covariance estimation from the free
gauge approach appears dramatically different, but is actually
tightly related to the other approaches. Our findings are validated
both in simulation and on real-world datasets and can be useful
for designing optimization-based visual-inertial state estimation
algorithms.

Index Terms—Sensor Fusion, SLAM, Optimization and Opti-
mal Control

I. INTRODUCTION

V ISUAL-INERTIAL (VI) sensor fusion is an active re-
search field in robotics. Cameras and inertial sensors

are complementary [1], and a combination of both provides
reliable and accurate state estimation. While the majority of
the research on VI fusion focuses on filter-based methods
[2], [3], [4], nonlinear optimization has become increasingly
popular within the last few years. Compared with filter-based
methods, nonlinear optimization based methods suffer less
from the accumulation of linearization errors. Their main
drawback, high computational cost, has been mitigated by
the advance of both hardware and theory [5], [6]. Recent
work [5], [7], [8], [9] has shown impressive real-time VI state
estimation results in challenging environments using nonlinear
optimization.

Although these works share the same underlying principle,
i.e., solving the state estimation as a nonlinear least squares
optimization problem, they use different methods to handle
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Fig. 1: Different pose uncertainties of the keyframes on the Machine Hall
sequence of the EuRoC MAV Dataset [15] (MAV moving toward the negative
x direction). The left plot shows the uncertainties from the free gauge
approach, where no reference frame is selected. On the right we set the
reference frame to be the first frame, and, consequently, the uncertainties
grow as the VI system moves. For visualization purposes, the uncertainties
have been enlarged. We can clearly identify the difference in the parameter
uncertainties from free gauge and gauge fixation approaches. However, by
using the covariance transformation in Section VI-B, we show that the free
gauge covariance can be transformed to satisfy the gauge fixation condition.
The transformed uncertainties agree well with the gauge fixation ones.

the unobservable DoF in VI systems. It is well known that for
a VI system, global position and yaw are not observable [3],
[10], which in this paper we call gauge freedom following the
convention from the field of bundle adjustment [11]. Given this
gauge freedom, a natural way to get a unique solution is to fix
the corresponding states (i.e., parameters) in the optimization
[12]. Another possibility is to set a prior on the unobservable
states, and the prior essentially acts as a virtual measurement
in the optimization [5], [8], [13], [7]. Finally, one may instead
allow the optimization algorithm to change the unobservable
states freely during the iterations. While these three methods
all prove to work in the existing literature, there is no compar-
ison study of their differences in VI state estimation: they are
often presented as implementation details and therefore not
well studied and understood. Moreover, although the similar
problem for vision-only bundle adjustment has already been
studied (e.g., [11], [14] with 7 unobservable DoFs in the
monocular case), to the best of our knowledge, such a study
has not been done for VI systems (which have 4 unobservable
DoFs).

In this work, we present the first comparative analysis of
the different approaches for handling the gauge freedom in
optimization-based visual-inertial state estimation. We com-
pare these approaches, namely the gauge fixation approach,
the gauge prior approach and the free gauge approach on
simulated and real-world data in terms of their accuracy,
computational cost and estimated covariance (which is of
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interest for, e.g., active SLAM [16]). While all these methods
have similar performance in terms of estimation error, the free
gauge approach is slightly faster, due to the fewer iterations
required for convergence. We also find that, as mentioned
by [7], in the free gauge approach, the resulting covariance
from the optimization is not associated to any particular
reference frame (as opposed to the one from the gauge
fixation approach), which makes it difficult to interpret the
uncertainties in a meaningful way. However, in this work we
further show that by applying a covariance transformation,
the free gauge covariance is actually closely related to other
approaches (see Fig. 1).

The rest of the paper is organized as follows. In Section II,
we introduce the optimization-based VI state estimation prob-
lem and its non-unique solution. In Section III we present
different approaches for handling gauge freedom. Then we
describe the simulation setup for our comparison study in Sec-
tion IV. The detailed comparison in terms of accuracy/timing
and covariance is presented in Sections V and VI, respectively.
Finally, we show experimental results on real-world datasets
in Section VII.

II. PROBLEM FORMULATION AND INDETERMINACIES

The problem of visual-inertial state estimation consists of
inferring the motion of a combined camera-inertial (IMU)
sensor and the locations of the 3D landmarks seen by the
camera as the sensor moves through the scene. By collecting
the equations of the visual measurements (image points) and
the inertial measurements (accelerometer and gyroscope), the
problem can be written as a non-linear least squares (NLLS)
optimization one, where the goal is to minimize the objective
function (e.g., assuming Gaussian errors)

J(θ)
.
= ‖rV (θ)‖2ΣV︸ ︷︷ ︸

Visual

+ ‖rI(θ)‖2ΣI︸ ︷︷ ︸
Inertial

, (1)

where ‖r‖2Σ = r>Σ−1r is the squared Mahalanobis norm of the
residual vector r, weighted using the covariance matrix Σ of
the measurements. The cost (1) can be used in full smoothing
[5] or fixed-lag smoothing [7] approaches.

The visual term in (1) consists of the reprojection error
between the measured image points xij and the predicted ones
x̂ij by a metric reconstruction. Assuming a pinhole camera
model, x̂ij(θ) ∝ Ki(R

>
i |−R>i pi)(X

>
j , 1)>, where (Ri,pi) are

the extrinsic parameters of the i-th camera (i = 0, . . . , N − 1)
and Xj are the 3D Euclidean coordinates of the j-th landmark
point (j = 0, . . . ,K−1). We assume that the intrinsic calibra-
tions Ki are noise-free. The inertial term in (1) consists of the
error between the inertial measurements and the predicted ones
by a model of the trajectory of the IMU. For example, [17]
considers the error in the raw acceleration and angular velocity
measurements, whereas [5] considers errors in equivalent,
lower rate measurements (inertial preintegration terms at the
rate of the visual data). In this work, we consider the latter
formulation, although most of the results do not depend on
the choice of formulation.

The parameters of the problem (also known as state),

θ
.
= {pi, Ri,vi,Xj}, (2)

comprise the camera motion parameters1 (extrinsics and linear
velocity) and the 3D scene (landmarks).

The accelerometer and gyroscope biases are usually ex-
pressed in the IMU frame and thus not affected by a fixation
of the coordinate frame. Therefore, we exclude the biases
from the state and assume that the IMU measurements are
already corrected. A full description of the inertial and visual
measurement models is out of the scope of this work, and we
refer the reader to [5] for details.

A. Solution Ambiguities and Geometrical Equivalence

When addressing the VI state estimation problem, it is
essential to note that the objective function (1) is invariant
to certain transformations of the parameters θ′ = g(θ), i.e.,

J(θ) = J(g(θ)). (3)

Specifically, g, defined by homogeneous matrices of the form

g
.
=

(
Rz t
0 1

)
, (4)

is a 4-DoF transformation consisting of an arbitrary translation
t ∈ R3 and a rotation Rz = Exp(αez) by an arbitrary angle
(yaw) α ∈ (−π, π) around the gravity axis ez = (0, 0, 1)>.
For notation simplicity, we define the mapping Exp(θ)

.
=

exp(θ∧), where exp is the exponential map of the Special
Orthogonal group SO(3), and θ∧ is the skew-symmetric ma-
trix associated with the cross-product, i.e., a∧b = a× b,∀b.
This is the well-known Rodrigues formula.

Applying a transformation (4) to the reconstruction (2) gives
another reconstruction g(θ) = θ′ ≡ {p′i, R′i,v′i,X′j},

p′i = Rzpi + t R′i = RzRi

v′i = Rzvi X′j = RzXj + t
(5)

Both parameters θ and θ′ represent the same underlying
scene geometry (camera trajectory and 3D points), i.e., they
are geometrically equivalent. They generate the same predicted
measurements; and, therefore, the same error (1).

As a consequence of the invariance (3), the parameter
spaceM can be partitioned into disjoint sets of geometrically
equivalent reconstructions. Each of these sets is called an
orbit [11] or a leaf [14]. Formally, the orbit associated to θ is
the 4D manifold

Mθ
.
= {g(θ) | g ∈ G}, (6)

where G is the group of transformations of the form (4). Note
that the objective function (1) is constant on each orbit.

The main consequence of the invariance (3) is that (1) does
not have a unique minimizer because there are infinitely many
reconstructions that achieve the same minimum error: all the
reconstructions on the orbit (6) of minimal cost (see Fig. 2),
differing only by 4-DoF transformations (4). Hence, the VI
estimation problem has some indeterminacies or unobservable
states: there are not enough equations to completely specify a
unique solution.

1For simplicity, we assume that the coordinate frames of the camera and
the IMU coincide, e.g., by compensating the camera-IMU calibration [18].
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TABLE I: Three gauge handling approaches considered. (n = 9N + 3K is
the number of parameters in (2))

Size of parameter vec. Hessian (Normal eqs)

Fixed gauge n− 4 inverse, (n− 4)× (n− 4)
Gauge prior n inverse, n× n
Free gauge n pseudoinverse, n× n

B. Additional Constraints: Specifying a Gauge

The process of completing (1) with additional constraints

c(θ) = 0 (7)

that yield a unique solution is called specifying a gauge C
[14], [11]. In other words, equations (7) select a representative
of the orbit (6), i.e., to remove the indeterminacy within the
equivalence class. In VI, this is achieved by specifying a refer-
ence coordinate frame for the 3D reconstruction. For example,
the standard gauge in camera-motion estimation consists of
selecting the reconstruction that has the reference coordinate
frame located at the first (i = 0) camera position and with zero
yaw. These constraints specify a unique transformation (4),
and therefore, a unique solution θC = C ∩ Mθ among all
equivalent ones. By construction, gauges C are transversal to
orbits Mθ, so that θC 6= ∅ [14].

III. OPTIMIZATION AND GAUGE HANDLING

From an optimization point of view, the minimization of the
NLLS function (1) using the Gauss-Newton algorithm presents
some difficulties. Even if we use a minimal parametrization
for all elements of the state (parameter vector) θ, the Hessian
matrix of (1), which drives the parameter updates, is singular
due to the unobservable DoFs. More specifically, it has a rank
deficiency of four, corresponding to the 4-DoFs in (4).

There are several ways to mitigate this issue, as summarized
in Table I. One of them is to optimize in a smaller parameter
space where there are no unobservable states, and therefore the
Hessian is invertible. This essentially enforces hard constraints
on the solution (gauge fixation approach). Another one is
to augment the objective function with an additional penalty
(which yields an invertible Hessian) to favor that the solution
satisfies certain constraints, in a soft manner (gauge prior ap-
proach). Lastly, one can use the pseudoinverse of the singular
Hessian to implicitly provide additional constraints (parameter
updates with smallest norm) for a unique solution (free gauge
approach). The first two strategies require VI problem-specific
knowledge (which state to constrain), whereas the last one is
generic.

A. Rotation Parametrization for Gauge Fixation or Prior

One problem with the gauge fixation and gauge prior
approaches is that fixing the 1-DoF yaw rotation angle of a
camera pose is not straightforward, as we discuss next.

The standard method to update orientation variables (i.e.,
rotations) during the iterations of the NLLS solver (Gauss-
Newton or Levenberg-Marquardt–LM) of (1) is to use local
coordinates, where, at the q-th iteration, the update is

Rq+1 = Exp(δφq)Rq. (8)

Gauge C

Orbit of minimum cost

Mθ

Start

Free gauge

Gauge prior

Gauge fixation

Fig. 2: Illustration of the optimization paths taken by different gauge handling
approaches. The gauge fixation approach always moves on the gauge C,
thus satisfying the gauge constraints. The free gauge approach uses the
pseudoinverse to select parameter steps of minimal size for a given cost
decrease, and therefore, moves perpendicular to the isocontours of the cost (1).
The gauge prior approach follows a path in between the gauge fixation and
free gauge approaches. It minimizes a cost augmented by (11), so it may not
exactly end up on the orbit of minimum visual-inertial cost (1).

Setting the z component of δφq to 0 allows fixating the
yaw with respect to Rq . However, concatenating several such
updates (Q iterations), RQ =

∏Q−1
q=0 Exp(δφq)R0, does not

fixate the yaw with respect to the initial rotation R0, and
therefore, this parametrization cannot be used to fix the yaw-
value of RQ to that of the initial value R0.

Although yaw fixation or prior can be applied to any camera
pose, it is a common practice to use the first camera. Thus, for
the rotations of the other camera poses, we use the standard
iterative update (8), and, for the first camera, R0, we use a
more convenient parametrization. Instead of directly using R0,
we use a left-multiplicative increment:

R0 = Exp(∆φ0)R0
0, (9)

where the rotation vector ∆φ0 is initialized to zero and up-
dated. Indeed, the rotation vector formulation has a singularity
at ‖∆φ0‖ = π, but it is applicable when the initial rotation
is close to the optimal value (‖∆φ0‖ < π), which is often
the case in real systems (e.g., initial values are provided by a
front-end, such as [5]).

B. Different Approaches for Handling Gauge Freedom

Based on the previous discussion, gauge fixation consists
of fixing the position and yaw angle of the first camera pose
throughout the optimization. This is achieved by setting

p0 = p0
0, ∆φ0z

.
= e>z ∆φ0 = 0, (10)

where p0
0 is the initial position of the first camera. Fixing

these values of the parameter vector is equivalent to setting the
corresponding columns of the Jacobian of the residual vector
in (1) to zero, namely Jp0

= 0, J∆φ0z
= 0.

The gauge prior approach adds to (1) a penalty

‖rP0 ‖2ΣP0 , where rP0 (θ)
.
= (p0 − p0

0, ∆φ0z). (11)

The choice of ΣP0 in (11) will be discussed in Section V.
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Finally, the free gauge approach lets the parameter vector
evolve freely during the optimization. To deal with the singular
Hessian, we may use the pseudoinverse or add some damping
(Levenberg-Marquardt algorithm) so that the NLLS problem
has a well-defined parameter update.

A comparison of the paths followed in parameter space
during the optimization iterations of the three approaches is
illustrated in Fig. 2.

Next, we show an experimental comparison of the three
gauge handling approaches.

IV. COMPARISON STUDY: SIMULATION SETUP

A. Data Generation

We use three 6-DoF trajectories for our experiments, namely
a sine-like shape one, an arc-like one and a rectangular one.
We denote them as sine, arc and rec respectively. We consider
two landmark configurations: plane, where the 3D points are
roughly distributed on several planes and random, where the
3D points are generated randomly along the trajectory. Fig. 3
shows some simulation setup examples.

To generate the inertial measurements, we fit the trajectories
using B-splines and then sample the accelerations and angular
velocities. The sampled values are corrupted with biases
and additive Gaussian noise, and then are used as inertial
measurements. For the visual measurements, we project the 3D
points through a pinhole camera model to get the correspond-
ing image coordinates and then corrupt them with additive
Gaussian noise.

B. Optimization Solver

To solve the VI state estimation problem (1), we use the
LM algorithm in the Ceres solver [19]. We implement the dif-
ferent approaches for handling the gauge freedom described in
Section III. For each trajectory, we sample several keyframes
along the trajectory. Our parameter space contains the states
(i.e., position, rotation and velocity) at these keyframes and
the positions of the 3D points. The initial states are disturbed
randomly from the groundtruth.

C. Evaluation

1) Accuracy: To evaluate the accuracy of an estimated state,
we first calculate a transformation to align the estimation and
the groundtruth. The transformation is calculated from the
first poses of both trajectories. Note that the transformation
has four DoFs, i.e., a translation and a rotation around the
gravity vector. After alignment, we calculate the root mean
squared error (RMSE) of all the keyframes. Specifically, we
use the Euclidean distance for position and velocity errors.
For rotation estimation, we first calculate the relative rotation
(in angle-axis representation) between the aligned rotation and
the groundtruth, and then use the angle of the relative rotation
as the rotation error.

2) Computational Efficiency: To evaluate the computational
cost, we record the convergence time and number of iterations
of the solver. We run each configuration (i.e., the combination
of trajectory and points) for 50 trials and calculate the average
time and accuracy metrics.

Fig. 3: Sample simulation scenarios. The left one shows a sine trajectory with
randomly generated 3D points, and the right one shows an arc trajectory with
the 3D points distributed on two planes.

3) Covariance: We also compare the covariances produced
by the optimization algorithm, which are of interest for appli-
cations such as active SLAM [20]. The covariance matrix of
the estimated parameters is given by the inverse of the Hessian.
For the free gauge approach, the Moore-Penrose pseudoinverse
is used, since the Hessian is singular [11].

V. COMPARISON STUDY: TIMING AND ACCURACY

A. Gauge Prior: Choosing the Appropriate Prior Weight

Before comparing the three approaches from Section III,
we need to choose the prior covariance ΣP0 in the gauge prior
approach. A common choice is ΣP0 = σ2

0 I, for which the
prior (11) becomes ‖rP0 ‖2ΣP0 = wP ‖rP0 ‖2, with wP = 1/σ2

0 .
We tested a wide range of the prior weight wP on different
configurations and the results were similar. Therefore, we will
look at one configuration in detail. Note that wP = 0 is
essentially the free gauge approach, whereas wP → ∞ is
the gauge fixation approach.

1) Accuracy: Fig. 4 shows how the RMSE changes with
the prior weight. It can be seen that the estimation errors of
different prior weights are very similar (note the numbers on
the vertical axis). While there is no clear optimal prior weight
for different configurations of trajectories and 3D points, the
RMSE stabilizes at one value after the weight increases above
a certain threshold (e.g., 500 in Fig. 4).

2) Computational Cost: Fig. 5 illustrates the computational
cost for different prior weights. Similarly to Fig. 4, the number
of iterations and the convergence time stabilize when the prior
weight is above a certain value. Interestingly, there is a peak
in the computational time when the prior weight increases
from zero to the threshold where it stabilizes. The same
behavior is observed for all configurations. To investigate this
behavior in detail, we plot in Fig. 6 the prior error with
respect to the average reprojection error at each iteration for
several prior weight values. The position prior error is the
Euclidean distance between the current estimate of the first
position and its initial value, the yaw prior error is the z-
component of the relative rotation of the current estimate of the
first rotation with respect to its initial value, and the average
reprojection error is the total visual residual averaged by the
number of observed 3D points in all keyframes. For very large
prior weights (108 in the plot), the algorithm decreases the
reprojection error while keeping the prior error almost equal to
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Fig. 4: RMSE in position, orientation and velocity for different prior weights
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Fig. 5: Number of iterations and computing time for different prior weights.

zero. In contrast, for smaller prior weights (e.g., 50–500), the
optimization algorithm reduces the reprojection error during
the first two iterations at the expense of increasing the prior
error. Then the optimization algorithm spends many iterations
fine-tuning the prior error while keeping the reprojection error
small (moving along the orbit), hence the computational time
increases.

3) Discussion: While the accuracy of the solution does
not significantly change for different prior weights (Fig. 4),
a proper choice of the prior weight is required in the gauge
prior approach to keep the computational cost small (Fig. 5).
Extremely large weights are discarded since they sometimes
make the optimization unstable. We observe similar behavior
for different configurations (trajectory and points combina-
tion). Therefore, in the rest of the section we use a proper
prior weight (e.g., 105) for the gauge prior approach.

B. Accuracy and Computational Effort

We compare the performance of the three approaches on
the six combinations of simulated trajectories (sine, arc and
rec) and 3D points (plane and random). We optimize the
objective function for differently perturbed initializations and
observe that the results are similar. For the results presented
in this section, we perturb the groundtruth positions by a
random vector of 5 cm (with respect to a trajectory of 5 m), the
orientations by a random rotation of 6 degrees, the velocities
by a uniformly distributed variable in [−0.05, 0.05] m/s (with
respect to a mean velocity of 2 m/s) and the 3D point positions
by a uniform random variable in [−7.5, 7.5] cm.
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Fig. 6: Prior error vs. average reprojection error for some representative prior
weights. Each dot in the plot stands for an iteration with the corresponding
prior weight. The optimization starts from the bottom-right corner, where
the reprojection errors are the same and the prior errors are zero. As the
optimization proceeds, the reprojection error decreases and there are different
behaviors for different prior weights regarding the prior error. Note that the
free gauge case behaves as the zero prior weight.

The average RMSEs of 50 trials are listed in Table II. We
omit the results for the gauge prior approach because they are
identical to the ones from the gauge fixation approach up to
around 8 digits after the decimal. It can be seen that there are
only small differences between the free gauge approach and
the gauge fixation approach, and neither of them has a better
accuracy in all simulated configurations.

The convergence time and number of iterations are plotted
in Fig. 7. The computational cost of the gauge prior approach
and the gauge fixation approach are almost identical. The
free gauge approach is slightly faster than the other two.
Specifically, except for the sine trajectory with random 3D
points, the free gauge approach takes fewer iterations and
less time to converge. Note that the gauge fixation approach
takes the least time per iteration due to the smaller number of
variables in the optimization (see Table I).

C. Discussion
Based on the results in this section, we conclude that:

• The three approaches have almost the same accuracy.
• In the gauge prior approach, one needs to select the proper

prior weight to avoid increasing the computational cost.
• With a proper weight, the gauge prior approach has almost

the same performance (accuracy and computational cost) as
the gauge fixation approach.

• The free gauge approach is slightly faster than the others,
because it takes fewer iterations to converge (cf. [14]).

While it may be possible to fix the unobservable DoFs (recall
that we use a tailored parametrization (9) to fix the yaw DoF),
the free gauge approach has the additional advantage that is
generic, i.e., not specific of VI, and therefore it does not
require any special treatment on rotation parametrization.

VI. COMPARISON STUDY: COVARIANCE

A. Covariance Comparison
Given a high prior weight, as discussed in the previous

section, the covariance matrix from the gauge prior approach
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TABLE II: RMSE on different trajectories and 3D points configurations. The
smallest errors (e.g., p gauge fixation vs. p free gauge) are highlighted.

Configuration Gauge fixation Free gauge
p φ v p φ v

sine plane 0.04141 0.1084 0.02182 0.04141 0.1084 0.02183
arc plane 0.02328 0.6987 0.01303 0.02329 0.6987 0.01303
rec plane 0.01772 0.1668 0.01496 0.01774 0.1668 0.01495
sine random 0.03932 0.0885 0.01902 0.03908 0.0874 0.01886
arc random 0.02680 0.6895 0.01167 0.02678 0.6895 0.01166
rec random 0.02218 0.1330 0.009882 0.02220 0.1330 0.009881

Position, rotation and velocity RMSE are measured in m, deg and m/s, respectively.
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Fig. 7: Number of iterations, total convergence time and time per iteration
for all configurations. The time per iteration is the ratio with respect to the
gauge fixation approach (in blue), which takes least time per iteration.

is similar to the gauge fixation approach and therefore omitted
here. We only compare the covariances of the free gauge
approach and the gauge fixation approach in this section.
An example of the covariance matrices of the free gauge
and gauge fixation approaches is visualized in Fig. 9. If we
look at the top-left block of the covariance matrix, which
corresponds to the position components of the states: (i) for
the gauge fixation approach (Fig. 9c), the uncertainty of the
first position is zero due to the fixation, and the position
uncertainty increases afterwards (cf. Fig. 1b); (ii) in contrast,
the uncertainty in the free gauge case (Fig. .9a) is “distributed”
over all the positions (cf. Fig. 1a). This is due to the fact that
the free gauge approach is not fixed to any reference frame.
Therefore, the uncertainties directly read from the free gauge
covariance matrix are not interpretable in a geometrically-
meaningful way. However, this does not mean the covariance
estimation from the free gauge approach is useless: it can be
transformed to a geometrically-meaningful form by enforcing
a gauge fixation condition, as we show next.

B. Covariance Transformation

Covariances are averages of squared perturbations of the
estimated parameter. A perturbation ∆θ of a reconstruction
θ can be decomposed into two components: one parallel to
the orbit Mθ (6) and one parallel to the gauge C (7). The
component of ∆θ parallel to the orbitMθ is not geometrically
meaningful since the perturbed reconstruction is also in the
orbit (thus, arbitrarily large perturbations produce no change

θ θC

g

∆θ

∆θC = QCθC
∂θC
∂θ

∆θ

MθC

∂θC
∂θ

QCθC

Tθ(Mθ)

TθC (Mθ)

TθC (C)

Fig. 8: Illustration of the covariance transformation in the parameter space.
Mθ is the subspace that contains all the parameters that are equivalent to
free gauge estimation θ (i.e., different by a 4-DoF transformation). C is
that subspace that contains all the parameters that satisfy the gauge fixation
condition (10). We first transform θ to the gauge fixation estimation θC along
Mθ , together with the perturbation ∆θ 7→ (∂θC/∂θ)∆θ. Then we project
the perturbation onto the tangent space to the gauge TθC

(C), parallel to the
Mθ , using the projector QCθC

. The average of the outer product of these
transformed perturbations is the covariance Cov(θC).

of the scene geometry). Therefore, only perturbations along
the gauge C, ∆θC , represent changes of the reconstructed
geometry and are therefore meaningful. Such perturbations
live on the tangent space TθC

(C). Hence, geometrically-
meaningful perturbations are gauge-dependent [14], [11].

The covariance from the free gauge approach Cov∗(θ) at an
estimate θ can be transformed into the covariance of a given
gauge fixation C (10) by the following formula [14]:

Cov(θC) ≈
(
QCθC

∂θC
∂θ

)
∗

Cov(θ)

(
QCθC

∂θC
∂θ

)>
, (12)

where θC = C ∩Mθ = g(θ) is the equivalent parameter that
satisfies the gauge. Specifically, g ≡ {Rz, t} (4) is obtained
by “pushing” θ alongMθ (Fig. 8) until it meets C, satisfying

pC0 = Rzp0 + t,

0 = e>z Log(Rz Exp(∆φ0)), (13)

where {p0,∆φ0} ∈ θ and pC0 ∈ θC . Recall that the
rotation of the first camera pose is parameterized differ-
ently (9), and therefore should be transformed as ∆φC0 =
Log(Rz Exp(∆φ0)), where Log is the inverse operator of Exp,
defined in Section II-A.

The transformation rule (12) consists of two operations (also
illustrated in Fig. 8): (i) transferring perturbations along the
orbit Mθ (operator ∂θC/∂θ), and (ii) projecting the pertur-
bations on the tangent space to the gauge TθC

(C) (operator
QCθC

). These operators are specified in Appendix A.
In Fig. 9, we show an example of covariance transformation

on simulated data. Because VI systems are mostly used for
motion estimation, we only show the covariance of the motion
parameters. To better appreciate the entries of the covariance
in spite of their magnitude difference, we use a logarithmic
scale for visualization. Specifically, we plot log10(|σij | + ε),
where Cov ≡ Σ = (σij) is the covariance matrix, and
ε = 10−7 defines the value corresponding to the white color.
We transform the free gauge covariance to the reference frame
specified by the gauge fixation constraint (10). It can be
seen that the transformed covariance agrees well with the
covariance from the the gauge fixation, with a very small
relative error in Frobenius norm (0.11 %).
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Fig. 9: Covariance of free gauge (Fig. 9a) and gauge fixation (Fig. 9c) approaches using N = 10 keyframes. In the middle (Fig. 9b), the free gauge covariance
transformed using (12) shows very good agreement with the gauge fixation covariance: the relative difference between them is ‖Σb− Σc‖F /‖Σc‖F ≈ 0.11%
(‖·‖F denotes Frobenius norm). For better visualization, the magnitude of the covariance entries is displayed in logarithmic scale. The yellow bands of the
gauge fixation and transformed covariances indicate zero entries due to the fixed 4-DoFs (the position and the yaw angle of the first camera).
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Fig. 10: Covariance comparison and transformation using N = 30 keyframes of the EuRoC Vicon 1 sequence (VI1). Same color scheme as in Fig. 9. The
relative difference between (b) and (c) is ‖Σb − Σc‖F /‖Σc‖F ≈ 0.02%. Observe that, in the gauge fixation covariance, the uncertainty of the first position
and yaw is zero, and it grows for the rest of the camera poses (darker color), as illustrated in Fig. 1b.

C. Discussion

In this section, we have seen that the parameter covariance
from the free gauge approach is different from the other
approaches and cannot be directly interpreted in a mean-
ingful way. However, we can actually transform the free
gauge covariance into the gauge fixation one by a linear
transformation (12). The covariance transformation method
in Section VI-B, which is a special case of the general theory
in [14], not only provides insights into the differences and
connections of the compared methods, but it can also be useful
for covariance calculation if the optimization method is used
as a black box (i.e., cannot directly calculate the covariance—
inverse of the Hessian matrix—from the Jacobians of the
measurement model).

VII. EXPERIMENTS ON REAL-WORLD DATASETS

We performed the same experimental comparison as in
the simulation on two sequences from the EuRoC MAV
Dataset [15]: Machine Hall 1 (MH1) and Vicon Room 1
(VI1). We used a semi-direct visual odometry algorithm
(SVO [21]) to provide the initialization of the parameters
in the optimization problem (1). We used the stereo setup
of SVO to remove scale ambiguity. As for the biases, we
used the groundtruth values in the dataset. The evaluation

method described in Section IV was used. Note that we did not
run the optimization over the full trajectories but on shorter
segments, which is enough to demonstrate the differences
of the three methods. The computational cost of the three
different approaches is plotted in Fig. 11. The results are
consistent with our simulation experiments: the free gauge
approach, which requires fewer iterations to converge, is faster
than the other two, The accuracies are reported in Table III,
and all three methods have similar estimation error. In Fig. 10,
we observe, as in Fig. 9, the aparent difference between the
covariances and further show that, by applying (12), we can
calculate the covariance in a certain reference frame using
the free gauge covariance, and the result agrees well with the
covariance from actually fixating the gauge (cf. Fig. 10b and
Fig. 10c).

VIII. CONCLUSION

In this work, we presented the first comparison study of
different approaches, namely the gauge fixation approach, the
gauge prior approach and the free gauge approach, for han-
dling the gauge freedom in optimization-based visual-inertial
state estimation. We showed in simulation as well as on real-
world datasets that all these methods have similar accuracy and
efficiency, with the free gauge approach being slightly faster
due to fewer iterations in the optimization. However, one major
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Fig. 11: Computational cost of the three different methods for handling gauge
freedom on two sequences from the EuRoC dataset. The time per iteration is
the ratio with respect to the gauge fixation approach.

TABLE III: RMSE on EuRoC datasets. Same notation as in Table II.
Sequence Gauge fixation Free gauge

p φ v p φ v

EuRoC MH 0.06936 0.07845 0.03092 0.06918 0.07857 0.03091
EuRoC VI 0.07851 0.4382 0.04644 0.07851 0.4382 0.04644

difference we identified is the estimated covariance from the
optimization algorithms are different, especially for the free
gauge approach. To better understand the connection between
the different approaches, we showed how to transform the
free gauge covariance to satisfy the gauge fixation condition,
which indicates the covariances from different approaches are
actually closely related.

APPENDIX A
OPERATORS FOR COVARIANCE TRANSFORMATION

The Jacobian ∂θC

∂θ in (12) is computed from g according to
the relations (5) and the chosen parametrization of θ,θC . It
is a block-diagonal, full-rank square matrix of size 9N + 3K.
Differentiating on (5), we obtain the matrices in the diagonal,
∂pCi /∂pi = ∂vCi /∂vi = ∂XC

j /∂Xj = Rz . Differentiating
the rotation parameters, we have, for the first camera pose
(parametrization (9)), ∂∆φC0 /∂∆φ0 = J−1

r (∆φC0 ) Jr(∆φ0),
where Jr is the right Jacobian of SO(3) [22, p. 40], and for
the remaining poses (parametrization (8)), ∂δφCi /∂δφi = Rz .

The oblique projector QCθC
in (12) is given by

QCθC

.
= I− UθC

(V>θC
UθC

)−1V>θC
, (14)

where I is the identity matrix, UθC
is a basis for the tangent

space to the orbit at θC , TθC
(Mθ), and VθC

is a basis for the
orthogonal complement of the tangent space to the gauge C at
θC , (TθC

(C))⊥ (Fig. 8). Both UθC
and VθC

are (9N+3K)×4
matrices and their specific form depend on the choice of
parametrization and gauge constraints. Matrix UθC

can be
obtained by applying to the parameter θC an infinitesimal
transformation (4), δg .

= {∆Rz,∆t}. The resulting parameter
can be written as δg(θC) ≈ θC+D(θC), where the generators
of the infinitesimal gauge [14] D(θC)

.
= UθC

(∆α,∆t>)>

are linearly-related with (∆α,∆t>)>, the local coordinates
describing δg. The rows of UθC

are

UpC
i

=
[
ez × pCi , I

]
UvC

i
=
[
ez × vCi , 0

]
U∆φC

0
= [J−1

l (∆φC0 )ez, 0] UδφC
i

= [ez, 0] , i 6= 0

UXC
j

=
[
ez ×XC

j , I
]
,

(15)

where Jl is the left Jacobian of SO(3) [22, p. 40].
Matrix VθC

is given by the derivative of the constraints (7),
V>θC

.
= ∂c

∂θ (θC). In case of the gauge fixation (10), only
two derivatives are non-vanishing: ∂(p0 − p0

0)/∂p0 = I and
∂(e>z ∆φ0)/∂∆φ0 = e>z .
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