
Aggressive Quadrotor Flight through Narrow Gaps
with Onboard Sensing and Computing

Davide Falanga, Elias Mueggler, Matthias Faessler and Davide Scaramuzza

Abstract— In this paper, we address one of the main chal-
lenges towards autonomous quadrotor flight in complex envi-
ronments, which is flight through narrow gaps. We present a
method that allows a quadrotor to autonomously and safely pass
through a narrow, inclined gap using only its onboard visual-
inertial sensors and computer. Previous works have addressed
quadrotor flight through gaps using external motion-capture
systems for state estimation. Instead, we estimate the state
by fusing gap detection from a single onboard camera with
an IMU. Our method generates a trajectory that considers
geometric, dynamic, and perception constraints: during the
approach maneuver, the quadrotor always faces the gap to allow
state estimation, while respecting the vehicle dynamics; during
the traverse through the gap, the distance of the quadrotor
to the edges of the gap is maximized. Furthermore, we replan
the trajectory during its execution to cope with the varying
uncertainty of the state estimate. We successfully evaluate and
demonstrate the proposed approach in many real experiments,
achieving a success rate of 80% and gap orientations up to
45◦. To the best of our knowledge, this is the first work that
addresses and successfully reports aggressive flight through
narrow gaps using only onboard sensing and computing.

SUPPLEMENTARY MATERIAL

Video of the experiments:
https://www.youtube.com/watch?v=meSItatXQ7M

I. INTRODUCTION

Recent work has shown that micro quadrotors are ex-
tremely agile and versatile vehicles, able to execute very
complex maneuvers, such as ball catching [1], inverted
flight [2], perching on inclined surfaces, and passage through
narrow gaps [3]. These demonstrations highlight that one day
quadrotors could be used in search and rescue applications,
such as in the aftermath of an earthquake, to navigate through
buildings, by entering and exiting through narrow gaps, and
to quickly localize victims.

In this paper, we address one of the main challenges
towards autonomous quadrotor flight in complex environ-
ments, which is flight through narrow gaps. What makes
this problem challenging is that the gap is very small,
such that precise trajectory-following is required, and can
be oriented arbitrarily, such that the quadrotor cannot fly
through it in near-hover conditions. This makes it necessary
to execute an aggressive trajectory (i.e., with high velocity
and angular accelerations) in order to align the vehicle to the
gap orientation (cf. Fig. 1).

Previous works on aggressive flight through narrow gaps
have focused solely on the control and planning problem and

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland—http://rpg.ifi.uzh.ch.

(a) t = 0.0

(b) t = 0.2

(c) t = 0.4

(d) View from the onboard camera

Fig. 1: Sequence of our quadrotor passing through a narrow,
45◦-inclined gap. Our state estimation fuses gap detection
from a single onboard forward-facing camera with an IMU.
All planning, sensing, control run fully onboard on a smart-
phone computer.

therefore used motion-capture systems for state estimation
and external computing. Conversely, we focus on using
only onboard sensors and computing. More specifically, we
address the case where state estimation is done via gap
detection through a single, forward-facing camera and show
that this raises an interesting problem of coupled perception

ar
X

iv
:s

ub
m

it/
17

41
71

7 
 [

cs
.R

O
] 

 3
 D

ec
 2

01
6

https://www.youtube.com/watch?v=meSItatXQ7M
http://rpg.ifi.uzh.ch


and planning: for the robot to localize with respect to the gap,
a trajectory should be selected, which guarantees that the
quadrotor always faces the gap (perception constraint) and
should be replanned multiple times during its execution to
cope with the varying uncertainty of the state estimate. Fur-
thermore, during the traverse, the quadrotor should maximize
the distance from the edges of the gap (geometric constraint)
to avoid collisions and, at the same time, it should be able
to do so without relying on any visual feedback (when the
robot is very close to the gap, this exits from the camera
field of view). Finally, the trajectory should be feasible
with respect to the dynamic constraints of the vehicle. Our
proposed trajectory generation approach is independent of
the gap-detection algorithm being used; thus, to simplify the
perception task, we will use a gap with a simple black-and-
white rectangular pattern (cf. Fig. 1) for the evaluation and
demonstration.

A. Related Work

Several previous works have addressed the problem of
aggressive quadrotor flight through narrow gaps. A solution
for trajectory planning and control for aggressive quadrotor
flight was presented in [3]. The authors demonstrated their
results with aggressive flight through a narrow gap, and by
perching on inclined surfaces. The quadrotor state was ob-
tained using a motion-capture system, adding infrastructure
constraints that are not feasible for real-world environments.
Their method was composed of a sequence of controllers
and a set of desired states that define the task. Transitions
between controllers was governed by events (e.g., when
the vehicle reaches a predefined state) or time (a timeout
expires). To fly through a narrow gap, the vehicle started
by hovering in a pre-computed position, flew a straight line
towards a launch point, and then controlled its orientation
to align with the gap. The method was not plug-and-play
since it needed training through iterative learning in order
to refine the launch position and velocity. This was due to the
instantaneous changes in velocity caused by the choice of a
straight line for the approach trajectory. Unlike their method,
we use a technique that computes polynomial trajectories
which are guaranteed to be feasible with respect to the con-
trol inputs. The result is a smooth trajectory, compatible with
the quadrotor dynamic constraints, which makes learning
unnecessary. Indeed, in realistic scenarios, such as search-
and-rescue missions, we cannot afford training but must pass
on the first attempt.

In [4], the same authors introduced a method to compute
trajectories for a quadrotor solving a Quadratic Program,
which minimizes the snap (i.e., the fourth derivative of
position). In their experiments, agile maneuvers, such as
passing through a hula-hoop thrown by hand in the air, were
demonstrated using state estimation from a motion-capture
system.

In [5], a technique that lets a quadrotor pass through a
narrow gap while carrying a cable-suspended payload was
presented and was experimentally validated using a motion-
capture system for state estimation.

In [6], the authors proposed an unconstrained nonlinear
model predictive control algorithm in which trajectory gen-
eration and tracking are treated as a single, unified problem.
The proposed method was validated in a number of exper-
iments, including a rotorcraft passing through an inclined
gap. Like the previous systems, they used a motion-capture
system for state estimation.

All the related works previously mentioned relied on
the accurate state estimates of a motion-capture system.
Additionally, in all these works but [6] trajectory generation
was performed on an external computer. The advantages of a
motion-capture system over onboard vision are that the state
estimate is always available, high frequency, accurate to the
millimeter, and with almost constant noise covariance within
the tracking volume. Conversely, a state estimate from on-
board vision can be intermittent (e.g., due to misdetections);
furthermore, its covariance increases quadratically with the
distance from the scene and is strongly affected by the type
of structure and texture of the scene.

Therefore, to execute a complex aggressive maneuver, like
the one tackled in this paper, while using only onboard
sensing, it becomes necessary to couple perception with
the trajectory generation process. Specifically, the desired
trajectory has to render the gap always visible by the onboard
camera in order to estimate its relative pose.

B. Contributions

Our method differs from previous works in the following
aspects: (i) we rely solely on onboard, visual-inertial sensors
and computing, (ii) we generate a trajectory that facilitates
the perception task, while satisfying geometric and dynamic
constraints, and (iii) we do not require iterative learning,
neither do we need to know a priori the gap position and
orientation. To the best of our knowledge, this is the first
work that addresses and successfully reports aggressive flight
through narrow gaps with state estimation via gap detection
from a single onboard camera and IMU.

The remainder of this paper is organized as follows. Sec-
tion II presents the proposed trajectory-generation algorithm.
Section III describes the state-estimation pipeline. Section IV
presents the experimental results. Section V discusses the
results and provides additional insights about the approach.
Finally, Section VI draws the conclusions.

II. TRAJECTORY PLANNING

We split the trajectory planning into two consecutive
stages. First, we compute a traverse trajectory to pass through
the gap. This trajectory maximizes the distance from the
vehicle to the edges of the gap in order to minimize the
risk of collision. In a second stage, we compute an approach
trajectory in order to fly the quadrotor from its current
hovering position to the desired state that is required to
initiate the traverse trajectory. While both trajectories need to
satisfy dynamic constraints, the approach trajectory also sat-
isfies perception constraints, i.e., it lets the vehicle-mounted
camera always face the gap. This is necessary to enable state
estimation with respect to the gap.



e3 gΠ

Π

e2

pf

p0

e1

pG

x y

z

g

Fig. 2: An inclined gap and the corresponding plane Π.

Π Gap

d

l

p0

pfgΠ

e2

e1

pG

Fig. 3: The traverse trajectory in the plane Π.

A. Traverse Trajectory

During the gap traversal, the quadrotor has to minimize
the risk of collision. We achieve this by forcing the traverse
trajectory to intersect the center of the gap while simulta-
neously lying in a plane orthogonal to the gap (see Fig. 2).
In the following, we derive the traverse trajectory in this
orthogonal plane and then transform it to the 3D space.

Let W be our world frame. The vector pG and the rotation
matrix RG denote the position of the geometric center of the
gap and its orientation with respect to W , respectively. Let Π
be a plane orthogonal to the gap, passing through its center
and parallel to the longest side of the gap (cf. Fig. 2). Let e1

and e2 be the unit vectors spanning such a plane Π, whose
normal unit vector is e3. The e2 axis is orthogonal to the
gap and e1 = e2 × e3.

Intuitively, a trajectory that lies in the plane Π and passes
through the center of the gap, minimizes the risk of impact
with the gap.

To constrain the motion of the vehicle to the plane Π,
it is necessary to compensate the projection of the gravity
vector g onto its normal vector e3. Therefore, a constant
thrust of magnitude 〈g, e3〉 needs to be applied orthogonally
to Π. By doing this, a 2D description of the quadrotor’s
motion in this plane is sufficient. The remaining components

of g in the plane Π are computed as

gΠ = g − 〈g, e3〉 e3. (1)

Since this is a constant acceleration, the motion of the
vehicle along Π is described by the following second order
polynomial equation:

pi(t) = pi(t0) + vi(t0)t+
1

2
gΠ,it

2, (2a)

vi(t) = vi(t0) + gΠ,it, (2b)

where the subscript i = {1, 2} indicates the component along
the ei axis. The quadrotor enters the traverse trajectory at
time t0, t is the current time, and p and v denote its position
and velocity, respectively.

Equation (2) describes a ballistic trajectory. When
gΠ,2 = 0, it is the composition of a uniformly accelerated
and a uniform-velocity motion. In other words, in these cases
the quadrotor moves on a parabola in space.

Let l and d be the distance between pG and the initial
point of the trajectory, p0, along e1 and e2, respectively (cf.
Fig. 3). These two parameters determine the initial position
and velocity in the plane Π, as well as the time tc necessary
to reach pG. The values of d and l are determined through
an optimization problem, as explained later in Sec. II-B.

For a generic orientation RG of the gap, (2) is charac-
terized by a uniformly accelerated motion along both the
axes e1 and e2. Therefore, it is not possible to guarantee
that the distance traveled along the e2 axis before and after
the center of the gap are equal while also guaranteeing that
the initial and final position have the same coordinate along
the e1 axis. For safety reasons, we prefer to constrain the
motion along the e2 axes, i.e., orthogonally to the gap, such
that the distances traveled before and after the gap are equal.

Given the components of the unit vectors e1 and e2 in
the world frame, it is now possible to compute the initial
conditions p0 = p(t0) and v0 = v(t0) in 3D space as
follows:

p0 = pG − le1 − de2, (3a)

v0 =

(
l

tc
− 1

2
gΠ,1tc

)
e1 +

(
d

tc
− 1

2
gΠ,2tc

)
e2, (3b)

where:

tc =

√
−2l

gΠ,1
(4)

is the time necessary to reach the center of the gap once the
traverse trajectory starts.

Note that this solution holds if gΠ,2 ≥ 0 which applies if
e2 is horizontal or pointing downwards in world coordinates.
The case gΠ,2 < 0 leads to similar equations, which we omit
for brevity. The final three-dimensional trajectory then has
the following form:

p(t) = p0 + v0t+
1

2
gΠt

2, (5a)

v(t) = v0 + gΠt, (5b)
a(t) = gΠ. (5c)



This trajectory is inexpensive to compute since it is solved
in closed form. Also, note that during the traverse the gap
is no longer detectable. Nevertheless, since the traverse
trajectory is short and only requires constant control inputs
(a thrust of magnitude 〈g, e3〉 and zero angular velocities),
it is possible to track it accurately enough to not collide with
the gap, even without any visual feedback.

B. Optimization of the Traverse Trajectory

To safely pass through the gap, the quadrotor must reach
the initial position and velocity of the traverse trajectory
described by (3a)-(3b) with an acceleration equal to gΠ at
time t0. An error in these initial conditions is propagated
through time according to (5a)-(5c), and therefore may lead
to a collision. The only viable way to reduce the risk of
impact is to reduce the time duration of the traverse. More
specifically, (4) shows that one can optimize the value of
l to reduce the time of flight of the traverse trajectory. On
the other hand, (3b) and (4) show that reducing l leads to
an increase in the norm of the initial velocity v0. Intuitively
speaking, this is due to the fact that, for a given value of d,
if the time of flight decreases, the velocity along the e2 axis
has to increase to let the vehicle cover the same distance
in a shorter time. The initial velocity also depends on d,
which can be tuned to reduce the velocity at the start of the
traverse. The value of d cannot be chosen arbitrarily small for
two reasons: (i) it is necessary to guarantee a safety margin
between the quadrotor and the gap at the beginning of the
traverse; (ii) the gap might not be visible during the final
part of the approach trajectory. For this reason, we compute
the values of the traverse trajectory parameters solving the
following optimization problem:

min
d,l

tc s.t. ‖v0‖ ≤ v0,max, d ≥ dmin, (6)

where v0,max and dmin are the maximum velocity allowed
at the start of the traverse and the minimum value of d,
respectively. We solve the nonlinear optimization problem
described by (6) with Sequential Quadratic Programming
(SQP [7], using to the NLopt library [8]. Thanks to the small
dimensionality of the problem, it can be solved onboard in
few tens of milliseconds.

C. Approach Trajectory

Once the traverse trajectory has been computed, its initial
conditions (namely, position, velocity, and acceleration) are
known. Now we can compute an approach trajectory from
a suitable start position to these initial conditions. Note that
this start position is not the current hover position but also
results from the proposed trajectory generation method. Our
goal in this step is to find a trajectory that not only matches
the initial conditions of the traverse trajectory, but also
enables robust perception and state estimation with respect
to the gap.

Robust state estimation with respect to the gap can only
be achieved by always keeping the gap in the field of view
of a forward-facing camera onboard the quadrotor. Since it
is difficult to incorporate these constraints into the trajectory

generation directly, we first compute trajectory candidates
and then evaluate their suitability for the given perception
task. To do so, we use the approach proposed in [9], where a
fast method to generate feasible trajectories for flying robots
is presented. In that paper, the authors provide both a closed-
form solution for motion primitives that minimize the jerk
and a feasibility check on the collective thrust and angular
velocities. The benefit of using such a method is twofold.
First, it allows us to obtain a wide variety of candidate
trajectories within a very short amount of time by uniformly
sampling the start position and the execution time within
suitable ranges. This way we can quickly evaluate a large set
of candidate trajectories and select the best one according to
the optimality criterion described in Sec. II-E. Each of these
candidate trajectories consists of the quadrotor’s 3D position
and its derivatives. Second, and most importantly, since the
computation and the verification of each trajectory takes on
average a two tenths of millisecond, it is possible to replan
the approach trajectory at each control step, counteracting
the effects of the uncertainty in the pose estimation of the
quadrotor when it is far away from the gap. Each new
approach trajectory is computed using the last state estimate
available. In the following, we describe how we plan a yaw-
angle trajectory for each candidate and how we select the
best candidate to be executed.

D. Yaw-Angle Planning

In [4], the authors proved that the dynamic model of
a quadrotor is differentially flat. Among other things, this
means that the yaw angle of the quadrotor can be controlled
independently of the position and its derivatives. In this
section, we present how to compute the yaw angle such that
a camera mounted on the quadrotor always faces the gap.
Ideally, the camera should be oriented such that the center
of the gap is projected as close as possible to the center of
the image, which yields the maximum robustness for visual
state estimation with respect to the gap against disturbances
on the quadrotor.

To compute the desired yaw angle, we first need to
compute the ideal orientation of the camera. Let pG be the
coordinates of the center of the gap with respect to the world
frame W . Furthermore, let RWC and pC be the extrinsic
parameters of the camera: pC is the camera’s position and
the rotation matrix RWC = (r1, r2, r3) defines the camera
orientation with respect to the world frame, where r3 is the
camera’s optical axis.

For a given trajectory point, we can compute the vector
from the camera to the center of the gap d = pG − pC .
Ideally, we can now align the camera’s optical axis r3

with d but since the trajectory constrains the quadrotor’s
vertical axis zb, we can generally not do this. Therefore,
we minimize the angle between d and r3 by solving the
following constrained optimization problem:

r∗3 = arg max
x
〈x,d〉 s.t. ‖x‖ = 1, 〈x, zb〉 = k, (7)

where the last constraint says that the angle between the
quadrotor’s vertical body axis zb and the camera’s optical



axis is constant and depends on how the camera is mounted
on the vehicle. For example, k = 0 if the camera is
orthogonal to the zb axis as it is the case in our setup with
a forward-facing camera.

Letting d⊥zb = d − 〈d, zb〉 zb be the component of d
perpendicular to zb, the solution of (7) is

r∗3 =
√

1− k2
d⊥zb
‖d⊥zb‖

+ kzb, (8)

which is a vector lying in the plane spanned by d and zb,
and the minimum angle between the ideal and the desired
optical axis is arccos(〈r∗3,d〉 /‖d‖), i.e.,

θmin = arccos
(
(
√

1− k2‖d⊥zb‖+ k 〈d, zb〉) / ‖d‖
)
. (9)

Once r∗3 is known, we can compute the yaw angle such that
the actual camera optical axis r3 is aligned with r∗3.

Observe that in the particular case of a trajectory point
that allows to align r3 with d, we have 〈d, zb〉 = k‖d‖ and
the solution of (7) reduces to r∗3 = d

‖d‖ , with a minimum
angle θmin = arccos(〈r3,d〉 /‖d‖) = arccos(1) = 0.

E. Selection of the Approach Trajectory to Execute

In the previous sections, we described how we compute
a set of candidate trajectories in 3D space and yaw for
approaching the gap. All the candidate trajectories differ
in their start position and their execution time. From all
the computed candidates, we select the one that provides
the most reliable state estimate with respect to the gap.
As a quality criterion for this, we define a cost function J
composed of two terms:
• the Root Mean Square (RMS) θrms of (9) over every

sample along a candidate trajectory;
• the straight-line distance d0 to the gap at the start of the

approach.
More specifically:

J =
θrms

θ̄
+
d0

d̄
, (10)

where θ̄ and d̄ are normalization constants that make it
possible to sum up quantities with different units, and render
the cost function dimensionless. This way, the quadrotor
executes the candidate approach trajectory that keeps the
center of the gap as close as possible to the center of the
image for the entire trajectory, and at the same time prevents
the vehicle from starting too far away from the gap.

F. Recovery after the Gap

Since we localize the quadrotor with respect to the gap
in order to traverse it, the quadrotor is left with no state
estimate after the traversal. Therefore, at this point it has to
recover a vision-based state estimate and then hover in a fixed
position without colliding with the environment. We solve
this problem using the automatic recovery system detailed
in [10], where the authors provide a method to let a quadrotor
stabilize automatically after an aggressive maneuver, e.g.
after a manual throw in the air.

III. STATE ESTIMATION

A. State Estimation from Gap Detection

Our proposed trajectory generation approach is indepen-
dent of the gap-detection algorithm being used; thus, to sim-
plify the perception task, we use a black-and-white rectangu-
lar pattern to detect the gap (cf. Fig. 1). A valid alternative to
cope with real-world gaps would be to use monocular dense-
reconstruction methods, such as REMODE [11]; however,
they require more computing power (GPUs).

We detect the gap in each image from the forward-
facing camera by applying a sequence of steps: first, we
run the Canny edge detector, undistort all edges, and group
close edges [12]; then, we search for quadrangular shapes
and run geometrical consistency checks. Namely, we search
for a quadrangle that contains another one and check the
area ratio of these two quadrangles. Finally, we refine the
locations of the eight corners to sub-pixel accuracy using
line intersection.

Since the metric size of the gap is known, we estimate the
6-DOF pose by solving a Perspective-n-Points (PnP) problem
(where n = 8 in our case). As a verification step, we require
that the reprojection error is small. We then refine the pose by
minimizing also the reprojection error of all edge pixels. To
speed up the computation, we only search the gap in a region
of interest around the last detection. Only when no detection
is found, the entire image is searched. The detector runs with
a frequency of more than 30 Hz onboard the quadrotor.

Finally, we fuse the obtained pose with IMU measure-
ments to provide a full state estimate using the multi-sensor
fusion framework of [13].

IV. EXPERIMENTS

A. Experimental Setup

We tested the proposed framework on a custom-made
quadrotor, assembled from off-the-shelf hardware, 3D
printed parts, and self-designed electronic components (see
Fig. 4). The frame of the vehicle is composed of a 3D printed
center cross and four carbon fiber profiles as arms. Actuation
is guaranteed by four RCTimer MT2830 motors, controlled
by Afro Slim ESC speed controllers. The motors are tilted
by 15◦ to provide three times more yaw-control action, while
only losing 3 % of the collective thrust.

Our quadrotor is equipped with a PX4FMU autopilot that
contains an IMU and a micro controller on which our custom
low-level controller runs. Trajectory planning, state estima-
tion and high-level control run on an Odroid-XU4 single-
board computer. Our algorithms have been implemented in
ROS, running on Ubuntu 14.04. Communication between the
Odroid and the PX4 runs over UART.

Gap-detection is done through a forward-facing fisheye
camera (MatrixVision mvBlueFOX-MLC200w 752 × 480-
pixel monochrome camera with a 180◦ lens), which ensures
that the gap can be tracked until very close. To allow
the robot to execute the recovery maneuver after traversing
the gap, we mounted the same hardware detailed in [10],
which consists of a TeraRanger One distance sensor and a



Fig. 4: The quadrotor platform used in the experiments. (1)
Onboard computer. (2) Forward-facing fisheye camera. (3)
TeraRanger One distance sensor and (4) downward-facing
camera, both used solely during the recovery phase. (5) PX4
autopilot. The motors are tilted by 15◦ to provide three
times more yaw-control action, while only losing 3 % of the
collective thrust.

Fig. 5: Our quadrotor during a traverse.

downward-facing camera. Notice, however, that these are not
used for state estimation before passing the gap but only to
recover and switch into stable hovering after the traverse.

The overall weight of the vehicle is 830 g, while its
dimension are 55× 12 cm (largest length measured between
propeller tips). The dimensions of the rectangular gap are
80× 28 cm. When the vehicle is at the center of the gap,
the tolerances along the long side and short sides are only
12.5 cm, and 8 cm, respectively (cf. Fig. 5). This highlights
that the traverse trajectory must be followed with centimeter
accuracy to avoid a collision.

The dynamic model and the control algorithm used in this
work are the same presented in [10]. We refer the reader to
that for further details.

B. Results

To demonstrate the effectiveness of the proposed method,
we flew our quadrotor through a gap inclined at different
orientations. We consider both rotations around the world x
and y axes, and denote them as roll and pitch, respectively.
Overall, we ran 35 experiments with the roll angle ranging
between 0◦ and 45◦ and the pitch angle between 0◦ and 30◦.
We discuss the choice of these values in Sec. V-C. With the
gap inclined at 45◦, the quadrotor reaches speeds of 3 m/s

Position [m] Velocity [m/s] Orientation [◦]

x y z x y z roll pitch

µ 0.04 0.04 0.03 0.09 0.15 0.08 6.04 8.89

σ 0.03 0.02 0.03 0.08 0.10 0.06 3.70 5.85

TABLE I: Position, velocity and orientation error statistics
at time t = tc. The mean error µ and the standard deviation
σ are computed using ground truth data gathered from 35
experiments conducted with the gap at different orientations.
Success rate of the experiments: 80%.

and angular velocities of 400 ◦/s.
We define an experiment as successful if the quadrotor

passes through the gap without collision and recovers and
locks to a hover position. We achieved a remarkable success
rate of 80%. When failure occurred, we found this to be
caused by a persistent absence of a pose estimate from the
gap detector during the approach trajectory. This led to a
large error in matching the initial conditions of the traverse
trajectory, which resulted in a collision with the frame of the
gap.

Figure 6 shows the estimated position, velocity, and orien-
tation against ground truth for some of the most significant
experiments and for different orientations of the gap (namely:
20◦ roll, 0◦ pitch; 45◦ roll, 0◦ pitch; and 30◦ roll, 30◦ pitch).
Ground truth is recorded from an OptiTrack motion-capture
system. It can be observed that the desired trajectories were
tracked remarkably well. Table I reports the statistics of
the errors when the quadrotor passes through the plane in
which the gap lies (i.e., at t = tc), measured as the distance
between actual and desired state. These statistics include
both the successful and the unsuccessful experiments. The
average of the norm of the position error at the center of
the gap was 0.06 m, with a standard deviation of 0.05 m.
The average of the norm of the velocity error was below
0.19 m/s, with a standard deviation of 0.20 m/s. We refer
the reader to the attached video for further experiments with
different orientations of the gap. Figure 7 shows a picture
of one of the experiments with the executed approach and
traverse trajectories marked in color.

V. DISCUSSION

In this section, we discuss our approach and provide more
insights into our experiments.

A. Replanning

The method we use to compute the approach meneuver [9]
can fail to verify whether a trajectory is feasible or not, as
also highlighted by the authors. This usually happens when
the time duration of the trajectory is short. In such a case, we
skip the replanning and provide the last available approach
trajectory to our controller.

B. Trajectory Computation Times

The trajectory planning approach we adopt for the ap-
proach phase is fast enough to compute and test 40, 000



(a) Gap: 20◦ roll, 0◦ pitch. (b) Gap: 45◦ roll, 0◦ pitch. (c) Gap: 30◦ roll, 30◦ pitch.

x

y

z

tct0

Time [s]

P
os
it
io
n
[m

]

Position

0 0.5 1 1.5 2
−1

−0.5

0

(d) Gap: 20◦ roll, 0◦ pitch.

x

y

z

tct0

Time [s]

P
os
it
io
n
[m

]

Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

−0.5

0

(e) Gap: 45◦ roll, 0◦ pitch.

x

y

z

tct0

Time [s]

P
os
it
io
n
[m

]

Position

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

(f) Gap: 30◦ roll, 30◦ pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

(g) Gap: 20◦ roll, 0◦ pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

0

1

2

3

(h) Gap: 45◦ roll, 0◦ pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

(i) Gap: 30◦ roll, 30◦ pitch.

roll

pitch

yaw

tct0

Time [s]

O
ri
en
ta
ti
on

[d
eg
]

Orientation

0 0.5 1 1.5 2

−20

0

20

40

(j) Gap: 20◦ roll, 0◦ pitch.

roll

pitch

yaw

tct0

Time [s]

O
ri
en
ta
ti
on

[d
eg
]

Orientation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−20

0

20

40

60

(k) Gap: 45◦ roll, 0◦ pitch.

roll

pitch

yaw

tct0

Time [s]

O
ri
en
ta
ti
on

[d
eg
]

Orientation

0 0.5 1 1.5 2 2.5
−40

−20

0

20

40

(l) Gap: 30◦ roll, 30◦ pitch.

Fig. 6: Comparison between ground truth and estimated position (top), velocity (center), and orientation (bottom). Each
column depicts the result of an experiment conducted with a different configuration of the gap: (d), (g) and (j) 20◦ of roll
and 0◦ of pitch; (e), (h) and (k) 45◦ of roll and 0◦ of pitch; (f), (i) and (l) 30◦ of roll and 30◦ of pitch. The approach
trajectory starts at t = 0 and ends at t = t0, when the traverse trajectory is executed. The quadrotor reaches the center of
the gap at t = tc and starts the recovery maneuver at the final time of each plot. We refer the reader to the attached video
for further experiments with different orientations of the gap.

trajectories in less then one second, even with the additional
computational load induced by our check on the gap per-
ception. The computation of each trajectory on the on-board
computer takes on average (0.240± 0.106) ms, including:
(i) generation of the trajectory; (ii) feasibility check; (iii)
trajectory sampling and computation of the yaw angle for
each sample; (iv) evaluation of the cost function described
in (10); (v) comparison with the current best candidate. It is
important to point out that these values do not apply to the
replanning of the approach trajectory during its execution,
since the initial state is constrained by the current state of
the vehicle and there is no cost function to evaluate. In such
a case, the computation is much faster and for each trajectory
it only takes (0.018± 0.011) ms on average.

C. Gap configuration

Our trajectory generation formulation is able to provide
feasible trajectories with any configuration of the gap, e.g.,
when the gap is perfectly vertical (90◦ roll angle) or perfectly
horizontal (90◦ pitch angle). However, in our experiments we
limit the roll angle of the gap between 0◦ and 45◦ and the
pitch angle between 0◦ and 30◦. We do this for two reasons.
First, when the gap is heavily pitched, the quadrotor needs
more space to reach the initial conditions of the traverse
from hover. This renders the gap barely or not visible at
the start of the approach, increasing the uncertainty in the
pose estimation. Second, extreme configurations, such as roll
angles of the gap up to 90◦, require high angular velocities in
order to let the quadrotor align its orientation with that of the



Fig. 7: Our quadrotor executing the whole trajectory split into
approach (blue), traverse (red). In background the motion-
capture system used to record the ground truth.

gap. This makes gap detection difficult, if not impossible, due
to motion blur. Also, our current experimental setup does not
allow us to apply the torques necessary to reach high angular
velocities because of the inertia of the platform and motor
saturations.

D. Dealing with Missing Gap Detections

The algorithm proposed in Sec. III-A fuses the poses from
gap detection with IMU readings to provide the full state
estimate during the approach maneuver. In case of motion
blur, due to high angular velocities, or when the vehicle is
too close to the gap, the gap detection algorithm does not
return any pose estimate. However, these situations do not
represent an issue during short periods of time (a few tenths
of a second). In these cases, the state estimate from the sensor
fusion module is still available and reliable through the IMU.

VI. CONCLUSION

We developed a system that lets a quadrotor vehicle safely
pass through a narrow inclined gap using only its onboard
sensing and computing. Full state estimation is provided by
fusing gap detections from a single, forward-facing onboard
camera and an IMU trough an extended Kalman filter. The
gap orientation can be such that the vehicle cannot pass
through it in near-hover conditions, but an agile maneuver is
necessary to guarantee that the robot has the same orientation
as the gap during the traverse phase.

To tackle the problems arising from vision-based state
estimation, we coupled perception and control by computing
trajectories that facilitate state estimation by always keeping
the gap in the image of the onboard camera.

We split the trajectory planning problem into two stages.
First, we compute a traverse trajectory that maximizes the
distance from the edges of the gap while lying in a plane
orthogonal to the gap (geometric constraints). The trajectory
is generated so as to minimize the risk of collision and, due
to its short duration, does not require any visual feedback,
which is not available during the traverse.

Second, we compute an approach trajectory from hover
to the initial conditions of the traverse trajectory, taking into
account both perception and dynamic constraints. Finally,
the approach trajectory is refined by computing, for each
position, the corresponding yaw angle that makes the robot
face the gap with its forward-facing camera. Once the
vehicle has traversed the gap, an automatic recovery routine
stabilizes its orientation and locks it to a hovering position.

We successfully evaluated and demonstrated the approach
in 35 real experiments, achieving a success rate of 80% with
gap orientations up to 45◦. To the best of our knowledge,
this is the first work that addresses and successfully reports
aggressive flight through narrow gaps with state estimation
from onboard gap detection and IMU. We believe that this is
a major step forward autonomous quadrotor flight in complex
environments with onboard sensing and computing.

REFERENCES

[1] M. Muller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2011.

[2] M. Cutler and J. How, “Analysis and control of a variable-pitch quadro-
tor for agile flight,” ASME Journal of Dynamic Systems, Measurement
and Control, vol. 137, no. 10, Oct 2015.

[3] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” in Int. Sym.
on Experimental Robotics (ISER), Dec 2010.

[4] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), May 2011, pp. 2520–2525.

[5] S. Tang and V. Kumar, “Mixed integer quadratic program trajectory
generation for a quadrotor with a cable-suspended payload,” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2015.

[6] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2016.

[7] D. Kraft, A Software Package for Sequential Quadratic Programming,
ser. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raum-
fahrt Köln: Forschungsbericht. Wiss. Berichtswesen d. DFVLR, 1988.

[8] S. G. Johnson, “The nlopt nonlinear-optimization package.” [Online].
Available: http://ab-initio.mit.edu/nlopt

[9] M. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” IEEE Int.
Conf. on Robotics and Automation (ICRA), vol. 31, no. 6, Dec 2015.

[10] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza, “Automatic
re-initialization and failure recovery for aggressive flight with a
monocular vision-based quadrotor,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2015, pp. 1722–1729. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2015.7139420

[11] M. Pizzoli, C. Forster, and D. Scaramuzza, “REMODE: Probabilistic,
monocular dense reconstruction in real time,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2014, pp. 2609–2616. [Online].
Available: http://dx.doi.org/10.1109/ICRA.2014.6907233

[12] S. Suzuki and K. Abe, “Topological structural analysis of digitized
binary images by border following,” Computer Vision, Graphics, and
Image Processing, vol. 30, no. 1, pp. 32–46, 1985.

[13] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
robust and modular multi-sensor fusion approach applied to MAV
navigation,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2013.

http://ab-initio.mit.edu/nlopt
http://dx.doi.org/10.1109/ICRA.2015.7139420
http://dx.doi.org/10.1109/ICRA.2014.6907233

	I Introduction
	I-A Related Work
	I-B Contributions

	II Trajectory Planning
	II-A Traverse Trajectory
	II-B Optimization of the Traverse Trajectory
	II-C Approach Trajectory
	II-D Yaw-Angle Planning
	II-E Selection of the Approach Trajectory to Execute
	II-F Recovery after the Gap

	III State Estimation
	III-A State Estimation from Gap Detection

	IV Experiments
	IV-A Experimental Setup
	IV-B Results

	V Discussion
	V-A Replanning
	V-B Trajectory Computation Times
	V-C Gap configuration
	V-D Dealing with Missing Gap Detections

	VI Conclusion
	References

