
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 61!

Part I: The Fundamentals!

Part II: Requirements Engineering Practices!

Part III: Enablers and Stumbling Blocks!

Conclusions!

References!

!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 62!

5 Documenting requirements!

The need:!
●  Communicating requirements !
●  Having a basis for contracts and acceptance decisions!

The means: A requirements specification document!

Stakeholders! System builders!

Photo © Lise Aserud / DPA!

Bridging the gap:!

5.1 Document types!

Various document types, depending on RE process and
specification purpose!

❍  Stakeholder requirements specification (also called
customer requirements specification) 
What the stakeholders want (independent of any system
providing it)!

❍  System requirements specification  
The system to be developed and its context!

❍  Software requirements specification  
If the system is a pure software system!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 63!

Document types – 2!

❍  Business requirements specification  
High-level specification of business needs or goals!

❍  Collection of user stories and/or task descriptions 
Used in agile software development!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 64!

Stakeholder requirements specification!

❍  Written when stakeholder needs shall be documented
before any system development considerations are made!

❍  Typically written by domain experts on the customer side
(maybe with help of RE consultants)!

❍  If a stakeholder requirements specification is written, it
precedes and informs system or software requirements
specifications!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 65!

System/software requirements specification!

❍  The classic form of a requirements specification!
❍  No methodological difference between system

requirements specification and software requirements
specification!

❍  Typically written by requirements engineers on the supplier
side!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 66!

Agile specification of requirements!

❍  Typically written as a collection of user stories!
❍  A vision document should be created for providing an

abstract overview of the system to be developed!
❍  On an intermediate level of abstraction, so-called epics can

serve to group user stories!
❍  Stories may be sub-divided into tasks or made more

concrete with use cases/scenarios.!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 67!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 68!

5.2 Aspects to be documented!

Independently of any language and method, 
four aspects need to be documented:!

!
❍  Functionality!

●  Data: Usage and structure!
●  Functions: Results, preconditions, processing!
●  Behavior: Dynamic system behavior as observable by users!
●  Both normal and abnormal cases must be specified!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 69!

Aspects to be documented – 2!

❍  Performance!
●  Data volume!
●  Reaction time!
●  Processing speed!
●  Specify measurable values if possible!
●  Specify more than just average values!

!

❍  Specific qualities!
●  “-ilities” such as!

•  Usability!
•  Reliability!
•  etc.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 70!

Aspects to be documented – 3!

❍  Constraints!
Restrictions that must be obeyed / satisfied!
●  Technical: given interfaces or protocols, etc.!
●  Legal: laws, standards, regulations!
●  Cultural!
●  Environmental!
●  Physical!
●  Solutions / restrictions demanded by important stakeholders!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 71!

5.3 How to document!

Sample standards for classic requirements documents!
IEEE Std 830-1998 (outdated, but still in use)!

●  Three parts!
●  System requirements only!
●  Representation of specific requirements tailorable!

VOLERE!
●  27 chapters!
●  System and project requirements!

Enterprise-specific standards!
●  ! Imposed by customer or given by supplier!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 72!

IEEE Std 830-1998!

1. !Introduction!
!1.1 !Purpose!
!1.2 !Scope!
!1.3 !Definitions, acronyms, 
! !and abbreviations!
!1.4 !References!
!1.5 !Overview!

2. !Overall description!
!2.1 !Product perspective!
!2.2 !Product functions!
!2.3 !User characteristics!
!2.4 !Constraints!
!2.5 !Assumptions and  
! !dependencies!

!

3. !Specific requirements!

Appendixes!

Index!

!

Variants: 
Organize by!
•  !Mode!
•  !User class!
•  !Object!
•  !Feature!
•  !Stimulus!
•  !Function!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 73!

VOLERE!

Project Drivers!
1. !The Purpose of the Project !
2. !Client, Customer & other Stakeholders!
3. !Users of the Product !
Project Constraints!
4. !Mandated Constraints!
5. !Naming Conventions and Definitions!
6. !Relevant Facts and Assumptions!
Functional Requirements!
7. !The Scope of the Work!
8. !The Scope of the Product!
9. !Functional and Data Requirements !
Non-Functional Requirements!
10. !Look and Feel Requirements !
11. !Usability and Humanity Requirements!
12. !Performance Requirements!
13. !Operational Requirements!

14. !Maintainability and Support 
!Requirements!

15. !Security Requirements!
16. !Cultural and Political Requirements!
17. !Legal Requirements!
Project Issues!
18. !Open Issues !
19. !Off-the-Shelf Solutions!
20. !New Problems !
22. !Tasks!
22. !Cutover!
23. !Risks!
24. !Costs!
25. !User Documentation and Training!
26. !Waiting Room!
27. !Ideas for Solutions	
	
	
	

[Robertson and Robertson 2006] 
[www.volere.co.uk]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 74!

How to document – language options!

Informally!

❍  Natural language (narrative text)!

Semi-formally!

❍  Structural models !!

❍  Interaction models!

Formally!

❍  Formal models, typically based on mathematical logic and
set theory!

Typically as diagrams which are!
enriched with natural langue texts!

General rules for requirements documentation!

❍  Specify every requirement as a small, identifiable unit!
❍  Add metadata such as source, author, date, status!

❍  Build the requirements document according to some
structure template!

❍  Adapt the degree of detail to the risk associated with a
requirement!

❍  Specify normal and exceptional cases!
❍  Don’t forget quality requirements 

and constraints!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 75!

© UFS, Inc.!

Precision – Detail – Depth!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 76!

How precise?!

How much detail?!

How deep, i.e., how many layers?!

Three dimensions:!

Dimensions influence each other:!
• !More precision à more detail!
• !More detail à more depth!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 77!

Precision: reduce ambiguity!

Restrict your language!
Use a glossary!

Define acceptance test cases!
Quantify where appropriate!
Formalize!

Snoopy quantifies ... unfortunately, I have it only in German!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 78!

Detail!

It depends.!
●  Degree of implicit shared understanding of problem!
●  Degree of freedom left to designers and programmers!
●  Cost vs. value of detailed specification!
●  The risk you are willing to take!

What’s better?!
“The participant entry form has fields for name, first name, sex, ...”	

“The participant entry form has the following fields (in this order):	
Name (40 characters, required), First Name (40 characters,
required), Sex (two radio buttons labeled male and female,
selections exclude each other, no default, required),...”	

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 79!

Depth!

The more precise, the more information is needed!
➜  Preserve readability with a hierarchical structure!

!“...!
!4.3!Administration of participants!
! !4.3.1 !Entering a new participant!
! ! ! !4.3.1.1 !New participant entry form!
! ! ! !4.3.1.2 !New participant confirmation!
! !4.3.2 !Updating a participant record!
!...”!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 80!

5.4 Quality of documented requirements!

Two aspects of requirements quality!
❍  Quality of individual requirements!
❍  Quality of requirements specification documents!

!
!
Hint: Don’t confuse quality of requirements with quality
requirements!!

✔!

Quality of individual requirements!

For individual requirements, strive for requirements that are...!
●  Adequate !True and agreed stakeholder needs !
●  Necessary !Part of the relevant system scope!
●  Unambiguous !True shared understanding!
●  Consistent !No contradictions!
●  Complete !No missing parts!
●  Understandable !Prerequisite for shared understanding!
●  Verifiable !Conformance of implementation can be checked!
●  Feasible !Non-feasible requirements are a waste of effort!
●  Traceable !Linked to other requirements-related items!

!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 81!

Quality of requirements documents!

When creating a requirements specification, strive for a
document that is!
●  Consistent !No contradictions!
●  Unambiguous !True shared understanding!
●  Structured !Improves readability of document!
●  Modifiable & extensible !Because change will happen!
●  Traceable !Linked to related artifacts!
●  Complete !Contains all relevant requirements!
●  Conformant !Conforms to prescribed document

!structure, format or style!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 82!

Quality criteria are in the eye of the beholder!

❍  No general consensus !
❍  Different, overlapping sets of quality criteria used in!

●  this course!
●  RE textbooks!
●  RE standards!
●  Quasi-standards such as the IREB Certified Professional for

Requirements Engineering (see http://www.ireb.org) !

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 83!

Not all qualities are equally important!

❍  Adequacy and understandability are key!
❍  Verifiability and Consistency are very important!

❍  Achieving total completeness and unambiguity is neither
possible nor economically feasible in most cases!

❍  The importance of feasibility, traceability, conformance, etc.
of requirements depends on the concrete project/situation!

☞ !Strive for value, not for blind satisfaction of requirements
! !quality criteria!!

!
Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 84!

6 Requirements Engineering processes!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 85!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 86!

The principal tasks!

Requirements Specification!
●  Elicitation!
●  Analysis!
●  Documentation!
●  Validation!

Requirements Management!
●  Identification and metadata!
●  Requirements prioritization!
●  Change and release management!
●  Traceability!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 87!

No ‘one size fits all’ process!

Some determining factors!
●  The embedding process:  

linear or incremental?!
●  Contract (prescriptive) or collaboration (explorative)?!
●  Can you talk with your stakeholders?!
●  Customer order or development for a market?!
●  Using COTS?!

➪ Tailor the process from some principal configuration
options and a rich set of RE practices!

Linear vs. incremental processes!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 88!

Plan project!

Specify
requirements!

Implement
system!

Deploy results!

Design system!

Linear!

Specify goals!

Develop
system vision!

Create initial
requirements
specification!

Prioritize and select require-
ments for current increment!

Design
increment!

Implement
and integrate
increment!

Deploy results!

Incremental! Develop increment!

Update re-
quirements
specification:
Add new and
changed
requirements!

[Done]![Not done]!

Design prelim-
inary system
architecture!

Linear vs. incremental processes – 2!

Decision criteria!
❍  Linear!

●  Clear, stable, a priori known requirements!
●  Low risk (of developing the wrong system)!
●  Relatively short duration of project!
●  Complex requirements change process is acceptable!

❍  Incremental!
●  Evolving requirements!
●  High risk (of developing the wrong system)!
●  Long duration of project!
●  Ability to change requirements easily is important!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 89!

Prescriptive – Explorative – COTS-driven!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 90!

Prescriptive process!
●  Requirements specification

is a contract: All require-
ments are binding and must
be implemented!

●  Functionality determines
cost and deadlines!

●  Needed when tendering
design and implementation!

●  Development of specified
system may be outsourced!

●  Frequently combined with
linear processes!

Explorative process!
●  Only goals known, concrete re-

quirements have to be explored!
●  Stakeholders strongly involved,

continuous feedback!
●  Prioritizing and negotiating

requirements to be implemented!
●  Deadlines and cost constrain

functionality!
●  Typically works only with

incremental processes!

COTS (Commercial Off
The Shelf) – A system or
component that is not
developed, but bought as
a standard product from
an external supplier!

Prescriptive – Explorative – COTS-driven – 2!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 91!

COTS-driven process!
●  System will be implemented

with COTS software!
●  Requirements must reflect

functionality of chosen
COTS solution!

●  Requirements need to be
prioritized according to
importance!

●  Frequently, only require-
ments not covered by the
COTS solution are specified!

Customer-specific vs. Market-oriented!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 92!

Customer-specific process!
●  System is ordered by a

customer and developed by
a supplier for this customer!

●  Individual persons can be
identified for all stakeholder
roles!

●  Stakeholders on customer
side are main source for
requirements!

Market-oriented process!
●  System is developed as a

product for the market!
●  Prospective users typically not

individually identifiable!
●  Requirements are specified by

supplier!
●  Marketing and system architects

are primary stakeholders!
●  Supplier has to guess/estimate/

elicit the needs of the envisaged
customers!

Typical requirements process configurations!

❍  Participatory: incremental & exploratory & customer-
specific!
●  Main application case: Supplier and customer closely

collaborate; customer stakeholders strongly involved both in
specification and development processes!

❍  Contractual: typically linear (sometimes explorative) &
prescriptive & customer-specific!
●  Main application case: Specification constitutes contractual

basis for development of a system by people not involved in
the specification and with little stakeholder interaction after
the requirements phase!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 93!

Typical requirements process configuration!

❍  Product-oriented: Incremental & mostly explorative &
market-oriented!
●  Main application case: An organization specifies and

develops software in order to sell/distribute it as a product (or
service)!

❍  COTS-aware: [Incremental | linear] & COTS-driven &
customer-specific!
●  Main application case: The requirements specification is part

of a project where the solution is mainly implemented by
buying and configuring COTS!

!

!Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 94!

Agile requirements process!

Pushes incrementality and exploration to the extreme!

❍  Fixed-length increments of 1-6 weeks!
❍  Product owner or customer representative always available and

has power to make immediate decisions!
❍  Only goals and vision established upfront!
❍  Requirements loosely specified as stories!
❍  Details captured in test cases!
❍  At the beginning of each increment!

●  Customer prioritizes requirements!
●  Developers select requirements to be implemented in that

increment!
❍  Short feedback cycle from requirements to deployed system!

!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 95!

Characteristics of an “ideal” RE process!

❍  Strongly interactive!
❍  Close and intensive collaboration between!

●  Stakeholders (know the domain and the problem)!
●  Requirements engineers (know how to specify)!

❍  Very short feedback cycles!
❍  Risk-aware and feasibility-aware!

●  Technical risks/feasibility!
●  Deadline risks/feasibility!

❍  Careful negotiation / resolution of conflicting requirements!
❍  Focus on establishing shared understanding!
❍  Strives for innovation!

!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 96!

7 Requirements elicitation!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 97!

Definition and principles!

DEFINITION. Requirements elicitation – The process of
seeking, capturing and consolidating requirements from
available sources. May include the re-construction or creation
of requirements.!

❍  Determine the stakeholders’ desires and needs!
❍  Elicit information from all available sources and consolidate

it into well-documented requirements!
❍  Make stakeholders happy, not just satisfy them!
❍  Every elicited and documented requirement must be

validated and managed!
❍  Work value-oriented and risk-driven!

!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 98!

Information sources!

❍  Stakeholders!
❍  Context!

❍  Observation!
❍  Documents!
❍  Existing systems!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 99!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 100!

Stakeholder analysis!

Identify stakeholder roles!
End user, customer, operator, 
project manager, regulator,...!

In complex cases: Build model of stake-!
holder goals, dependencies and rationale!

Classify stakeholders!
●  Critical!
●  Major!
●  Minor!

Identify/determine concrete persons for each stakeholder role!

[Yu 1997] 
[van Lamsweerde 2001]!

[Glinz and Wieringa 2007]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 101!

Context analysis!

Determine the system’s context 
and the context boundary!

Identify context constraints!
●  Physical, legal, cultural, 

environmental!
●  Embedding, interfaces!

Identify assumptions about the context of your system and
make them explicit!

Map real world phenomena adequately...!
●  ... on the required system properties and capabilities!
●  ... and vice-versa!

Photo © Universitätsklinikum Halle (Saale)!

Goal analysis!

Knowing your destination is more important than the details of
the timetable.!

!
Before eliciting detailed requirements, the general goals and
vision for the system to be built must be clear!
❍  What are the main goals?!

❍  How do they relate to each other?!
❍  Are there goal conflicts?!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 102!

Mini-Exercise!

Consider the chairlift access control case study.!
(a) !Perform a stakeholder analysis.!

(b) !How can you map the context property that a skier
passes an unlocked turnstile to a system property which
can be sensed and controlled by the system?!

(c) !Identify some business goals.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 103!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 104!

Elicitation techniques!

Ask!
❍  Interview stakeholders!

❍  Use questionnaires and polls!

Collaborate!

❍  Hold requirements workshops!

Build and play!

❍  Build, explore and discuss prototypes and mock-ups!
❍  Perform role playing!

[Zowghi and Coulin 2005]!
[Dieste, Juristo, Shull 2008]!
[Gottesdiener 2002]!
[Hickey and Davis 2003]!
[Goguen and Linde 1993]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 105!

Elicitation techniques – 2!

Observe!
❍  Observe stakeholders in their work context!

Analyze!
❍  Analyze work artifacts!

❍  Analyze problem/bug reports!
❍  Conduct market studies!
❍  Perform benchmarking!
!

Which technique for what?!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 106!

 
!
Interviews
Questionnaires and polls
Workshops
Prototypes and mock-ups
Role play
Stakeholder observation
Artifact analysis
Problem/bug report analysis
Market studies
Benchmarking

Express
needs

+!
o!
+!
o!
+!
o!
o!
+!
–!
o!

Demonstrate
opportunities

–!
–!
o!
+!
o!
–!
–!
–!
–!
+!

Analyze
system as is

+!
+!
o!
–!
o!
+!
+!
–!
o!
–!

Explore market
potential

o!
+!
–!
o!
–!
o!
–!
o!
+!
+!

Technique !Suitability for!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 107!

Typical problems!

Inconsistencies among stakeholders in!
●  needs and expectations!
●  terminology!

Stakeholders who know their needs, but can’t express them!
Stakeholders who don’t know their needs!
Stakeholders with a hidden agenda!
Stakeholders thinking in solutions instead of problems!
Stakeholders frequently neglect attributes and constraints!

➥ Elicit them explicitly!

Who should elicit requirements?!

❍  Stakeholders must be involved!
❍  Domain knowledge is essential!

●  Stakeholders need to have it (of course)!
●  Requirements engineers need to know the main domain

concepts!
●  A “smart ignoramus” can be helpful!

❍  Don’t let stakeholders specify themselves without
professional support!

❍  Best results are achieved when stakeholders and
requirements engineers collaborate!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 108!

[Berry 2002, Sect. 7]!

Eliciting functional requirements!

❍  Who wants to achieve what with the system?!
❍  For every identified function!

●  What’s the desired result and who needs it?!
●  Which transformations and which inputs are needed?!
●  In which state(s) shall this function be available?!
●  Is this function dependent on other functions?!

❍  For every identified behavior!
●  In which state(s) shall the system have this behavior?!
●  Which event(s) lead(s) to this behavior?!
●  Which event(s) terminate(s) this behavior? !
●  Which functions are involved?!
!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 109!

Eliciting functional requirements – 2!

❍  For every identified data item!
●  What are the required structure and the properties of this

item?!
●  Is it static data or a data flow?!
●  If it’s static, must the system keep it persistently?!

❍  Analyze mappings!
●  How do real world functions/behavior/data map to system

functions/behavior/data and vice-versa?!

❍  Specify normal and exceptional cases!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 110!

Eliciting quality requirements!

Stakeholders frequently state quality requirements in qualitative
form:!
“The system shall be fast.”!
“We need a secure system.”!

Problem: Such requirements are!
●  Ambiguous!
●  Difficult to achieve and verify!

❍  Classic approach:!
●  Quantification !è !⊕ measurable !⊖ maybe too expensive!
●  Operationalization !è !⊕ testable !⊖ implies premature! !

! ! design decisions !!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 111!

New approach to eliciting quality requirements!

Represent quality requirements such that they deliver optimum
value!

Value of a requirement = benefit of development risk reduction  
 minus cost for its specification!

❍  Assess the criticality of a quality requirement!
❍  Represent it accordingly!

❍  Broad range of possible representations!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 112!

[Glinz 2008]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 113!

The range of adequate representations!

Situation !Representation !Verification!

1.!Implicit shared understanding !Omission !Implicit!

2.!Need to state general direction !Qualitative !Inspection  
!Customer trusts supplier!

3.!Sufficient shared understanding !By example !Inspection, 
!to generalize from examples ! !(Measurement)!!

4.!High risk of not meeting stake- !Quantitative !Measurement!
!holders’ desires and needs !in full!

5.!Somewhere between 2 and 4 !Qualitative with !Inspection, partial  
! !partial quantification !measurement !!

Eliciting performance requirements!

Things to elicit!
❍  Time for performing a task or producing a reaction!

❍  Volume of data!
❍  Throughput (data transmission rates, transaction rates)!
❍  Frequency of usage of a function!
❍  Resource consumption (CPU, storage, bandwidth, battery)!
❍  Accuracy (of computation)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 114!

Eliciting performance requirements – 2!

❍  What’s the meaning of a performance value:!
●  Minimum?!
●  Maximum?!
●  On average?!
●  Within a given interval?!
●  According to some probability distribution?!

❍  How much deviation can be tolerated?!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 115!

Eliciting specific quality requirements !

❍  Ask stakeholders explicitly!
❍  A quality model such as ISO/IEC 25010:2011(formerly ISO/

IEC 9126) can be used as a checklist!
❍  Quality models also help when a specific quality

requirement needs to be quantified!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 116!

Eliciting constraints!

❍  Ask about restrictions of the potential solution space!
●  Technical, e.g., given interfaces to neighboring systems!
●  Legal, e.g., restrictions imposed by law, standards or

regulations!
●  Organizational, e.g. organizational structures or processes

that must not be changed by the system!
●  Cultural, environmental, ...!

❍  Check if a requirement is concealed behind a constraint!
●  Constraint stated by a stakeholder: “When in exploration

mode, the print button must be grey.”!
●  Actual requirement: “When the system is used without a valid

license, the system shall disable printing.”!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 117!

Mini-Exercise!

Consider the chairlift access control case study.!
(a) !Which technique(s) would you select to elicit

requirements from the chairlift ticket office clerks?!
(b) !How, for example, can you achieve consensus among

the ski resort management, the technical director of
chairlifts, the ticket office clerks, and the service
employees?!

(c) !Identify some constraints for the chairlift access control
system.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 118!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 119!

Analysis of elicited information!

Note: requirements are about a future state of affairs; analyze the current
state only when necessary!

Problem!
Analyze business!
and data objects!
Build object and !
class models!

Analyze terminology /!
domain properties!
Build glossary!

Analyze processes /!
workflows!
Build activity / 
process models!

Analyze dynamic!
system behavior!
Build behavior 
model!

Analyze actor-system interaction  
Build scenarios / use cases!

Decompose problem!
Build hierarchical structure!

Structure-oriented! Process-oriented!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 120!

Documenting elicited requirements!

Build specification incrementally and continuously!
Document requirements in small units!

End over means: Result → Function → Input!
Consider the unexpected: specify non-normal cases!
Quantify critical attributes!
Document critical assumptions explicitly!
Avoid redundancy!

Build a glossary and stick to terminology defined in the glossary!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 121!

8 Specifying with natural language!

The oldest...!
...and most widely used way!
●  taught at school!
●  extremely expressive!

But not the best!
●  Ambiguous!
●  Imprecise!
●  Error-prone!
●  Verification only by careful reading!

The system shall ...	

Michelangelo’s Moses (San Pietro in Vincoli,!
 Rome)!
Moses holds the Ten Commandments!
in his hand: written in natural language!

122!

Problems with natural language requirements!

Read the subsequent requirements. Any findings?!
“For every turnstile, the total number of turns shall be read and archived
once per day.”	

“The system shall produce lift usage statistics.”	

“Never shall an unauthorized skier pass a turnstile.”	

“By using RFID technology, ticket validation shall become faster.”	

“In the sales transaction, the system shall record the buyer’s data and
timestamp the sold access card.”	

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

Some rules for specifying in natural language!

❍  Use active voice and defined subjects!
❍  Build phrases with complete verbal structure!

❍  Use terms as defined in the glossary!
❍  Define precise meanings for auxiliary verbs (shall, should,

must, may,...) as well as for process verbs (for example,
“produce”, “generate”, “create”)!

❍  Check for nouns with unspecific semantics (“the data”, “the
customer”, “the display”,...) and replace where appropriate!

❍  When using adjectives in comparative form, specify a
reference point: “better” ➜ “better than”!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 123!

[Rupp et al. 2009]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 124!

More rules!

❍  Scrutinize all-quantifications: “every”, “always”, “never”, etc.
seldom hold without any exceptions!

❍  Scrutinize nominalizations (“authentication”, “termination”...):
they may conceal incomplete process specifications!

❍  State every requirement in a main clause. Use subordinate
clauses only for making the requirement more precise !

❍  Attach a unique identifier to every requirement!
❍  Structure natural language requirements by ordering them in

sections and sub-sections!
❍  Avoid redundancy where possible: “never ever” ➜ “never”!

Phrase templates!

Use templates for creating well-formed natural language
requirements!

Typical template:!

[<Condition>] <Subject> <Action> <Objects> [<Restriction>]!

Example:!
When a valid card is sensed, the system shall send  
the command ‘unlock_for_a_single_turn’ to the turnstile  
within 100 ms.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 125!

[Rupp et al. 2009!
ISO/IEC/IEEE 29148:2011]!

Agile stories!

❍  A single sentence about a requirement!
❍  Written from a stakeholder’s perspective!

❍  Optionally including the expected benefit!
❍  Accompanied by acceptance criteria for requirement!
❍  Acceptance criteria make the story more precise!

Standard template:!

As a <role> I want to <my requirement> [so that <benefit>]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 126!

[Cohn 2004]!

A sample story!

!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 127!

!
!
As a skier, I want to pass the chairlift gate so that I get
access without presenting, scanning or inserting a
ticket at the gate.!
!
!
!
!
!
!
!
Author: Dan Downhill ! Date: 2013-09-20 ! ID: S-18!

Sample acceptance criteria!

Acceptance criteria: !
●  Recognizes cards worn anywhere in a pocket on the left

side of the body in the range of 50 cm to 150 cm above
ground!

●  If card is valid: unlocks turnstile and flashes a green light
for five seconds or until the turnstile is moved!

●  If card is invalid: doesn’t unlock gate and flashes a red
light for five seconds!

●  Time from card entering the sensor range until unlock and
flash red or green is less than 1.5 s (avg) & 3 s (max) !

●  The same card is not accepted twice within an interval of
200 s!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 128!

Mini-Exercise: Writing a user story!

Consider the chairlift access control case study.!
Write a story from a skier’s perspective about buying a day
card.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 129!

All-quantification and exclusion!

❍  Specifications in natural language frequently use all-
quantifying or excluding statements without much reflection:!

!“When operating the coffee vending machine, the user shall
always be able to terminate the running transaction by
pressing the cancel key.”!

!
!
➪  Scrutinize all-quantifications (“every”, “all”, “always”...) and

exclusions (“never”, “nobody”, “either – or”,...) for potential
exceptions!

➪  Specify found exceptions as requirements!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 130!

Dealing with redundancy!

❍  Natural language is frequently (and deliberately) redundant!
!à Secures communication success in case of some
!information loss!

❍  In requirements specifications, redundancy is a problem!
●  Requirements are specified more than once!
●  In case of modifications, all redundant information must be

changed consistently!

❍  Make redundant statements only when needed for
abstraction purposes!

❍  Avoid local redundancy: “never ever” à “never”!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 131!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 132!

9 Model-based requirements specification!

A guided tour through ...!
❍  Data and object modeling!

❍  Behavior modeling!
❍  Function and process modeling!
❍  User interaction modeling!
❍  Goal modeling!
❍  UML!

Primarily for functional  
requirements!
Quality requirements and  
constraints are mostly!
specified in natural  
language!

9.1 Characteristics and options !

❍  Requirements are described as a problem-oriented model
of the system to be built!

❍  Architecture and design information is omitted!
❍  Mostly graphically represented!

❍  Semi-formal or formal representation!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 133!

What can be modeled?!

System view: modeling a system’s static structure, behavior
and functions!

!
!

!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 134!

Static structure perspective!
●  (Entity-Relationship) data models!
●  Class and object models!
●  Sometimes component models!

Behavior perspective!
●  Finite state machines!
●  Statecharts / state machines!
●  Petri nets!

Function and flow perspective!
●  Activity models!
●  Data flow / information flow models!
●  Process and work flow models!

What can be modeled? – continued!

❍  User-system interaction view: modeling the interaction
between a system and its external actors!
●  Use cases, scenarios!
●  Sequence diagrams!
●  Context models!

❍  Goal view: modeling goals and their dependencies!
●  Goal trees!
●  Goal-agent networks, e.g., i*!

!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 135!

9.2 Models of static system structure!

❍  Entity-relationship models!
❍  Class and object models!

❍  Component models!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 136!

Data modeling (entity-relationship models)!

❍  Models the relevant part of the domain
using entity types, relationship types and
attributes!

+ !Rather easy to model!
+ !Straightforward mapping to relational

database systems!
– !Ignores functionality and behavior!
– !No means for system decomposition!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 137!

Turnstile!

Scanner!

Lift!

has!

belongs! part of!

[Chen 1976]!

Object and class modeling!

Idea!
❍  Identify those entities in the domain that the system has 

to store and process!
❍  Map this information to objects/classes, attributes,

relationships and operations!
❍  Represent requirements in a static structural model!

❍  Modeling individual objects does not work: too specific or
unknown at time of specification!
à  Classify objects of the same kind to classes: Class models!
à  or select an abstract representative: Object models!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 138!

[Booch 1986, Booch 1994, Glinz et al. 2002]!

Terminology!

Object – an individual entity which has an identity and does
not depend on another entity.!

Examples: Turnstile no. 00231, The Plauna chairlift!
Class – Represents a set of objects of the same kind by
describing the structure of the objects, the ways they can be
manipulated and how they behave. !

Examples: Turnstile, Lift!
Abstract Object – an abstract representation of an individual
object or of a set of objects having the same type!
Example: A Turnstile!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 139!

Class models / diagrams!

Most popular form of 
structure modeling!

Typically using UML class diagrams!
Class diagram: a diagrammatic representation of a class model!

!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 140!

Turnstile!
+ id: Integer!
+ installed: Date!
+ count: Integer!
– mode: TurnstileMode!
Lock ()!
Unlock ()!
AllowOneTurn ()!

Lift!
+ id: Integer!
+ name: String!
+ type: String!
+ capacity: Integer!
Start ()!
Stop ()!

owner!
1..1!1..*!

transport!
device!
1..*!

accessed by!

Chair Lift!
+ seats: Integer!
!

Ski Lift!
!

Class models are sometimes inadequate!

❍  Class models don’t work when different objects of the
same class need to be distinguished!

❍  Class models can’t be decomposed properly: different
objects of the same class may belong to different
subsystems!

❍  Subclassing is a workaround, but no proper solution!

In such situations, we need object models!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 141!

Object models: a motivating example!

Example: !Treating incidents in an emergency command and
! ! ! ! !control system!

Emergency command and control systems manage incoming
emergency calls and support human dispatchers in reacting
to incidents (e.g., by sending police, fire fighters or
ambulances) and monitoring action progress.!

When specifying such a system, we need to model!
●  Incoming incidents awaiting treatment!
●  The incident currently managed by the dispatcher!
●  Incidents currently under treatment!
●  Closed incidents !

!
!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 142!

Class models are inadequate here!

In a class model, incidents would have to be modeled as
follows:!

!
!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 143!

Bad: essential elements
of the problem are not
modeled!

Unnatural: all subclasses are structurally
identical	

either	
Incident	

or	
Incident	

Incoming
Incident	

Dispatched  
incident!

Closed!
Incident	

Current 
incident	

Object models work here!

Modeling is based on a hierarchy of abstract objects!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 144!

Dispatched!
Incident:!
Incident	

Closed  
incident:!
Incident	

Current!
Incident:!
Incident	

Dispatcher support...! Archive...!

Incoming  
incident:!
Incident	

Object name!
Object type!

Singleton!
object!

Object set!

Command&Control System...!

Notation: ADORA!

ADORA!

❍  ADORA is a language and tool for object-oriented
specification of software-intensive systems!

❍  Basic concepts!
●  Modeling with abstract objects!
●  Hierarchic decomposition of models!
●  Integration of object, behavior and interaction modeling!
●  Model visualization in context with generated views!
●  Adaptable degree of formality!

❍  Developed in the RERG research group at UZH!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 145!

[Glinz et al. 2002]!

Modeling with abstract objects in UML!

❍  Not possible in the original UML (version 1.x)!
❍  Introduced 2004 as an option in UML 2!

❍  Abstract objects are modeled as components in UML!
❍  The component diagram is the corresponding diagram!
❍  Lifelines in UML 2 sequence diagrams are also frequently

modeled as abstract objects!

❍  In UML 2, class diagrams still dominate!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 146!

What can be modeled in class/object models?!

❍  Objects as classes or abstract objects!
❍  Local properties as attributes!

❍  Relationships / non-local properties as associations!
❍  Services offered by objects as operations on objects or

classes (called features in UML)!

❍  Object behavior!
●  Must be modeled in separate state machines in UML!
●  Is modeled as an integral part of an object hierarchy in ADORA!

❍  System-context interfaces and functionality from a user’s
perspective can’t be modeled adequately!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 147!

Object-oriented modeling: pros and cons!

+ !Well-suited for describing the structure of a system!
+ !Supports locality of data and encapsulation of properties!

+ !Supports structure-preserving implementation!
+ !System decomposition can be modeled!
– !Ignores functionality and behavior from a user’s perspective!
– !UML class models don’t support decomposition!
– !UML: Behavior modeling weakly integrated!

!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 148!

149!

Mini-Exercise: Classes vs. abstract objects!

Specify a distributed heating control system for an office
building consisting of a central boiler control unit and a room
control unit in every office and function room. !
❍  The boiler control unit shall have a control panel consisting

of a keyboard, a LCD display and on/off buttons.!
❍  The room control unit shall have a control panel consisting

of a LCD display and five buttons: on, off, plus, minus, and
enter.!

Model this problem using!
a. A class model!
b. An abstract object model.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

9.3 Behavior modeling!

Goal: describe dynamic system behavior!
●  How the system reacts to a sequence of external events!
●  How independent system components coordinate their work!

Means:!
❍  Finite state machines (FSMs) – not discussed here!
❍  Statecharts / State machines!

●  Easier to use than FSMs (although theoretically equivalent)!
●  State machines are the UML variant of statecharts!

❍  Sequence diagrams (primarily for behavioral scenarios)!
❍  Petri nets – not discussed here!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 150!

Statecharts!

❍  Models the dynamic behavior:!
●  How the system reacts to external

events in a given state!
●  Reaction depends on actual state!
●  States may be hierarchically

nested and/or orthogonal (parallel)!

❍  In UML: state machine diagrams!
+ !Global view of system behavior!

+ !Precise, but still readable!
– !Weak for modeling functionality

and data!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 151!

closed!

open!

validating!

card sensed!
validate card!

card valid!
allow one turn;!
count’ = count +1;!
flash green light!

card invalid!
flash red light!

count = 0!

one turn done!

normal mode!

Inactive mode!

switch to!
normal mode!

[Harel 1988]!

Sequence diagrams / MSCs!

❍  Models ...!
●  ... lifelines of system components or objects!
●  ... messages that the components exchange!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 152!

:RFID 
card!

:Turnstile!:Scanner! :Access 
controller!

:Turnstile!
device!

Scan()!

Validate(CardInfo)!

AllowOneTurn()!

FlashRedLight()!

CardInfo!

ValidCard!

[Valid]!

[else]!

alt!

OneTurnDone!Count()!

InvalidCard!

sd NormalMode!

Object Management Group (2011b)!

❍  Notation/terminology:!
●  UML: Sequence diagram!
●  Otherwise: Message sequence chart (MSC)!

+ !Visualizes component collaboration on a timeline!
– !In practice confined to the description of required scenarios!
– !Design-oriented, can detract from modeling requirements!
!
!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 153!

9.4 Function and flow modeling!

❍  Activity models!
❍  Data flow / information flow models!

❍  Process and work flow models!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 154!

Activity modeling: UML activity diagram!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 155!

❍  Models process 
activities and  
control flow!

❍  Can model data  
flow!

❍  Model can be  
underpinned with
execution  
semantics!

Validate card!

Initialize turnstile!

Poll!

Read card!

Unlock turnstile  
for one turn!

Flash green light!

Count!

[card sensed]!

[valid]!

[no card]! [term-
inate]!

Flash red light![invalid]!

[locked
after turn]!

[locked,
no turn]!

Data and information flow!

❍  Models system functionality with data flow diagrams!
❍  Once a dominating approach; rarely used today!

+ !Easy to understand!
+ !Supports system decomposition!
– !Treatment of data outdated: no types, no encapsulation!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 156!

Convert
sensor

data!

Check
for

alarms!

Display
chairlift
status!Sensor

raw values!
Chairlift status
measurements!

Tagged status
measurements! Chairlift

status
display!

Alarm boundary
parameters!

Chairlift schema
images!

Problem log!

[DeMarco 1978]!

Process and workflow modeling!

❍  Elements!
●  Process steps / work steps!
●  Events influencing the flow!
●  Control flow!
●  Maybe data / information access and responsibilities!

❍  Typical languages!
●  UML activity diagrams!
●  BPMN!
●  Event-driven process chains!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 157!

Process modeling: BPMN!

❍  BPMN (Business Process Model and Notation)!
❍  Rich language for describing  

business processes!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 158!

[Object Management 
Group 2011]!

Process modeling: EPC!

❍  Event-driven process chains (In German: ereignisgesteuerte
Prozessketten, EPK)!

❍  Adopted by SAP for modeling processes supported by
SAP’s ERP software!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 159!

Event! Event!

Function!

Start event!

Org unit!Information  
object!

Information  
object!

Connector
(AND, OR, XOR)!

Control flow!

9.5 User-system interaction modeling!

Describing the functionality of a system from a user’s
perspective: How can a user interact with the system?!

!
Two key terms:!

❍  Use case!
❍  Scenario!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 160!

[Carroll 1995, 
 Glinz 1995, 
 Glinz 2000a, 
 Jacobson et al. 1992, 
 Sutcliffe 1998, 
 Weidenhaupt et al. 1998]!

Use case!

DEFINITION. Use case – A description of the interactions
possible between actors and a system that, when executed,
provide added value.!
Use cases specify a system from a user’s (or other external
actor’s) perspective: every use case describes some
functionality that the system must provide for the actors
involved in the use case. !

❍  Use case diagrams provide an overview!
❍  Use case descriptions provide the details!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 161!

[Jacobson et al. 1992!
 Glinz 2013]!

Scenario!

DEFINITION. Scenario – 1. A description of a potential
sequence of events that lead to a desired (or unwanted)
result. 2. An ordered sequence of interactions between
partners, in particular between a system and external actors.
May be a concrete sequence (instance scenario) or a set of
potential sequences (type scenario, use case). 3. In UML: An
execution trace of a use case.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 162!

 [Carroll 1995!
 Sutcliffe 1998  
 Glinz 1995]!

Use case / scenario descriptions!

Various representation options!
❍  Free text in natural language!

❍  Structured text in natural language!
❍  Statecharts / UML state machines!
❍  UML activity diagrams!
❍  Sequence diagrams / MSCs!

Structured text is most frequently used in practice!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 163!

A use case description with structured text!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 164!

USE CASE SetTurnstiles!
Actor: Service Employee!
Precondition: none!
Normal flow:!
1 !Service Employee chooses turnstile setup.!
!System displays controllable turnstiles: locked in red, normal in green, 
open in yellow. !

2 Service Employee selects turnstiles s/he wants to modify.!
!System highlights selected turnstiles.!

3 !Service Employee selects Locked, Normal, or Open.!
!System changes the mode of the selected turnstiles to the selected one,!
!displays all turnstiles in the color of the current mode.!

...!
Alternative flows:!
3a !Mode change fails: System flashes the failed turnstile in the color of its 

current mode.!
... !

UML Use case diagram!

+ !Provides abstract overview from actors’ perspectives!
– !Ignores functions and data required to provide interaction!
– !Can’t properly model hierarchies and dependencies!

!
!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 165!

Skier!

Set Turnstile!Get Access!

Buy Ticket!

Load Ticket
on Device!

Program
Device!

Card! Watch!

Sell Ticket!

Change Ticket! Ticket Office
Employee!

Service
Employee!

Chairlift Access Control System!

«include»!

«include»!

«include»!

«extend»! «extend»!

...!

Dependencies between scenarios / use cases!

❍  UML can only model inclusion, extension and generalization!
❍  However, we need to model!

●  Control flow dependencies (sequence, alternative, iteration)!
●  Hierarchical decomposition!

❍  Largely ignored in UML (Glinz 2000b)!
❍  Options!

●  Pre- and postconditions!
●  Statecharts!
●  Extended Jackson diagrams (in ADORA, Glinz et al. 2002)!
●  Specific dependency charts (Ryser and Glinz 2001)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 166!

Dependencies with pre- and postconditions!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 167!

❍  Simple dependencies
of kind «B follows A»
can be modeled!

❍  Relationships buried in
use case descriptions,
no overview!

❍  No hierarchical
decomposition!

❍  Modeling of complex
relationships very
complicated!

Scenario AuthenticateUser!
Precondition: none!
Steps: ...!
Postcondition: User is authenticated!

Scenario ReturnBooks!
Precondition: User is authenticated!
Steps: ...!
...!

Scenario BorrowBooks!
Precondition: User is authenticated!
Steps: ...!
...!

Dependencies with Statecharts!

❍  Model scenarios as states*!
❍  Classic dependencies (sequence, alternative, iteration,

parallelism) can be modeled easily!
❍  Hierarchical decomposition is easy!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 168!

Borrow books Return books Reserve on-loan

books

Authenticate

user

User selects

borrow

User selects

reserve

User selects

return

card is invalid

Perform book transaction

* With one main entry
and exit point each;
symbolized by top and  
bottom bars in the  
diagram!

Research result,
not used in
today’s practice!

[Glinz 2000a]!

Dependencies with extended Jackson-diagrams!

❍  Used in ADORA for modeling scenario dependencies!
!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 169!

[Glinz et al. 2002]!

Perform book
transaction!

Authenticate
user!

Perform a
library
function!

Borrow books! Return books! Reserve on-
loan books!

Act!

Treat invalid
card!

Dependency charts!

❍  Specific notation for modeling of scenario dependencies 
(Ryser und Glinz 2001)!

❍  Research result; not used in today’s practice!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 170!

Normal path!
Alternative path!

For the Chairlift access control system, write the use case
“Get Access”, describing how a skier gets access to a chairlift
using his or her RFID ticket.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 171!

Mini-Exercise: Writing a use case!

9.6 Modeling goals!

❍  Knowing the goals of an organization (or for a product) is
essential when specifying a system to be used in that
organization (or product)!

❍  Goals can be decomposed into sub goals!
❍  Goal decomposition can be modeled with AND/OR trees!
❍  Considering multiple goals results in a directed goal graph!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 172!

[van Lamsweerde 2001, 2004!
 Mylopoulos 2006!
 Yu 1997]!

AND/OR trees for goal modeling!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 173!

Use RFID  
access cards!

Use machine  
readable tickets!

Use single  
point access!

OR-Decomposition!

Install RFID  
enabled turnstiles!

Install RFID en- 
abled sales points!

AND-Decomposition!

Reduce access!
control cost!goal!

sub goals!

Reduce lift 
personnel!

Simplify 
access control!

Goal-agent networks!

❍  Explicitly models agents (stakeholders), their goals, tasks
that achieve goals, resources, and dependencies between
these items!

❍  Many approaches in the RE literature!
❍  i* is the most popular approach!
❍  Rather infrequently used in practice!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 174!

A real world i* example: Youth counseling!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 175!

[Horkoff and Yu 2010]!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 176!

9.7 UML (Unified Modeling Language)!

❍  UML is a collection of primarily graphic languages for
expressing requirements models, design models, and
deployment models from various perspectives!

❍  A UML specification typically consists of a collection of
loosely connected diagrams of various types!

❍  Additional restrictions can be specified with the formal
textual language OCL (Object Constraint Language)!

[Object Management Group 2015]!

[Object Management Group 2012]!

UML – Overview of diagram types!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 177!

UML Diagram!

Structure  
Diagram!

Behavior!
Diagram!

Class 
Diagram!

Component!
Diagram!

Object 
Diagram!

Composite  
Structure Diagram!

Deployment 
Diagram!

Package  
Diagram!

Activity 
Diagram!

Use Case  
Diagram!

State Machine  
Diagram!

Interaction  
Diagram!

Sequence  
Diagram!

Interaction Over- 
view Diagram!

Communication  
Diagram!

Timing  
Diagram!

Normal font: UML 2 Diagram type!
Italic font: Abstract concepts!

Profile!
Diagram!

Typically used in!
requirements!
specifications!

