
Requirements
Engineering

Research
GroupDepartment of Informatics

Requirements Engineering I

Martin Glinz

Department of Informatics, University of Zurich
www.ifi.uzh.ch/~glinz

© 2013-2020 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material
for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties.

Requirements Engineering I – Part I: Fundamentals © 2016 Martin Glinz 2

Part I: Fundamentals

Part II: Requirements Engineering Practices

Part III: Enablers and Stumbling Blocks

Conclusions

References

1 Introduction

A communication problem

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 3

What the
customer
wanted

Need

What the
analyst
understood

Analysis

What the
architect
designed

Design Deployed
System

What the
programmers
implemented

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 4

We need to know the requirements.

DEFINITION. Requirement –
1. A need perceived by a stakeholder.
2. A capability or property that a system shall have.
3. A documented representation of a need, capability or

property.

DEFINITION. Requirements Specification – A systematically
represented collection of requirements, typically for a system
or component, that satisfies given criteria.

[Glinz 2020]

Requirements come in different flavors

System requirements – How a system shall work and behave

Stakeholder requirements – Stakeholders’ desires and needs

User requirements – A subset of the stakeholder
requirements

Domain requirements – Required domain properties of a
socio-technical or cyber-physical system

Business requirements – Focus on business goals, objectives
and needs of an organization

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 5

à Chapter 5

Requirements specification: terminology

In some situations we distinguish between a customer (or
stakeholder) requirements specification (typically written by
the customer) and a system requirements specification or
software requirements specification (written by the supplier).

German terminology:
m Customer/stakeholder requirements specification:

Lastenheft
m System/software requirements specification: Pflichtenheft

Requirements specification may also denote the activity of
specifying requirements.
Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 6

Beyond requirements specifications

Agile projects frequently do not produce a comprehensive
requirements specification

Instead, they express requirements in

m user stories, issues, storyboards, etc.

m acceptance criteria associated with user stories

m a vision document

m implicit shared understanding among the people involved

Requirements Engineering I – Part I: Fundamentals © 2018 Martin Glinz 7

Terminology: What is a system?

DEFINITION. System – 1. A principle for ordering and
structuring. 2. A coherent, delimitable set of elements that –
by coordinated action – achieve some purpose.

m A system may comprise other systems
m The purpose achieved by a system may be delivered by

l deploying it at the place(s) where it is used
l selling/providing it as a product to its users
l having providers who offer the system’s capabilities as

services to users

m Requirements Engineering is primarily concerned with
systems in which software plays a major role

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 8

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 9

A sample problem

A ski resort operates several chairlifts. Skiers buy RFID-
equipped day access cards. Access to the lifts is controlled
by RFID-enabled turnstiles. Whenever a turnstile senses a
valid access card, it unlocks the turnstile for one turn, so
that the skier can pass.

Build a software-controlled
system for managing the access
of skiers to the chairlifts.

The task

When building such a system...

m How do we determine the requirements?

m How can we analyze and document these requirements?

m How do we make sure that we’ve got the right
requirements?

m How do we manage and evolve the requirements?

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 10

Requirements Engineering – the classic notion

DEFINITION. Requirements Engineering (RE) [Classic] – The
application of a systematic, disciplined, quantifiable approach
to the specification and management of requirements; that is
the application of engineering to requirements.

Metaphor: upfront engineering

Goal: complete, unambiguous requirements prior to design

Smells: paper, process
Reality check: Does this always work?
Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 11

[Adapted from the definition of Software
Engineering in IEEE 610.12-1990]

Wait a minute – it’s about customers’ needs

DEFINITION. Requirements Engineering [Customer-oriented] –
Understanding and documenting the customers’ desires and
needs.

Metaphor: Customer satisfaction

Goal: Understand the customer

Reality check:
(1) Why not just code what the customer desires and needs?

(2) Who is “the customer”?

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 12

[Glinz 1998, inspired by Gause
and Weinberg (1989)]

Where’s the value?

DEFINITION. Requirements Engineering [Risk-oriented] –
Specifying and managing requirements to minimize the risk of
delivering a system that does not meet the stakeholders’
desires and needs.

Metaphor: Balancing effort and value

Goal: Mitigate risk

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 13

[Glinz 2003]

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 14

Risk-based RE

“We have no time for a complete specification.”
“This is too expensive!”
“We’re agile, so rough stories suffice.”

ê Wrong approach

Right question: “How much RE do we need such that the risk
of deploying the wrong system becomes acceptable?”

Rule:
The effort spent for Requirements Engineering shall be
inversely proportional to the risk that one is willing to take.

The contemporary definition of RE

DEFINITION. Requirements Engineering – The systematic and
disciplined approach to the specification and management of
requirements with the goal of understanding the stakeholders’
desires and needs and minimizing the risk of delivering a
system that does not meet these desires and needs.

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 15

[Glinz (2020); for the definition
of ‘stakeholder’ see Chapter 2]

A note on terminology

m Lots of sources for today’s terminology
l Textbooks and articles about RE
l IEEE 610.12 (1990) – a slightly aged glossary of software

engineering terminology
l IEEE 830-1998 – an outdated, but still cited RE standard
l ISO/IEC/IEEE 29148 (2018) – a new, but still rather unknown

RE standard; provides definitions of selected terms, some of
them being rather uncommon

l ISO/IEC/IEEE ISO/IEC/IEEE 24765 (2017) – compiles
definitions from various other standards

l IREB Glossary [Glinz 2020] – influential through IREB’s
certification activities; used as a terminology basis in this
course

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 16

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 17

Why specify requirements?

m Lower cost
l Reduce error cost
l Reduce rework cost

m Manage risk
l Meet stakeholders’ desires and needs
l Reliable estimates for deadlines

and cost

☞The economic effects of Requirements Engineering are
(almost ever) indirect ones; RE as such just costs!

Supplier makes profit

Customer is satisfied

2 Principles of Requirements Engineering

Nine basic principles
1 Value-orientation: Requirements are a means to an end, not an end in

itself
2 Stakeholders: RE is about satisfying the stakeholders’ desires and needs
3 Shared understanding: Successful systems development is impossible

without a common basis
4 Context: Systems cannot be understood in isolation
5 Problem – Requirement – Solution: An inevitably intertwined triple
6 Validation: Non-validated requirements are useless
7 Evolution: Changing requirements are no accident, but the normal case
8 Innovation: More of the same is not enough
9 Systematic and disciplined work: We can’t do without in RE

Requirements Engineering I – Part I: Fundamentals © 2019 Martin Glinz 18

2.1 Value-orientation

Traditional Requirements Engineering: always write a
complete specification

However...

m Customers typically pay for systems, not for requirements

m Many successful projects don’t have a complete
specification

m Good Requirements Engineering must create value

m Value comes indirectly

Requirements Engineering I – Part I: Fundamentals © 2019 Martin Glinz 19

Requirements Engineering I – Part I: Fundamentals © 2015 Martin Glinz 20

Requirements are a means, not an end

m Requirements shall deliver value

m Value of a requirement:
l The benefit of reducing development risk

(i.e. the risk of not meeting the stakeholders’ desires and
needs)

l minus the cost of specifying the requirement

☞ Adapt the effort put into RE such that the specification
yields optimum value
● Low risk: little RE High risk: full-fledged RE

☞ Assessment of value requires assessment of risk

[Glinz 2008]

Requirements Engineering I – Part I: Fundamentals © 2015 Martin Glinz 21

Assessing risk

m Assess the criticality of
the requirement

m Consider other factors
(next slide)

m Use requirements
triage techniques

Minor Major Critical

Im
pa

ct

Critical:
Deserves
high effort

Uncritical:
Deserves
little effort

Lo
w

 M
ed

iu
m

 H
ig

h

Importance of stakeholder

[Glinz 2008]

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 22

Assessing risk: other factors

m Specification effort

m Distinctiveness

m Shared understanding

m Reference systems

m Length of feedback-cycle

m Kind of customer-supplier relationship

m Certification required

The effort invested into requirements engineering shall be
inversely proportional to the risk that one is willing to take.

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 23

2.2 Stakeholders

Who is “the customer”?

In our sample problem: Just the skiers?

In reality: Many persons in many roles are involved

DEFINITION. Stakeholder – A person or organization who
influences a system’s requirements or who is impacted by
that system.
Note that influence can also be indirect.

[Glinz and Wieringa 2007]
[Macaulay 1993]

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 24

Viewpoints

The same building.
Different views.

[Nuseibeh, Kramer und Finkelstein 2003]

Different viewpoints by different stakeholders must be taken
into account.

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 25

Consensus and variability

The viewpoints and needs of different stakeholders may
conflict

Requirements Engineering implies
l Discovering conflicts and inconsistencies
l Negotiating
l Moderating
l Consensus finding

But: also determine where variability is needed

2.3 Shared understanding

m A basic prerequisite for any successful development of
systems

m Created, fostered and assured in Requirements
Engineering

Requirements Engineering I – Part I: Fundamentals © 2019 Martin Glinz 26

à Chapter 4

2.4 Context

Requirements never come in isolation.

m Requirements specify a system

m The system may be part of another system

m The system is embedded in a domain context

m The scope of a system may exceed the system boundary

Requirements Engineering I – Part I: Fundamentals © 2019 Martin Glinz 27

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 28

Which system?

Some requirements for our sample problem:
For every turnstile, the system shall count the number of skiers
passing through this turnstile.

The system shall provide effective access control to the resort’s
chairlifts.

The system shall operate in a temperature range of -30° C to +30°
C.

The operator shall be able to run the system in three modes: normal
(turnstile unlocked for one turn when a valid card is sensed), locked
(all turnstiles locked), and open (all turnstiles unlocked).

The computer hardware and the devices

The turnstile control software

Everything: equipment, computers, cards, software

The access control software for a chairlift

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 29

Systems of systems

➪Requirements need to be framed in a context

➪Dealing with multi-level requirements is unavoidable

Turnstile control
software

Access control software
Access

card

Turnstile

Control hardware

Chairlift access control

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 30

Context

DEFINITION. Context – 1. In general: The network of thoughts
and meanings needed for understanding phenomena or
utterances. 2. Especially in RE: The part of a system’s
environment being relevant for understanding the system and
its requirements.

World

System

Context
Domain

Context boundary

System boundary

System boundary and context boundary

DEFINITION. System boundary – The boundary between a
system and its surrounding context.
DEFINITION. Context boundary – The boundary between the
context of a system and those parts of the application domain
that are irrelevant for the system and its requirements.

m The system boundary separates the system to be
developed from its environment

m RE needs to determine the system boundary
m Information outside of the context boundary is not

considered
Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 31

Context models

Modeling a system in its context

m Determine the level of specification

m Usually no system internals (➜ system as black box)

m Model actors which interact directly with the system

m Model interaction between the system und its actors

m Model interaction among actors

m Represent result graphically

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 32

A context diagram

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 33

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Skier

Maintainer

Manager

Service
employee

Chairlift access
control

call

set mode

query

statistics

setup

card

pass/block

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 34

➁ satisfies ➀ only if these domain assumptions hold:
❍ An unlock command actually unlocks the turnstile device
❍ When a turnstile is unlocked, a single person passes through it
❍ Nobody passes through a locked turnstile (e.g. by crouching down)

For every turnstile, the system shall count the number of persons
passing through this turnstile.

The turnstile control software shall count the number of ‘unlock for
a single turn’ commands that it issues to the controlled turnstile.

➀ A requirement in the world:

➁ Mapped to a requirement for the system to be built:

Mapping world phenomena to machine
phenomena: a major RE problem

The world and the machine

Requirements must hold in the world.

But we need them to build machines (aka systems).

Requirements Engineering I – Part I: Fundamentals © 2019 Martin Glinz 35

The requirements problem (according to Jackson):

Given a machine satisfying the specification S and assuming
that the domain properties D hold, the requirements R in the
world must be satisfied: S Ù D R

Properties D
of the domain
In the real world

[Zave and Jackson 1997]
[Gunter et al. 2000]

[Jackson 2005]

A machine with capa-
bilities described by
the specification S

Required behavior R
in a real world domain

Mini-Exercise

Imagine the problem of two traffic lights that regulate traffic at
a road construction site where only a single lane may be used.
The following real-world requirement shall be satisfied:

“Ensure that, at each point in time, traffic flows at most in one
direction in the one-lane region and that the control regime is
both effective (actual throughput in both directions) and fair
(does not favor one direction over the other).”

Determine
l the system requirements that the control system must meet
l which domain properties/assumptions must hold

in order to satisfy the given real-world requirement
Requirements Engineering I – Part I: Fundamentals © 2014 Martin Glinz 36

The role of the system scope

DEFINITION. Scope (of a system development) – The range of
things that can be shaped and designed when developing a
system.

m The scope of a system may comprise parts of its context
If this is the case, (re)-designing the context may lead to
better systems than designing the system to a given context

m Some parts of a system may be given and not changeable

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 37

System
Context

Scope System scope ≠
Everything within the system
boundary!

2.5 Problem – requirement – solution

Having a problem, we need requirements for a system that
solves the problem

Traditional Requirements Engineering: the waterfall
l Start with a complete specification of requirements
l Then proceed to desiging and implementing a solution

m Does not work properly in most cases

m Specification and implementation are inevitably intertwined:
l Hierarchical intertwinement: high-level design decisions

inform lower-level requirements
l Technical feasibility: non-feasible requirements are useless
l Validation: what you see is what you require

Requirements Engineering I – Part I: Fundamentals © 2016 Martin Glinz 38

[Swartout and Balzer 1982]

Requirements Engineering I – Part I: Fundamentals © 2016 Martin Glinz 39

Requirements vs. solution decisions

➪Solution decisions inform lower level requirements

➪Requirements and solutions are inevitably intertwined

The system shall provide effective access
control to the resort’s chairlifts. A requirement

Manual
control

Automatic
control

Potential solution
decisions

Requirements about
selecting and training
people

Requirements about
turnstiles, access cards,
and control software

Lower level
requirements

40

Requirement

Requirement

Requirements vs. solution decisions

Problem: Sonja Müller
has completed her
university studies and
does no longer receive
any money from her
parents. Hence, she is
confronted with the
requirement to secure
her living. She is
currently living in
Avillage and has a job
offer by a company in
Btown. Also, she has a
rich boy friend and she
is the only relative of
an equally rich aunt.

Buy a carBuy a bike Use public
transport

Solution
decisions

Commute from
Avillage to Btown

Get a job in
Avillage

Move to Btown Solution
decisions

Get a job Solution
decisions

Get married Poison the
aunt

RequirementSecure living

Requirements Engineering I – Part I: Fundamentals © 2016 Martin Glinz

41

Typical requirement layers

Using a railway system as an example

I Business: “More people than today shall be transported
using the existing tracks.”

I System: “The minimal distance between two trains shall
always be greater than the current maximum braking
distance of the successive train.”

I Software: “The current maximum braking distance shall be
computed every 100 ms.”

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz

Requirements Engineering I – Part I: Fundamentals © 2018 Martin Glinz 42

WHAT vs. HOW in Requirements Engineering

A traditional belief:

WHAT = Requirements, HOW = Technical Design

But: is this a requirement or a technical design decision?
“The system prints a list of ticket purchases for a given day. Every
row of this report lists(in this order) date and time of sale, ticket
type, ticket price, and payment method. Every page has a footer
with current date and page number.”

➜ WHAT vs. HOW is context-dependent and doesn’t provide a
useful distinction.

Requirements Engineering I – Part I: Fundamentals © 2018 Martin Glinz 43

Distinguishing requirements and solutions

m Documenting requirements and technical solutions
separately makes sense

m Distinguishing by WHAT vs. HOW doesn’t work

m Distinguish operationally:
l If a statement is owned by stakeholders (i.e., changing it

requires stakeholder approval), it’s a requirement
l If a statement is owned by the supplier (i.e. the supplier may

change it freely), it’s part of the technical solution

2.6 Validation

Every requirement
needs to be validated

Requirements Engineering I – Part I: Fundamentals © 2018 Martin Glinz 44

Stakeholders’
desires and needs

Requirements
specification

Deployed system

The ultimate question:
Does the deployed system actually
match the stakeholders’ desires
and needs?

The risk-reduction question:
Do the documented requirements
match the stakeholders’ desires
and needs?

à Chapter 11

Requirements Engineering I – Part I: Fundamentals © 2018 Martin Glinz 45

2.7 Evolution

The world evolves.

So do requirements.

The problem:
Keeping requirements stable...
... while permitting requirements to change

Potential solutions
l Very short development cycles (1-6 weeks)
l Explicit requirements change management

Image © C. Sommer /EKHN

à Chapter 13

Requirements Engineering I – Part I: Fundamentals © 2018 Martin Glinz 46

2.8 Innovation

“Give the customers exactly what they want.”

“We know perfectly well what is good for the customer.”

“Our new system does all the rubbish we did manually before.
But it’s much faster now.”

Image © AppleMaybe the worst you can do onto them.

Your customers will love you for your attitude.

Don’t just automate – satisfying stakeholders is not enough.
More of the same will not excite anybody.
Strive for making stakeholders happy.
Innovative requirements are the key.

Wow, what a progress.

à Chapter 12

2.9 Systematic and disciplined work

We can’t do without.

Requirements need to be elicited, documented, validated and
managed systematically

l using a suitable process
l with suitable practices

Also applies for agile development, just with a different process
and maybe different practices

Systematics does not mean “One size fits all”
l Adapt your processes and practices to the problem
l No unreflected reuse of RE techniques from previous projects

Requirements Engineering I – Part I: Fundamentals © 2016 Martin Glinz 47

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 48

3 Classifying requirements

The operator shall be able to run the system in three modes: normal
(turnstile unlocked for one turn when a valid card is sensed), locked
(all turnstiles locked), and open (all turnstiles unlocked).

The turnstile control software shall count the number of ‘unlock for
a single turn’ commands that it issues to the controlled turnstile.

A function

A behavior

The system shall be deployed at most five months after signing
the contract. A project requirement

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 49

The system must comply with the privacy law of the country
where the resort is located.

The reaction time from sensing a valid card to issuing an
‘unlock for a single turn’ command must be shorter than 0.5 s.

The system shall be highly available.

A legal constraint

A performance attribute

A quality attribute

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 50

Requirements have a concern

Was this requirement stated because we need
to specify ...
... some of the system’s behavior, data, input, or
reaction to input stimuli – regardless of the way
this is done?
... restrictions about timing, processing or
reaction speed, data volume or throughput?
... a specific quality that the system or a
component shall have?
... any other restriction about what the system
shall do, how it shall do it, or any prescribed
solution or solution element?

functional
requirement

performance
requirement
specific quality
requirement
constraint

Question Kind of
requirement

Ap
pl

ic
at

io
n

or
de

r

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 51

Classification according to kind
Requirement

Project
requirement

Process
requirement

System
requirement

Functional
requirement

Quality requirement (Attribute) Constraint

Performance
requirement

Specific quality
requirement

Functionality
and
behavior:
Functions
Data
Stimuli
Reactions
Behavior

Time and
space bounds:
Timing
Speed
Volume
Throughput

“-ilities”:
Reliability
Usability
Security
Availability
Portability
Maintainability
...

Physical
Legal
Cultural
Environmental
Design&Im-
plementation
Interface
...

[Glinz 2007]

Also called non-functional
requirement

52

Beyond kind: A faceted classification

Representation
• Operational
• Quantitative
• Qualitative
• Declarative

Kind
• Function, Data,

Behavior
• Performance
• Specific Quality
• Constraint

Satisfaction
• Hard
• Soft

Role
• Prescriptive
• Normative
• Assumptive

Requirement

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz

[Glinz 2005b, 2007]

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 53

Classification according to representation

The system shall be highly available.

During the operating hours of the chair lift, the system must be
available for 99.99% of the time.

Qualitative

Quantitative

The system must comply with the privacy law of the country
where the resort is located. Declarative

The turnstile control software shall count the number of ‘unlock
for a single turn’ commands that it issues to the controlled
turnstile. Operational

Representation informs validation

Representation Validation technique(s)

Operational Test, Review, Formal verification

Quantitative Measurement
Qualitative No direct validation technique. Use

• Stakeholder judgment
• Prototypes
• Indirect validation by derived metrics

Declarative (informally) Review
Declarative (formally) Review, Model checking

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 54

55

Classification according to satisfaction

� Hard – The requirement is satisfied totally or not at all

� Soft – There is a range of satisfaction

1

0

value

cost

1

0

value

cost

Hard Soft

planned

min
acceptable

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz

Binary acceptance criterion Range of acceptable values

56

Classification according to role

Prescriptive: “Classic” requirement pertaining the system-to-
be
“The sensor value shall be read every 100 ms.”

Normative: A norm in the system environment that is relevant
for the system-to-be
“The social security number uniquely identifies a patient.”

Assumptive: Required behavior of an actor that interacts with
the system-to-be
“The operator shall acknowledge every alarm message.”

à Makes norms and assumptions explicit

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz

4 Shared understanding

Two disturbing observations:

m Specifying everything explicitly is impossible and infeasible

m Explicitly specified requirements may be misunderstood

àRequirements Engineering has to deal with the problem of
shared understanding
l How do we establish shared understanding?
l How can we rely on shared understanding?

Requirements Engineering I – Part I: Fundamentals © 2020 Martin Glinz 57

[Glinz and Fricker 2015]

Shared understanding: the problem

m Explicit / implicit
m True / false
m Relevant / irrelevant
m “Dark”

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 58

Alice Bart

We need a
swing for the
kids in the
garden.

Forms of shared understanding

Requirements Engineering I – Part I: Fundamentals © 2015 Martin Glinz 59

[Glinz and Fricker 2015]

Implicit Explicit

True shared understanding
False shared understanding!
(misunderstandings exist)

Context boundary:!
separates relevant from !
irrrelevant information

True implicit shared!
understanding of considered,!
but irrelevant information

Explicitly specified and truly!
understood, but irrelevant

Explicitly specified and!
misunderstood and not !
relevant

False implicit shared!
understanding of considered,!
but irrelevant information Shared understanding !

boundary

Relevant, but not!
noticed by anybody!
(“Dark” information)

Dependable implicit!
shared understanding!
of relevant information

Explicitly specified and!
truly understood and!
relevant information

Explicitly specified!
and misunderstood!
and relevant

False implicit shared!
understanding of!
relevant information

Explicit shared!
understanding (ESU)

Implicit shared!
understanding (ISU)

Relevant
information

Rephrasing the problem

Achieve successful software development by:

(P1) Achieving shared understanding by explicit
specifications as far as needed,

(P2) Relying on implicit shared understanding of relevant
information as far as possible,

(P3) Determining the optimal amount of explicit
specifications, i.e., striking a proper balance between
the cost and benefit of explicit specifications.

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 60

Note that P1, P2 and P3 are not orthogonal

In fact a value problem

How can we achieve specifications that create optimal value?

Value means

m The benefit of an explicit specification
Bringing down the probability for developing a system that
doesn’t satisfy its stakeholders’ expectations and needs to an
acceptable level

minus

m The cost of writing, reading and maintaining this
specification

Requirements Engineering I – Part I: Fundamentals © 2014 Martin Glinz 61

(cf. Principle 4 in Chapter 2)

Shared understanding: Enablers and obstacles

+ Domain knowledge
+ Previous joint work or collaboration
+ Existence of reference systems
+ Shared culture and values
+ Mutual trust
+/– Contractual situation
+/– Normal vs. radical design
– Geographic distance
– Outsourcing
– Regulatory constraints
– Large and/or diverse teams
– Fluctuation
Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 62

Achieving and relying on shared understanding

m Building shared understanding: The essence of
requirements elicitation (cf. Chapter 7)

m Assessing shared understanding
l Validate all explicitly specified requirements
l Test (non-specified) implicit shared understanding

m Reducing the impact of false shared understanding
l Short feedback cycles
l Build and assess shared understanding early
l Specify and validate high risk requirements explicitly

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 63

Mini-Exercise

Consider the chairlift access control case study.

(a) How can you make sure that the following explicit
requirement is not misunderstood:
“The ticketing system shall provide discounted tickets
which are for sale only to guests staying in one of the
resort’s hotels and are valid from the first to the last day
of the guest’s stay.”

(b) We have used the term “skier” for denoting an important
stakeholder role.
How can we test whether or not there is true implicit
shared understanding among all people involved about
what a “skier” is?

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 64

