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Abstract—Within the research on Micro Aerial Vehicles
(MAVs), the field on flight control and autonomous mission execu-
tion is one of the most active. A crucial point is the localization
of the vehicle, which is especially difficult in unknown, GPS-
denied environments. This paper presents a novel vision based
approach, where the vehicle is localized using a downward look-
ing monocular camera. A state-of-the-art visual SLAM algorithm
tracks the pose of the camera, while, simultaneously, building an
incremental map of the surrounding region. Based on this pose
estimation a LQG/LTR based controller stabilizes the vehicle at
a desired setpoint, making simple maneuvers possible like take-
off, hovering, setpoint following or landing. Experimental data
show that this approach efficiently controls a helicopter while
navigating through an unknown and unstructured environment.
To the best of our knowledge, this is the first work describing
a micro aerial vehicle able to navigate through an unexplored
environment (independently of any external aid like GPS or arti-
ficial beacons), which uses a single camera as only exteroceptive
sensor.

Index Terms—Visual Navigation, Visual SLAM, LQG/LTR
Controller, Micro Aeria Vehicle, Vertical Take-Off, Landing.

I. INTRODUCTION

IN the past years, micro aerial vehicles (MAVs) strongly
gained in autonomy. This was motivated through the very

wide field of applications for these little platforms. Com-
monly associated keywords are: search and rescue, explo-
ration, surveillance, agriculture and inspection.

Because MAVs are in general highly unstable and nonlinear
systems, a clever combination of sensor equipment and con-
troller must be designed. Most of the approaches model the
MAV as two connected ideal subsystems and use a cascaded
control structure: one controller for the attitude (3D orientation
of the helicopter) of the MAV and one superposed controller
for its 3D position. Most attitude controller use the feedback
from an onboard inertial measurement unit (IMU). With this
good performance can often be obtained with a simple PD-
controller design, but also more sophisticated design tech-
niques have been applied [1], [2], [3]. E.g. Bouabdallah et al.
[4] analyzed the application of two different control techniques
”Sliding-Mode” and ”Backstepping” and especially showed
that the later has very good stabilizing qualities. In our case,
we use the onboard attitude controller provided by Ascending
Technologies [5], which is basically a PD-controller.

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n. 231855 (sFly).

Although these attitude controllers make it possible to keep
the MAVs in a hovering state, there is no possibility to
perceive any drift caused by accumulated error. Exteroceptive
sensors are thus unavoidable. The most common approach is
to mount a DGPS receiver on the MAV. By using a so called
Inertial/GPS approach, where data from an IMU and GPS
data are fused together, the MAV can be fully stabilized and
controlled [6], [7]. Two drawbacks of this approach are the
necessity to receive any GPS signal and the lack of precision
of the position estimate.

An alternative approach is to use cameras for the localiza-
tion task. Cameras are lightweight bearing sensors with low
power consumption and are relatively cheap to buy. Also, they
provide very rich information on the environment. However
this vast information has to be processed accordingly. The
most simple way is to install a number of external cameras
with known location and to have them track the MAV [8],
[9], [10]. This method is very efficient for testing purposes
and can be used to evaluate other approaches as ground truth
reference. However it is not suitable for missions where the
installation of an appropriate infrastructure is not feasible.

This approach can also be implemented the other way
round: the camera is mounted on the helicopter and tracks
a known pattern on the ground [11]. The team of Hamel [12]
implemented a visual servoing based trajectory tracking to
control an UAV with a mounted camera observing n fixed
points. Further methods have also been developed by fusing
the visual data with IMU data [13].

The availability of an onboard camera can offer new possi-
bilities. Templeton et al. [14] used a mono vision-based terrain
mapping algorithm to estimate the 3D structure of the environ-
ment in order to find adequate landing sites (the flight control
system still uses GPS data). The problem of autonomously
landing a MAV on a known landing platform using vision
has been solved already quite early by Saripalli et al. [15]. A
vision-based forced landing algorithm has been implemented
where a MAV has to localize a good landing area and reach
it as fast and safely as possible [16]. Another possibility is
to have a MAV tracking a leading MAV with a fixed relative
position and orientation. This has been implemented by Chen
et al. [17] by constructing an Euclidean homography based on
some feature points on the leading vehicle.

Alternatively, stabilizing controllers can be built by means
of optical flow considerations [18]. Herisse et al. [19] use
an optical flow based PI-controller to stabilize a hovering
MAV, they also implemented an automatic landing routine by
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contemplating the divergent optical flow. Hrabar et al. [20]
developed a platform able to navigate through urban canyons.
It was based on the analysis of the optical flow on both sides of
the vehicle. Also, by having a forward looking stereo camera,
they were able to avoid oncoming obstacles.

Based on optical flow some biologically inspired control
algorithms have been developed for MAV stabilization [21]
[22]. However, the optical flow based pose estimation is also
affected by slow drift as it does observe the relative velocity
of features only. This counts also for visual odometry based
implementations, where the drift is estimated by considering
the feature displacements between two successive images [23].

An approach with offboard vehicle tracking equipment was
implemented by Ahrens et al. [24]. Based on the visual SLAM
algorithm of Davison et al. [25], they build a localization
and mapping framework that is able to provide an almost
drift-free pose estimation. With that they implemented a very
efficient position controller and obstacle avoidance framework.
However, due to the simplification they used in their feature
tracking algorithm a non-negligible drift persists. Also, they
used an external Vicon localization system to control the aerial
vehicle with millimeter precision (a system of external cameras
that tracks the 3D pose of the vehicle). So far, they did not
use the output of the visual SLAM based localization system
for controlling the vehicle.

In this paper, we present an approach based on the visual
SLAM algorithm of Klein et al. [26]. It enables the MAV to au-
tonomously determine its location and consequently stabilize
itself. In contrast to other approaches we do not require any
a priori information on the environment or any known pattern
in order to obtain a MAV control. The controller is based on
a cascaded structure of attitude control and position control.
The attitude PD-controller uses the IMU data of the MAV and
exhibits a very good performance. The position controller is
designed by means of the discrete linear quadratic Gaussian
control design with loop transfer recovery (LQG/LTR) applied
on a simplified MAV model. This enables us to handle the
considerable time delay that comes from the image processing
and from the SLAM algorithm.

For the experimental tests a downward looking camera
is mounted on the Hummingbird quadrotor from Ascend-
ing Technologies [5]. Currently the images are fed via an
USB cable to a ground station where the SLAM algorithm
is running on. Based on the position estimate the control
input are computed and then sent back to the quadrotor. To
the best of our knowledge, this is the first implementation
of a vision-based MAV controller that can be used in an
unknown environment without the aid of any infrastructure
based localization system, any beacons, artificial features, or
any prior knowledge on the environment. In other words, our
platform does not need any external assistance in order to
navigate through an unexplored region.

The outline of the paper is as follows: after introducing
some notations in section II, we will shortly summarize the
SLAM algorithm that has been used here and explain why we
chose it for our approach (section III). In section IV we will
take a look at the modeling of the system and the parameter
identification. After that, we will discuss the controller design

(section V) and analyze the entire structure of our approach
(section VI). To the end we will have a look at the achieved
results and discuss them (section VII).

II. NOTATIONS

To facilitate the following considerations we will introduce
some notations. We will always use boldface for vectors.

Common notations:
Av: Vector v expressed in the A coordinate system.
RAB : Rotation matrix from coordinate system B to

coordinate system A.

Coordinate systems:
I: Inertial coordinate system, is chosen so that the

gravity lies along the z-axis.
M : Coordinate system of the map of the SLAM

algorithm.
C: Coordinate system of the camera frame.
H: Coordinate system of the Helicopter.

Vectors and scalars:
r: Position vector of the helicopter.
T: Thrust vector of the helicopter (always lies on the

z-axis of the H coordinate frame).
T : The absolute value of the thrust vector T.
ϕ: Roll angle of the helicopter, rotation around the

x-axis of the I coordinate system.
θ: Pitch angle of the helicopter, rotation around the

y-axis of the I coordinate system.
ψ: Yaw angle of the helicopter, rotation around the

z-axis of the I coordinate system.
ω: Rotational speed around the z-axis of the I

coordinate system.

Constant parameters:
FG: Gravitational force.
g: Gravitational acceleration.
m: Mass of the helicopter.

Please note that we use the Tait-Bryan convention for the
Euler decomposition of the rotation matrix RHI into the 3
angles ϕ, θ and ψ. If the angles represent rotations between
two other coordinates frames than I and H , we specify them
in the index, e.g. ψCM represents the rotation around the z-
axis from the map coordinate frame to the camera coordinate
frame. All coordinate frames have the same invariant origin.

Estimated values are denoted by an additional tilde (e.g.
M r̃). Reference values are denoted with a star (e.g. T ∗).

III. VISUAL SLAM BASED LOCALIZATION

A. Description of the Visual SLAM algorithm

The presented approach uses the visual SLAM algorithm of
Klein et al. [26] in order to localize the MAV from a single
camera (see Fig. III). In summary, they split the simultaneous
localization and mapping task into two separately-scheduled
threads: the tracking thread and the mapping thread.
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(a) Camera view (b) SLAM map (c) Hovering quadrotor

Fig. 1. Screenshots of Georg Klein’s SLAM algorithm. In (a) the tracking of the FAST corners can be observed, this is used for the localization of the
camera. In (b) the 3D map that was build by the mapping thread is shown. The 3-axis coordinate frames represent the location where new Keyframes where
added. In (c) the quadrotor in hovering state is represented. Beneath it the mounted camera can be perceived. All three images were taken at the same time.

The tracking thread is responsible of tracking the selected
features in successive frames and computing an estimate of
the current camera pose. In this version only FAST corners
are tracked and used for the pose estimation.

The Mapping thread uses a subset of all camera images (also
called keyframes) to build a 3D point map of the surroundings.
The keyframes are selected using some heuristic criteria. After
that a batch optimization is applied on the joint state of map
points and keyframe poses.

There are several important differences that can be men-
tioned in comparison to the standard SLAM algorithm of
Davison et al. [25]. First of all it does not use any EKF-
based state estimation and does not consider any uncertainties,
sparing a lot of computational effort. The lack of modeling
uncertainities is compensated by using a vast amount of
features and the local and global batch optimization. This
makes the algorithm fast and the map very accurate.

B. Analysis of the SLAM Algorithm

Splitting the SLAM algorithm in a mapping and a tracking
thread brings the advantage that both can run at different
speed. The tracker can thus yield fast pose updates while
the mapper can use more powerful (slower) map optimization
techniques. Compared to frame-by-frame SLAM the mapper
does not process every frame. This eliminates to a great extend
redundant information processing during slow movements or
hovering. These are the main reasons why we choose this
SLAM algorithm.

Our downwards looking wide angle camera is always
roughly aligned with the z-axis. This ensures large overlapping
areas and we can further decrease the frequency at which
keyframes are added to the map. In already explored areas, no
keyframes will be added and the algorithm’s speed remains
constant over time while remaining in this area. On the other
hand, when exploring new areas the global bundle adjustment
can be very expensive, limiting the number of keyframes to a
few hundred on our platform (around 50-100 m2, depending
on the keyframe rate).

Another strength of the SLAM algorithm is its robustness
against partial camera occlusion. If a sufficient part (around
50%) of the point features can still be tracked the pose estimate
is accurate enough to sustain stable MAV control. Also, the

algorithm will avoid to add any keyframes in such situation
so as not to corrupt the map.

An intricate hurdle when using a monocular camera is the
lack of any depth information. Because of that the algorithm
must initialize new points based on the observations from
more than one keyframe. This could motivate the use of a
stereo camera. However, for a stereo camera to bring any
further advantage, the observed scene must be within some
range of the stereo camera, otherwise a single camera will
yield the same utility. Closely linked to this problem is
the unobservability of the map scale, to tackle this we are
forced to estimate the map scale by hand and pass it to
the controller. Using the onboard IMU measurements, we are
currently implementing an online scale estimation to tackle
this problem.

IV. MODELING AND PARAMETER IDENTIFICATION

As our MAV platform we choose the Hummingbird quadro-
tor from AscTec [5]. The sensors on the platform include 3
gyros, a 3D compass and an accelerometer. At this point it
is important to mention that an efficient attitude controller is
implemented on the onboard microcontroller of the helicopter.
This permits us to focus on the design of a controller for the
stabilization of the x,y,z positions coordinates and the yaw
angle. In general, the presented method could be implemented
on any MAV with sufficiently fast onboard attitude control.

We produce a model of the system and use the reference
values of the attitude controller as the control inputs. The ouput
is the pose of the camera, i.e., the 3 dimensional position and
orientation of the camera in the coordinate frame of the stored
map. Thus the dynamics of the internal attitude controller must
be included in the model.

The attitude controller controls the two tilt angles ϕ, θ, the
angular velocity around the vertical axis ω and the total thrust
T of the helicopter. Therefore the corresponding reference
values of the attitude controller (denoted by ϕ∗, θ∗, T ∗ and
ω∗) are the inputs to the model, while the outputs are the
estimation of the helicopter position M r̃ and the yaw angle
ψ̃CM computed by decomposing the rotation matrix R̃CM .
M r̃ and R̃CM are obtained through the SLAM algorithm and
can also be transformed to the I coordinate frame.



4

YH

ZH

XH

T

FG
Ir

ZI

YI

XI

RHI(φ,θ,ψ)

F

T

FG

Fig. 2. Point mass model of the helicopter. The inertial coordinate frame
and the helicopter coordinate frame are illustrated. Using the rotation matrix
RHI the sum F of the thrust force T and the gravitational force FG can be
projected onto the three axis of the inertial coordinate frame. Subsequently
the principle of linear momentum can be applied.

The helicopter is modeled as a simple point mass on which
we apply the principle of linear momentum (Newton’s second
law). The forces that are acting on the helicopter are reduced
to the thrust force T aligned with the z-axis of the helicopter
and the gravitational force FG pointing towards the positive
z-axis of the inertial coordinate system (see Fig. 2). We can
now apply the principle of linear momentum onto the three
directions of the inertial coordinate frame. This yields the
following matrix equation:

I r̈ = RIM · M r̈ =
1
m
R−1

HI(ϕ, θ, ψ)

 0
0
−T

+

 0
0
g

 (1)

Now the state M r can be computed given the three angles ϕ,
θ, ψ and the thrust value T . For the yaw angle ψ and the thrust
value T we assume the internal controller to be relatively fast
and thus have the following simple relations:

ψ̇ = ω∗, T = T ∗ (2)

A preciser modeling would bring only little improvement to
the model’s accuracy and would rather increase its complexity.
Please note that for equation (1) it is important that the z-
axis of the inertial frame points toward the center of gravity.
Theoretically, the principle of linear momentum could also be
applied in the coordinate system of the SLAM map M (which
is also an inertial frame), but due to a slight orientation drift
of the map it was necessary to include an additional inertial
frame I and adapt the corresponding orientation RMI (more
in section VI).

As the attitude controller dynamics from the inputs ϕ∗ and
θ∗ to the angles ϕ and θ is quite fast, we model them as
two separated second-order systems with the following transfer
function:

T (s) =
ω2

s2 + 2 · d · ω · s+ ω2
(3)

We then identify the parameters d and ω on the plant by
analyzing the step response (see Fig. 3). This yields a value
of 15.92 rad/s for ω and 1.22 for d.

For the subsequent controller design we need to estimate
the time delay Td in the control loop, this was done by
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Fig. 3. Measured step response on the pitch input of the quadrotor device.
The system is modeled as a second-order system with time delay. This yields
a critical frequency ω of 15.92 rad/s, a damping d of 1.22 and a time delay
Td of 80.6 ms (for image transmission via USB cable).
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Fig. 4. Model of the entire system with the roll angle ϕ∗, the pitch angle
θ∗, the total thrust T ∗ and the yaw rate ω∗ as inputs. The outputs are the
position of the helicopter I r̃ and the yaw angle ψ̃. The attitude controller
dynamics and the time delay are included in the model. Note that external
disturbances and noise are not modeled.

observing the same step response as before. We assume that
the time delay is mainly caused by the data transmission and
SLAM algorithm, so that its value is the same for all outputs.
Depending on the data transmission method the delay varies
between 80.6 ms (USB cable) and 250 ms (Wi-Fi n-standard).

All in all the system can be represented like in Fig. 4.
Please note that for the sake of simplicity we do not model
any disturbances or noise.

V. CONTROLLER DESIGN

As already mentioned, the design of the position controller
is based on a plant model where the dynamics of the attitude
controller are included. Unfortunately, the control inputs in-
troduce strong non-linearities into the system as can be seen
in equation (1). Using the Tait-Bryan convention the following
equation for the force acting on the helicopter are derived: IFx

IFy

IFz

=−T


cosψ sin θ cosϕ+ sinψ sinϕ
sinψ sin θ cosϕ− cosψ sinϕ

cos θ cosϕ

+


0
0
mg


By solving this equation for ϕ, θ and T we can write the
following transformation of the control inputs:

θ∗ = arctan

(
cos ψ̃ ·I F ∗

x + sin ψ̃ ·I F ∗
y

IF ∗
z −mg

)
(4)

ϕ∗ = arctan

(
sin ψ̃ ·I F ∗

x − cos ψ̃ ·I F ∗
y

IF ∗
z −mg

cos θ∗
)

(5)

T ∗ =
mg −I F

∗
z

cos θ∗ cosϕ∗
(6)
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Fig. 5. The four decoupled linear systems. They were obtained by trans-
forming the system inputs of Fig. 4 and exchanging the order of the nonlinear
input transformation and the second order system blocks. This can be justified
by the smoothness of the nonlinear transformation and the high speed of the
second order system.

Assuming that the attitude control’s dynamic is fast and
smooth enough, the second-order system block (attitude con-
troller dynamics) and the control input transformations can be
exchanged in order to obtain a new plant with the input IF

∗
x ,

IF
∗
y , IF

∗
z and ω∗. This yields four decoupled linear systems

that can be controlled separately (see Fig. 5).
For the yaw control we simply apply a constant velocity ω∗

when the angular error exceeds a certain value.
The position controllers are designed by means of the

discrete LQG/LTR approach. The procedure is identical for
all three position values, except that for the z-coordinate
the second-order system is left out. Because of the limited
computational power the constant controller frequency is kept
at roughly 20 Hz. This approximately matches the frequency of
the SLAM pose estimates (around 15-30Hz). For the Nyquist
frequency we take 7.5 Hz (half of the minimal measurement
frequency). During the tuning, this represents the main limi-
tation of the control performance.

The discrete system model is derived via the zero-order
hold transformation of the continuous time model including
the second-order system of the internal controller dynamics
and the momentum law (double integration). After that, the
time delay, approximated by a multiple of the sampling time,
is added at the output of the model. Supplementary, due to
varying battery power and tilt angles calibrations some inte-
grating action has to be introduced in all position coordinates
by expanding the system with an output error integrating part.
Now the corresponding system matrices F , G, C and D can
be computed. Applying the LQG/LTR procedure with feed-
forward action yields the structure in Fig. 6.

The resulting closed loop system has its poles like in Fig.
7. Except for the four poles induced by the time delay, all
poles are between 1-30 rad/s. This enables the system to
correct an initial error of 1 m with a T90 time of around 1
seconds and 20% overshoot (Fig. 8). At the expense of the
performance, we attempt to maximize the robustness of the
system in order to handle the modeling errors and external
disturbance. However, to attain fast error correction at the
beginning of the flight a sufficient large integrating part has
to be maintained. Examining the Nyquist plot (Fig. 9) we can
observe a phase margin of 27.7 degrees and a gain margin of
5.5 dB, suggesting an acceptable robustness.
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Fig. 6. LQG/LTR controller structure for the position control in x. The
structure for y and z are analogous. It results from the combination of a state
observer and a state feedback controller. An integrating part and feedforward
action were included in order to obtain unity steady state gain and to render
the observation error independent of the reference value. F , G, C, are the
discretized system matrices. The controller gainsK,KI , Γ and Λ are obtained
using the LQG/LTR procedure.
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Fig. 7. Pole-zero map of the closed-loop system for x or y. Except for the
four poles induced by the time delay all poles lie within 1-30 rad/s. No pole
has a damping lower than 0.5. A zero situated at -7.2 is not displayed on the
plot.

The main advantages of the LQG/LTR controller design is
that it filters the measurements and estimates the velocity of
the helicopter. This is especially useful to handle discontinu-
ities of the SLAM pose estimate caused by the bundle adjust-
ment procedure or wrong data association. Also compared to
the standard PID approach it enables us to handle the non-
negligible time-delay in order to obtain faster controllers. The
additional loop transfer recovery allows us to find a good trade-
off between robustness and performance.

To ensure a controllability of the x,y positions we limit the
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Fig. 8. Time domain system response to an initial error of 1 m in x or y. The
controller is able to correct the error with a T90 time of around 1 seconds
and an overshoot of 20%. The performance is limited by the relatively slow
measurement rate and the time delay of the system.
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Fig. 9. Nyquist plot of the system (open loop). Phase margin: 27.7 degrees.
Gain margin: 5.5 dB.

force in z-direction to (m · g)/2. Otherwise the total thrust T
could go toward 0, disabling any control in x and y direction.

VI. FINAL SYSTEM STRUCTURE, FINAL IMPLEMENTATION

We use the Hummingbird quadrotor platform from Ascend-
ing Technologies [5]. A high performance onboard controller
enables the stabilization of both tilt angles and the yaw rate
at desired reference values sent via an XBee radio. Beneath
the quadrotor a 12g USB uEye UI-122xLE is installed which
gathers 752x480 images with global shutter. At the moment
the images are transmitted through an USB cable linked to the
ground station. The computations on the ground stations are
done on a Intel Core 2 CPU 2x2GHz processor. All code is
implemented in C++.

In the flow diagram (see Fig. 10) the entire closed-loop
system is represented. The SLAM algorithm and the controller
are both implemented on the ground station.

As the vision based localization does not work when the
helicopter is landed (the camera is too near to the floor),
the take off is only feasible if the initial land-patch beneath
it is already stored in the map. Giving increasing thrust the
helicopter can then fly blindly until it re-finds the map and
stabilizes itself (the position can be tracked from a height of
ca 15 cm). We are currently including an algorithm that is able
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Fig. 11. Position error in the x,y and z positions. The value remains between
± 10 cm. The z position is more accurate than the x and y positions.

to take off from ground over a known pattern and initialize
the map autonomously.

We observed stability problems arising from the scale and
orientation drift of the SLAM map. Due to the projective
nature of a single camera the scale of the map can diverge from
it’s original value and lead the quadrotor to crash. Currently
the scale can be adjusted manually, however we are working
on a framework where an online scale estimation algorithm is
included. The robustness of the designed controller allows the
system to handle a relative scale error of around ±20%.

The rotational drift in the map does also lead to instability
if not considered. At the moment this problem is solved by
automatically re-aligning the inertial coordinate frame every
40 cm. For that the helicopter has to be stabilized until its
pose is approximately horizontal. This is done by observing
the RMS value of the last 30 position errors (around 1.5 s).
When this value is beneath a certain threshold (0.06 m) we
can assume that the pose is horizontal (±0.02 rad in the tilt
angles). In order to retain a smooth position estimates an offset
on the SLAM position is introduced and adapted at each re-
alignment. The entire procedure limits the progressive speed
of the MAV and leaves the mapping thread of the SLAM
algorithm some time to expand the map.

VII. RESULTS AND DISCUSSION

In Fig. 12 the flight path of 60 seconds hovering can be
seen. Note that during hovering no keyframes have to be added
and the SLAM algorithm can focus on position tracking. The
position error has an RMS value of 2.89 cm in x, 3.02 cm in
y and 1.86 cm in z, what yields an absolute error value RMS
of 4.61 (see Fig. 11 and Fig. 12).

The platform is also able to fly to desired setpoints. For that
the path is split into waypoints. The distance between them
is chosen so that the helicopter can re-align the orientation
of the inertial coordinate frame at each waypoint. Here, a
little higher RMS value is obtained as in the hovering mode
(see Fig. 13). The map consisted of 7 keyframes at the start.
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After the nonlinear control input transformations (Eq. (4),(5),( 6)) the reference values are sent back to the attitude controller on the quadrotor.
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Fig. 12. Position error while hovering during 60 seconds. The RMS value
of the position error is 2.89 cm in x, 3.02 cm in y and 1.86 cm in z. The
maximum runaway has an absolute error value of 11.15 cm (marked with a
red o).

While expanding the map the SLAM algorithm processes
more than 40 additional keyframes. At each waypoint the
helicopter stabilizes itself and waits until the RMS value is
small enough (10 cm in absolute error value) to re-align the
map. We observed that the systems remains stable even in the
case where the re-alignment is imprecise.

The localization is also very reliable on non-flat terrain.
During the trajectory in Fig. 13 the quadrotor flies pass the
edge of a table it has started on. More problematic could
be the scenario where the quadrotor would need to fly very
near the ground or an obtrusive object (like passing over
a wall). In these cases the scene is passing relatively fast
within the camera frame and the flight speed would have to
be limited. Adding supplementary camera looking in other
directions could be of benefit in such scenarios.

In Fig. 14, we can see the map that was built during the
flight. It is composed of 52 keyframes and 4635 map points.
It represents approximately a surface of 15 m2. Even though
there might be some scale and orientation drift within the map,
the system remains stable. Locally, the quadrotor can localize
itself correctly and thus the control quality is maintained.
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Fig. 13. Path that the helicopter has flown. This does not represent ground
truth, it is the pose estimation of the SLAM algorithm. However the attitude
of the helicopter can be observed while successfully flying a rectangular loop
and landing on the ground. The RMS value of the position error is 9.95 cm
in x, 7.48 cm in y and 4.23 cm in z. The path has a total length of a little bit
more than 10 m in a region of 3.5x2x1m3

Fig. 14. 3D view of the built map. It contains 4635 map points, observed
in 52 different keyframes.

Some failure modes have also to be mentioned. Due to
the lack of features or to varying illumination it is possible
that the tracker cannot find enough features disabling the
localization. In big maps the mapping thread consumes too
much calculation power for new keyframes, preventing the
tracking thread from updates.

The achieved results show that our platform can au-
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tonomously fly through a larger unknown indoor environment
with high accuracy. The system is robust against external
disturbances and can handle modeling errors. Some outdoor
tests confirm the controller’s robustness, which was able to
handle quit strong changing winds.

VIII. CONCLUSION

This paper presented a vision based MAV control approach.
The pose was estimated by means of the visual SLAM algo-
rithm of Klein et al. with a precision of a few centimeters. This
was then used to stabilize the position of the vehicle. Based
on a control input transformation and on the linear LQG/LTR
procedure, a controller was designed. The resulting platform
successfully managed to hover and follow desired setpoints
within an indoor laboratory. For that it does not need any
prior information on the environment. After the initialization,
a map of the surroundings was built incrementally, wherein the
MAV was able to localize itself without any time-drift. Apart
from some minor map drift the vehicle can control its position
up to a few centimeters of error (RMS around 2-4 cm). We
successfully built an autonomous MAV platform which is able
to navigate in an unknown and unstructured environment in a
very robust and accurate way.
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