
University of
ZurÍchu'"

Department of lnformatics

University of Zürich
Department of lnformatics
Binzmühlestr. 14
CH-8050 Zürich
Phone. +41 44 635 43 1 1

Fax +41 44 635 68 09
www.ifi.uzh.ch/dbtg

UZH, Dept. of lnformatics, Binzmühlestr. 14, CH-8050 Zürich Prof. Dr. M¡chael Böhlen
Professor
Phone +4'l 44 635 43 33
Fax +41 44 635 68 09
boehlen@ifi.uzh.ch

Zürich,9. Oktober 2017

BSc Thesis
Topic: An Adaptive lndex for Hierarchical Distributed Database Systems

Apache Jackrabbit Oakl is a hierarchical distributed database system. lt organizes all data in

a single tree and since the hierarchical model naturally captures the structure of webpages,

Oak is the basis for several CMSs (e.9., Adobe Experience Manager, Magnolia, etc.). A typical

CMS workload consists of modifying and publishing webpages. This workload is write-heavy

and skewed, since modifications to webpages are common and some webpages are updated

more frequently than others. Publishable webpages are indexed and the described workload

causes the same index nodes to be repeatedly inserted/deleted. We call these index nodes

volatile. Volatile index nodes raise two main issues: (a) repeatedly inserting/deleting index

nodes and their ancestors is expensive, and (b) conflicts between concurrent transactions get

more likely as the levelof contention increases.

The Workload-Aware Property lndex (WAPI) [1] manages the volatility in the index. lf an in-

dex node n is volatile based on the recent workload, WAPI does not prune n anymore. When

the workload characteristics change, new index nodes can become volatile while others cea-

se to be volatile and become unproductive. Unproductive index nodes slow down queries as

traversing an unproductive node is useless, because neither the node itself nor any of its
descendants contain an indexed property and thus cannot yield a query match. Additionally,

unproductive nodes occupy storage space that could otherwise be reclaimed. lf the workload

changes frequently, unproductive nodes quickly accumulate in the index and the query per-

formance deteriorates over time. Therefore, unproductive nodes must be cleaned up to keep

query performance stable over time and reclaim disk space as the workload changes.

We propose two approaches to deal with unproductive index nodes. The first approach (used

as a simple baseline comparison) is a periodic Garbage Collection (GC). The algorithm traver-

t https : //j ackrabbit . apach e . org/ oak/



ffi\w
Universityof
Zurichu'"

2

ses the full index subtree and prunes all unproductive nodes at once. The second approach,

called Query-Time Pruning (QTP), is an incremental approach to cleaning up unproductive

nodes in the index. The idea is to turn queries into updates. Since Oak already traverses un-

productive nodes as part of query processing, these nodes could be pruned at the same time.

ln comparison to GC, with QTP only one query has to traverse an unproductive node, while

subsequent queries can skip this overhead and thus perform better.

The goal of this BSc thesis is to study, implement, and empirically compare GC and QTP. The

student should implement both approaches in the kernel of Apache Jackrabbit Oak. The expe-

rimental evaluation, detailed below, shall compare GC and QTP under changing workloads.

Tasks

1. Study and understand [1] with a focus on what unproductive nodes are and how [1]
proposes to dealwith them.

2. lmplement Garbage Collection (GC) in Apache Jackrabbit Oak. The periodicity of GC

should be customizable.

3. lmplement Query-Time Pruning (OTP) in Apache Jackrabbit Oak.

4. Evaluate and compare GC and QTP empirically under changing workloads. Choose ap-

propriate metrics to study in your experimental evaluation and explain why they are re-

levant. The experiments should be conducted with different workloads and datasets that

stress-test the algorithms. You can assume a serial execution of transactions, i.e., tran-

sactions cannot be executed concurrently. Your empirical evaluation should address the

following questions:

(a) What is the performance penalty incurred by unproductive nodes on query respon-

se times for different values of WAPI's two parameters: threshold r and sliding

window length I?
(b) What is the cost of GC? How does GC's periodicity affect query response times?

(c) What is the overhead incurred by QTP on query execution? ln particular, how ex-

pensive is it to check for a node's productiveness and how expensive is it to prune

unproductive nodes?

(d) How does the skewness and query-update ratio of the workload affect query re-

sponse times for GC and QTP?

5. Write the thesis (approximately 50 pages).

6. Present the thesis in a DBTG meeting (25 minutes presentation).

OptionalTasks

Simulate concurrent transactions in your experimental evaluation. How does concurrency

(negatively) affect GC and QTP? ln particular, how do the query response times and the

number of transaction aborts change for increased levels of concurrency?



ffi universitvof
W zutlchu'"'

3

References

[1] K. Wellenzohn, M. Böhlen, S. Helmer, M. Reutegger, and S. Sakr. A Workload-Aware

lndex for Tree-Structured Data. To be published.

Supervlsor: Kevin Wellenzohn (wellenzohn@lfi.uzh.ch)

Start date: 9 October 2017

End date: 1 February 2018

University of Zurich

Department of lnformatics

Prof. Dr. Michael Böhlen

Professor




