
Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers

Elias Mueggler, Basil Huber and Davide Scaramuzza

Abstract— In the last few years, we have witnessed impres-
sive demonstrations of aggressive flights and acrobatics using
quadrotors. However, those robots are actually blind. They do
not see by themselves, but through the “eyes” of an external
motion capture system. Flight maneuvers using onboard sensors
are still slow compared to those attainable with motion capture
systems. At the current state, the agility of a robot is limited
by the latency of its perception pipeline. To obtain more
agile robots, we need to use faster sensors. In this paper,
we present the first onboard perception system for 6-DOF
localization during high-speed maneuvers using a Dynamic
Vision Sensor (DVS). Unlike a standard CMOS camera, a DVS
does not wastefully send full image frames at a fixed frame
rate. Conversely, similar to the human eye, it only transmits
pixel-level brightness changes at the time they occur with
microsecond resolution, thus, offering the possibility to create
a perception pipeline whose latency is negligible compared to
the dynamics of the robot. We exploit these characteristics to
estimate the pose of a quadrotor with respect to a known pattern
during high-speed maneuvers, such as flips, with rotational
speeds up to 1,200 ◦/s. Additionally, we provide a versatile
method to capture ground-truth data using a DVS.

SUPPLEMENTARY MATERIAL

A video attachment to this work is available at:

http://rpg.ifi.uzh.ch.

I. INTRODUCTION

A. Motivation

In the last few years, impressive demonstrations of ag-

gressive flight and acrobatics with quadrotors have been

presented [1], [2]. Those systems are based on external

motion-capture systems such as Vicon1 or OptiTrack.2 How-

ever, these setups are expensive, need active cameras, and

are limited to small, confined workspaces. Thus, using

onboard sensors is preferable for real-world applications.

Many different sensor modalities have been proposed, such

as laser scanners [3], [4], stereo cameras [5], and monocular

cameras [6]. However, such systems achieve flight maneuvers

that are still slow—especially in rotational speed—compared

to those attainable with motion capture systems. Such high-

speed performance is not achievable with commonly-used

onboard sensors, such as CMOS cameras or laser range

rangefinders.

The achievable agility of a robotic platform depends on

the accuracy and latency of perception. The latency depends

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland—http://rpg.ifi.uzh.ch. This research was
supported by the Swiss National Science Foundation through project number
200021-143607 (“Swarm of Flying Cameras”), the National Centre of
Competence in Research Robotics, and Google.

1http://www.vicon.com/
2http://www.naturalpoint.com/optitrack/

(a) Our quadrotor performing a flip.

(b) Standard CMOS camera (c) Integrated DVS events (2ms)

Fig. 1: A quadrotor equipped with a standard CMOS camera and
a DVS performing a flip. While the image of a standard CMOS
camera suffers from high motion blur, a rendering of the DVS
output shows that it can detect fast motion accurately. Blue and
red indicate the polarity of the events (i.e., negative or positive
changes of intensity).

on the frequency of the sensor data, plus the time it takes to

process the data. At the current state of the art, the latency

of a CMOS-camera–based robot-perception pipeline is at the

minimum in the order of 50–250ms and the sampling rate in

the order of 15–40Hz. This puts a hard bound on the agility

of the platform. We aim to overcome these limitations by

exploiting a Dynamic Vision Sensor (DVS) [7]. Contrarily

to standard frame-based CMOS cameras, which send entire

images at fixed frame rates, a DVS only sends the local pixel-

level changes caused by movement in a scene at the time

they occur. The DVS output is a sequence of asynchronous

events. Each pixel produces an event whenever it perceives a

change of intensity. While the sensor’s spatial resolution of

128×128 pixels is still low, the temporal resolution is in the

order of microseconds. Thus, we can achieve low-latency

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
September 14-18, 2014. Chicago, IL, USA,

978-1-4799-6933-3/14/$31.00 ©2014 IEEE 2761

pose estimation even during very fast maneuvers, such as

flips of a quadrotor (Figure 1a). In addition, since a DVS

only streams relative brightness changes in the sensor’s field

of view, the computational load can be reduced drastically.

However, to take full advantage of the DVS capabilities, we

must rethink the way we interpret visual data.

The method presented in this paper estimates the

6 Degrees-Of-Freedom (DOF) pose of a DVS with respect

to a known passive pattern. A naı̈ve solution would be to

accumulate the events occurred over a certain time interval

and adapt known pose-estimation algorithms for standard

CMOS cameras to these “integrated” images (an example

“integrated” image is shown in Figure 1c, where we used

an integration time of 2ms). However, this is not desirable,

because it would result in the same latency of a regular

camera. Ideally, to have the lowest latency for the perception

pipeline, one would want each single event to be reflected in

small instantaneous changes of commands to the actuators.

Therefore, we want to design methods that make use of the

information contained in each single event. Since a DVS

only detects changes of intensity, only scenes rich in gradient

information are relevant. For simplicity, we chose a black

square on a white background. However, our approach can

be generalized to any planar shape or gradient map that is

known a priori. Our algorithm starts by integrating events

until the pattern is detected. Then, it tracks the line segments,

which define the borders of the pattern, by updating both the

lines and the pose at microsecond time resolution, as soon

as a new event arrives.

B. Related Work

An impressive demonstration of the low-latency capabili-

ties of a DVS for control applications was presented in [8].

Using two DVS, the authors implemented a pencil-balancing

system on a highly-reactive platform free to move on a plane.

The key to achieve such high-speed performance lies in an

event-based adaptation of the Hough-transform line-detection

algorithm [9] to track the pencil.

Asynchronous, event-based optical flow was presented

in [10], [11]. The authors adapted the Lucas-Kanade tracking

algorithm to cope with the event-based nature of the DVS.

An Event-based Iterative Closest Point Algorithm (ICP)

was used in [12] for closed-loop control of a micro gripper.

The mean update rate was 4 kHz. However, the algorithm

integrates events over a predefined time interval and only

works in 2D.

In our previous work [13], a DVS fixed to the ground

was used to recover the pose of a quadrotor during flight

by tracking LEDs mounted on the platform, which were

blinking at very high frequencies. The DVS’ time resolution

allowed distinguishing different frequencies, thus avoiding

the need for data association. While this system successfully

showed low-latency pose-tracking capabilities using a DVS,

it required active markers (i.e., the blinking LEDs). Further-

more, the DVS was not mounted onboard the quadrotor.

Localization using a DVS on a ground robot was first

presented in [14] and later extended to Simultaneous Lo-

calization And Mapping (SLAM) in [15]. However, the

system was limited to planar motion and a 2D map. In

their experiments, the authors used an upward-looking DVS

mounted on a ground robot moving at low speed.

In our previous work [16], we presented a visual-odometry

pipeline using a DVS in combination with a standard CMOS

camera. We used a probabilistic framework that updates the

pose likelihood relative to the previous CMOS frame by

processing each event individually as soon as it arrives.

As in [15], the experiments were performed at relatively

low speeds (up to 30 ◦/s), while the system was limited to

planar motion. Although higher speeds would in principle

be possible, this was not feasible with those settings due

to the occurrence of motion blur in the CMOS camera at

higher speeds. In contrast, in this paper we focus on full 6-

DOF pose estimation using only DVS input and demonstrate

successful pose tracking at rotational speeds up to 1,200 ◦/s,

such as during quadrotor flips.

C. Contributions and Outline

The main contribution of this paper is an event-based, low-

latency method for 6-DOF localization that works for high-

speed maneuvers, which we demonstrate during quadrotor

flips. Additionally, we provide a versatile method to generate

realistic datasets of simulated trajectories on artificial scenes

with ground truth. Since we use the DVS in the loop, we

can generate ground truth with real sensor noise.

The remainder of the paper is organized as follows. In

Section II, we describe the DVS and a calibration procedure.

Our algorithm is described in Section IV and evaluated in

simulation and with real experiments in Section VI.

II. DYNAMIC VISION SENSOR

Standard CMOS cameras send full frames at fixed frame

rates. On the other hand, retinal cameras such as a DVS

have independent pixels that generate spike events at local

relative brightness changes in continuous time. These events

are timestamped and transmitted asynchronously at the time

they occur using a sophisticated digital circuitry. Each event

is a tuple 〈x, y, t, p〉, where x, y are the pixel coordinates of

the event, t is the timestamp of the event, and p ∈ {−1,+1}
is the polarity of the event, which is the sign of the brightness

change. This representation is sometimes also referred to

as Address-Events Representation (AER). The DVS has a

resolution of 128× 128 pixels and is connected via USB. A

visualization of the output of the DVS is shown in Figure 2.

III. CALIBRATION

Since the optics of a DVS is the same as that of a regular

camera, we use the standard pinhole camera model [18] to

determine the intrinsic parameters (i.e., focal length, projec-

tion center, and distortion coefficients). For standard cameras,

off-the-shelf calibration toolboxes based on regular patterns

are the best choice [19]. However, it is not straightforward to

use passive patterns with a DVS. Since relative motion is nec-

essary to generate events, one would need to move the pattern

in front of the DVS and integrate a sufficient number of

2762

Fig. 2: Visualization of the output of a DVS looking at a rotating
dot. Colored dots mark individual events. The polarity of the events
is not shown. Events that are not part of the spiral are caused by
sensor noise. Figure adapted from [17].

(a) Intrinsic calibration (b) Focus calibration

Fig. 3: Calibration patterns for the DVS.

events in order to “see” it.3 Therefore, we calibrate the DVS

using a computer screen with blinking patterns.4 We use two

different patterns: blinking dots (as depicted in Figures 3a

and 8a) and concentric black-and-white squares (Figure 3b).

We use the former for intrinsic-parameter calibration (we

utilize a standard calibration tool, such as [20]) and the

latter for focus adjustment (we proceed by manually tuning

the focus of the camera until the squares appear sharp). To

be independent of the distance to the screen, we chose the

squares to be spaced and scaled logarithmically.

IV. EVENT-BASED POSE ESTIMATION

Since a DVS only detects changes of intensity, only scenes

rich in gradient information are relevant. For simplicity, we

chose a black square on a white background (Figure 1).

However, our approach can be generalized to any planar

shape or gradient map that is known a priori. Our algorithm

3Remember that a DVS only generate asynchronous events; therefore,
one would have to integrate the DVS events over a certain time interval in
order to render an image that could be used with standard calibration tools.

4LED screens use pulse-width modulation of the background light for
dimming. This high-frequency blinking generates events; thus, a static image
on the screen appears blinking for the DVS.

r

θ

s

x

y

Fig. 4: Events (squares) belonging to a candidate line (black)
detected in the Hough space (represented by r and θ). Events
belonging to this line are ordered by their distance s and then
clustered into line segments (e.g., red and blue). If a line segment
is too short (less than 20 pixels), this is rejected by the algorithm
(e.g., the blue cluster).

starts by integrating events until the pattern is detected.

Then, it tracks the line segments, which define the borders

of the pattern, by updating both the lines and the pose at

microsecond time resolution, as soon as a new event arrives.

A. Initialization

Lines are detected using the Hough transform [9]. We

chose the polar representation of lines and discretize the

Hough space with equidistant bins of 7.5◦ and 2.5 pixels.

Each event is added to the Hough space as it arrives. If a bin

reaches a threshold of 25, it is considered a line candidate.

If at least four distinct candidates are found, events are then

assigned to each candidate based on their distance to the line.

Events that are too far from the candidate line are removed.

Then, all the events corresponding to a candidate line are

ordered on the corresponding line (Figure 4). If the gap

between two consecutive events on the same line is too large

(8 pixels), they are considered to belong to two different line

segments. Only segments with a minimum length of 20 pixels

are considered for the next step.

We perform an exhaustive search to find 4-sided shapes in

the set of detected line segments. We start with one segment

and append additional segments if they can be added in

clockwise order and the angle is between 45◦ and 135◦. If

the fourth segment connects to the first one, the square is

found. Then, we determine the four corners of the square

by intersection of the estimated lines. Finally, we calculate

the initial pose P from the homography relating the planar

pattern and its image [21].

B. Line tracking

Lines are tracked in an event-based manner, which means,

each event that arrives is used to directly update the pose

estimate. When a new event arrives, we check whether it is

close to one of the lines. If so, we use it to update that line

and, subsequently, the pose estimate. Otherwise, we treat it

2763

0 32 64 96 128

0

32

64

96

128

1

2

3

4

x

y

Fig. 5: Visualization of the tracking algorithm in the DVS image
plane. A line is represented by 8 events (squares). When a new
event (star) arrives, we check whether it is close to any line. If so,
we replace the closest event with the new one. Otherwise, we treat
it as an outlier and reject it. In this illustration, the event marked
with the red triangle is replaced by the new event (represented by
the star).

(a) Replacing oldest pixels (b) Replacing closest pixels

Fig. 6: Pixel-level schematics showing the problem of replacing the
oldest event of a line during rotational motion. The true line (black
dashed) is rotated (black solid). The line (red) is estimated by the
events marked in gray. (a) Notice how replacing the oldest event
shifts all events of a line towards one end, thus, corrupting the line
estimate. (b) Instead, replacing the closest pixels does not suffer
from this issue.

as an outlier (i.e., the event was either generated by another

object or by sensor noise) and reject it.

We represent each line with N past events. A new event

replaces the closest one, as illustrated in Figure 5. Note that

always replacing the oldest event would eventually corrupt

the line estimate as illustrated in Figure 6. The choice of N is

a tradeoff between latency and accuracy. While using many

points would result in smoother trajectories, higher latency

would be introduced. We found that N = 8 is good tradeoff

for our setup.

C. Pose estimation

We update the pose by minimizing the sum of squared

distances between the reprojection of each line and the events

belonging to it, that is

P ∗ = argmin
P

4
∑

l=1

N
∑

i=1

‖d (π(Ll, P), el,i) ‖
2, (1)

−1
−0.5

0
0.5

1

−1

0

1
0

1

2

x [m]

y [m]

z
[m

]

Fig. 7: Visualization of the pattern (black square) and the circular
trajectory of the virtual camera.

(a) Calibration (b) Rendered scene

Fig. 8: Setup to simulate artificial scenes with ground truth. (a) A
regular pattern is used to estimate the perspective transform between
the DVS and the screen (b) The scene is rendered from a virtual
camera that follows a given trajectory.

where Ll denotes a line belonging to the pattern, π(·, ·)
projects a line onto the image plane, el,i denotes an event i
belonging to line l, and d(·, ·) returns the distance between

the point and the line. The lines are updated with the new

pose estimate P ∗ by projecting the pattern onto the image

plane.

V. DVS SIMULATION

To assess the quality of our pose estimation algorithm, we

need datasets with ground truth. To do this, we generated

virtual camera views on a computer screen by simulating

trajectories of a camera moving in front of a pattern, as

depicted in Figure 7. Instead of simulating a DVS output

(which is not trivial given the sophisticated digital circuitry

of a DVS), we placed a real DVS in front the screen and

recorded the generated artificial views (Figure 8). Having

the DVS in the loop has the advantage that the sensor noise

levels are real.

We denote the world frame of the artificial scene with a

subscript W , the virtual camera frame with V , the computer

screen frame with S, and the DVS frame with D. A world

point XW is mapped onto the virtual camera through a

2764

perspective transformation:

XV = KV (RVWXW + TVW) . (2)

Since the output of the virtual camera is independent of the

screen size, a scale factor α is introduced,

XS = KSXV =

α 0 0
0 α 0
0 0 1

XV . (3)

Because the screen and the DVS are not aligned, screen

points are also mapped through a perspective transformation:

XD = KD (RDSXS + TDS) . (4)

Substituting (2) and (3) into (4) gives

XD = KD (RDSKSKV (RVWXW + TVW) + TDS) , (5)

where the virtual camera trajectory with respect to the world

frame PVW (t) = [RVW (t)|TVW (t)] is a continuous function

of time t.
We estimated the pose of the DVS with respect to the

screen automatically before each recording, using a blinking

pattern as described in Section III.

The scene was rendered in real-time using OpenGL.5 For

each event from the DVS, we evaluated the virtual camera

pose [RVW (t)|TVW (t)] at the specific event time. Thus, we

know the ground truth DVS pose for each event.

VI. EXPERIMENTAL EVALUATION

We evaluated our algorithm both with simulated data and

real data from a quadrotor performing flips. In the evaluation,

we used the angle of the angle-axis representation as an error

metric for orientation.

A. Simulated Data

We used the simulation setup described in Section V. We

simulated a planar scene containing a single black square on

the x− y plane centered in the origin of the world frame on

a white background, as depicted in Figure 7. We generated a

circular trajectory at constant altitude z and commanded the

angular velocity of the virtual camera such that its optical

axis always intersected the origin of the world frame, that

is:

PVW (t) =

c(α) s(α) 0 0
−s(α)c(γ) c(α)c(γ) s(γ) 0
s(α)s(γ) −c(α)s(γ) c(γ) z

 ,

where s(·) = sin(·), c(·) = cos(·), α(t) = 2πt/T , γ = 200◦,

z = 1.7m, and T = 2 s is the time it takes to complete a

full circle. The square’s side length is 0.9m.

Figure 9 shows the error of our pose estimation algorithm.

The mean position error is 1.47 cm with a standard deviation

of 0.72 cm. The mean orientation error is 2.28◦ with a

standard deviation of 1.08◦.

5http://www.opengl.org/

−0.1
−0.05

0
0.05
0.1

y
[m

]

−0.1
−0.05

0
0.05
0.1

x
[m

]

1.65
1.7
1.75
1.8
1.85

z
[m

]

0
100
200
300
400

y
aw

[d
eg

]
−20

0

20

p
it

ch
[d

eg
]

0 0.5 1 1.5 2

160

180

200

time [s]

ro
ll

[d
eg

]

Fig. 9: Estimated trajectory (red) compared to ground truth (blue) on
a simulated dataset. The trajectory is the one depicted in Figure 7,
which was generated as described in Section V.

B. Real Data

1) Experimental Setup: We used a DVS with a 2.8mm

S-mount lens. We calibrated it as described in Section III

and found its focal length to be 69 pixels. We mounted the

DVS on a Parrot AR.Drone 2.0 equipped with an Odroid

U2 onboard computer (Figure 10). The event stream was

recorded onboard and streamed to a laptop over WiFi to

visualize data in real-time. In addition to the DVS output, we

also recorded the video of the front-looking standard CMOS

camera.

As a pattern, we used a black square (0.9×0.9m) attached

to a white wall, the origin of the world frame coinciding with

the center of the pattern, x being oriented perpendicularly to

the wall and z parallel to the gravity vector.

Ground truth was captured using an OptiTrack motion

capture system. Markers were placed all around the body

of the quadrotor to ensure tracking during flips.

2) Evaluation: We controlled the quadrotor to perform

multiple flips around the principal axis of the camera

(roughly aligned with the x-axis of the world frame). The

peak angular speed (i.e., roll rate) during such high-speed

maneuvers was measured to be 1,200 ◦/s (cf. Figure 15).

2765

Fig. 10: Experimental setup on an AR.Drone. 1) The DVS (top)
and a standard CMOS camera (bottom), 2) Odroid U2 computer for
recording and streaming the DVS data over WiFi, and 3) markers
to collect ground truth with a motion capture system.

0 20 40 60 80 100 120 140 160
0

1

2

3
·105

time [s]

ev
en

ts
/0

.5
s

Fig. 11: Number of events as a function of time (we counted events
in a time interval of 0.5 s) during an experimental session containing
15 flips. This plot clearly shows that during flips the density of
events is much larger than during near-hover flights. During the first
and last 5 s, the quadrotor is resting on the floor; thus, virtually no
events are generated.

While this results in severe motion blur effects for the

standard CMOS camera (cf. Figure 13), for the DVS we

can still see very sharp lines if we integrate the events

for an appropriate period of time (cf. Figure 12). However,

our algorithm does not rely on such integrated images,

but updates the 6-DOF pose of the robot by processing

each event individually as soon as it arrives. The estimated

trajectory for three consecutive flips with ground truth is

shown in Figure 14. The mean position error is 10.8 cm with

a standard deviation of 7.8 cm. The mean orientation error

is 5.1◦ with a standard deviation of 2.4◦.

During our experimental flight session, we recorded data

for a total of 25 flips. Our algorithm could track the DVS

trajectory for 24 of them (96%). In only one case, tracking

was lost during the flip. Figure 11 shows the number of

events as a function of the time during the first 15 flips.

As observed, the density of events generated during flips is

much larger than during near-hover flights.

3) Comparison with Theoretical Limit: Since our pose

estimate is very noisy, we are interested to determine the

accuracy of the pose estimate that one could achieve with

an “ideal” CMOS camera (not a DVS) characterized by

infinite frame rate and no motion blur, but having the same

0 1 2 3 4 5

−1,000

−500

0

time [s]

ro
ll

ra
te

[d
eg

/s
]

Fig. 15: Roll rate of the trajectory shown in Figure 14. The
maximum roll rate is 1,200 ◦/s during a flip.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Standard deviation of Gaussian noise [pixels]

P
o

si
ti

o
n

er
ro

r
[m

]

(a) Position error

0 0.2 0.4 0.6 0.8 1
0
2
4
6
8

10

Standard deviation of Gaussian noise [pixels]

O
ri

en
ta

ti
o

n
er

ro
r

[d
eg

]

(b) Orientation error

Fig. 16: Plots of mean pose error (solid) ± one standard deviation
(dashed) in world coordinates for an ideal sensor with Gaussian
noise in the image plane. The configuration is close to the exper-
imental setup presented in Section VI-B. The mean position and
orientation error of the quadrotor flip experiment is marked in red
and corresponds to 0.63 and 0.86 pixels, respectively.

resolution as the DVS (i.e., 128× 128 pixels). This problem

is equivalent to characterize the pose estimation error of a

CMOS camera in static settings in a configuration close to

the real experimental setup (i.e., same intrinsic parameters,

same pattern size, and same relative position between camera

and pattern). Clearly, the answer depends on the accuracy

(pixel or sub-pixel) of the edge detector. We addressed this

by means of Monte-Carlo simulation, by adding Gaussian

noise with different variances to all image points and by

optimizing the pose by minimizing the reprojection error.

We ran this simulation 1,000 times for each variance value.

The resulting error in position and orientation is shown

in Figure 16. The position and orientation accuracies of

the DVS-based pose estimator described in this paper are

indicated with horizontal red lines, corresponding to a mean

position error of 10.8 cm and a mean orientation error of

5.1◦ respectively. As observed, these accuracies corresponds

to a standard deviation of the error, which is in both cases

smaller than 0.9 pixels. Since this can be considered as

2766

(a) ∆T = 33ms (b) ∆T = 15ms (c) ∆T = 5ms (d) ∆T = 1ms (e) ∆T = 0.5ms (f) ∆T = 0.1ms

Fig. 12: Integrated events of the DVS over different time intervals. Blue and red indicate the polarity of the events.

Fig. 13: Standard CMOS camera frames at 30Hz during a flip (from left to right). Motion blur is clearly visible in all frames except the
first and last one. The violet traces correspond to the LED lights of the OptiTrack cameras.

reasonably precise, we claim that the error of our DVS-

based pose estimation is mainly caused by the poor resolution

of the DVS (i.e., 128 × 128 pixels) and the results would

significantly improve with a higher-resolution DVS.

VII. CONCLUSION

In the last few years, we have witnessed impressive

demonstrations of aggressive quadrotor flights and acrobatics

using motion capture systems. Flight maneuvers using on-

board sensors are still slow. At the current state, the agility

of a robot is limited by the latency of its sensing pipeline.

To obtain more agile robots, we need to use faster sensors.

A Dynamic Vision Sensor (DVS) only transmits pixel-level

brightness changes at the time they occur with microsecond

resolution, thus, offering the possibility to create a percep-

tion pipeline whose latency is negligible compared to the

dynamics of the robot. This technology is the most promising

candidate for enabling highly aggressive autonomous maneu-

vers with flying robots. The current DVS prototypes suffer

from a relatively poor resolution, which is currently being

worked upon. In this paper, we presented the first onboard

perception system for 6-DOF localization during high-speed

maneuvers using a DVS. We demonstrated robust motion

tracking during quadrotor flips with angular speeds up to

1,200 ◦/s. Future work will involve a generalization of the

approach to arbitrary environments and the use of the DVS

in closed-loop control.

ACKNOWLEDGEMENT

We gratefully acknowledge the contribution of Flavio

Fontana and Matthias Faessler for helping with the quadrotor

experiments. We would also like to thank Tobi Delbruck

and Vicente Villeneuva for helping us making the DVS

lightweight enough for our experiments.

REFERENCES

[1] D. Mellinger, N. Michael, and V. Kumar, “Trajectory Generation and
Control for Precise Aggressive Maneuvers with Quadrotors,” Intl. J.

of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012.

[2] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea, “A Simple
Learning Strategy for High-Speed Quadrocopter Multi-Flips,” in IEEE

Intl. Conf. on Robotics and Automation (ICRA), Anchorage, AK, May
2010.

[3] S. Shen, N. Michael, and V. Kumar, “Autonomous Multi-floor Indoor
Navigation with a Computationally Constrained MAV,” in IEEE Intl.

Conf. on Robotics and Automation (ICRA), Shanghai, China, May
2011.

[4] S. Grzonka, G. Grisetti, and W. Burgard, “A Fully Autonomous Indoor
Quadrotor,” IEEE Trans. Robotics, vol. 28, no. 1, pp. 90–100, 2012.

[5] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-Based
State Estimation and Trajectory Control Towards High-Speed Flight
with a Quadrotor,” in Robotics: Science and Systems (RSS), Berlin,
Germany, June 2013.

[6] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip,
M. Chli, and R. Siegwart, “Monocular Vision for Long-term Micro
Aerial Vehicle State Estimation: A Compendium,” J. of Field Robotics,
vol. 30, no. 5, pp. 803–831, 2013.

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 dB 15
µs latency asynchronous temporal contrast vision sensor,” IEEE J. of

Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[8] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. Douglas, and
T. Delbruck, “A Pencil Balancing Robot using a Pair of AER Dynamic
Vision Sensors,” in Intl. Conf. on Circuits and Systems (ISCAS), Taipei,
Taiwan, May 2009.

[9] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to
Detect Lines and Curves in Pictures,” Commun. ACM, vol. 15, no. 1,
pp. 11–15, 1972.

[10] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan,
“Asynchronous frameless event-based optical flow,” Neural Networks,
vol. 27, pp. 32–37, 2012.

[11] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-Based Visual Flow,” IEEE Trans. Neural Networks and Learn-

ing Systems, vol. 25, no. 2, pp. 407–417, 2014.

[12] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Regnier, “Asyn-
chronous Event-Based Visual Shape Tracking for Stable Haptic Feed-
back in Microrobotics,” IEEE Trans. Robotics, vol. 28, pp. 1081–1089,
2012.

2767

−1

−0.5

0

0.5

1

y
[m

]

−2

−1.5

−1

−0.5

0

x
[m

]

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−1

−0.5

0

0.5

1

z
[m

]

−40

−30

−20

−10

0

y
aw

[d
eg

]

−20

−10

0

10

20

p
it

ch
[d

eg
]

0 1 2 3 4 5
−200

−100

0

100

200

time [s]

ro
ll

[d
eg

]

0 1 2 3 4 5
−20

−10

0

10

20

time [s]

−20

−10

0

10

20

−20

−10

0

10

20

Fig. 14: Estimated trajectory (red) with ground truth (blue) and errors (black) for three consecutive flips with a quadrotor. Notice how
the error gets smaller towards the end of the trajectory. This happens because the quadrotor moves closer to the pattern, which in turn
appears larger in the DVS. Also notice how the density of pose estimates gets higher during flips. This occurs because the pose is updated
whenever a new event arrives and the number of events increases during faster relative motion (cf. Figure 11).

[13] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza,
“Low-latency localization by Active LED Markers tracking using a
Dynamic Vision Sensor,” in IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), Tokyo, Japan, Nov. 2013.
[14] D. Weikersdorfer and J. Conradt, “Event-based Particle Filtering

for Robot Self-Localization,” in IEEE Intl. Conf. on Robotics and

Biomimetics (ROBIO), Guangzhou, China, Dec. 2012.
[15] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous Local-

ization and Mapping for event-based Vision Systems,” in Intl. Conf.

on Computer Vision Systems (ICVS), St. Petersburg, Russia, July 2013.
[16] A. Censi and D. Scaramuzza, “Low-latency event-based visual odom-

etry,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), Hong
Kong, China, June 2014.

[17] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current

Opinion in Neurobiology, vol. 20, no. 3, pp. 288–295, 2010.
[18] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed.

New York, NY: Springer-Verlag New York, Inc., 2010.
[19] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE

Trans. Pattern Anal. Machine Intell., vol. 22, no. 11, pp. 1330–1334,
Nov. 2000.

[20] Y. Bouguet. Camera Calibration Toolbox for Matlab. [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib doc/

[21] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge University Press, 2004.

2768

