
University of Zürich

Master Basic Module

Data Curation in the Swiss Feed Database

Nathalie TORRENT

supervised by

Prof. Dr. Michael Böhlen
Dept. of Informatics - Datenbanktechnology

January-February 2019

Contents

1 Introduction 1

2 Installation 1

2.1 PostgreSQL setup . 1

2.2 Apache setup . 2

2.3 Creating and loading the local database . 2

2.4 Web Application . 3

3 Database Schema 4

4 Requirement Analysis 5

4.1 Current Solution . 5

4.2 Requirements for the new application . 5

4.2.1 Excel Template . 5

4.2.2 Import Application . 5

5 Import File 6

5.1 Superficial structure of the import file . 6

5.1.1 Feed . 7

5.1.2 Origin . 7

5.1.3 Harvest, Sampling and Arrival Time . 8

5.1.4 Sample Information . 9

5.1.5 Nutrient Analysis . 10

5.2 Detailled exemple of the insertion into the fact table clean 11

6 Description of the import application 12

6.1 Downloading the file . 12

6.2 handlerecord . 14

6.2.1 Prerequesites and feed information . 14

6.2.2 Origin information . 15

6.2.3 Time information . 17

6.2.4 Sample information . 19

6.2.5 Nutrient and Nutrient Analysis . 20

6.3 End of the import . 23

6.4 Maintenance . 25

7 Conclusion and remaining issues 25

Appendices 27

Nathalie Torrent

1 Introduction

The Swiss Feed Database contains detailled information about feeds available in Switzerland.
By querying the database, it is possible to retrieve the nutritional value or the exact composition
of feeds. Data is provided by the Agroscope which is the Swiss Center for Agricultural Research.
The goal of this project is to develop a new solution that can be used by the researcher of the
Agroscope in order to import data on the Swiss Feed Database. In the following report, the
required steps for the installation of the database will be explained. Then the requirements
expressed by Agroscope will be explained. Based on them, an excel import file will be defined
and explained. Then the functioning of the import application will be detailled.

2 Installation

In order to install a local version of the database, the following tasks must be executed. Firstly
PostgreSQL must be setted up, then Apache must be installed. Finally a local database must
be created and the data must be loaded. After that, the local web application can be created.

The following steps are only required if aptitude, emacs, nodejs and npm are not already
installed on the computer.

sudo apt-get install aptitude

sudo apt-get install emacs

sudo apt install nodejs

sudo apt install npm

2.1 PostgreSQL setup

Pggadmin and postgis can be installed using the following commands:

sudo aptitude install pgadmin3

sudo apt install postgis

Pgadmin is an application used to admin and manage PostgreSQL plattform whereas Postgis
is an application that allows Postgres to use geographical objects. Into the postgres command
shell, a user and a database are created.

sudo su - postgres

createuser -s name_of_user

createdb name_of_db

exit

The following command will open the client authentication configuration file in the previously
installed text editor emacs. This file has to be modified so that given criteria are matched.

sudo emacs /etc/postgresql/10/main/pg_hba.conf:

nathalie.torrent@uzh.ch 1/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

The previouly created user name of user is allowed to have a local connection using Unix-domain
sockets on all databases. The authentication method is peer, which means that the username
in the operating system is used. All other users are allowed to have a local connection with
a md5-encrypted password. All users are allowed to have a connection via TCP/IP using a
md5-encrypted password.

local all name_of_user peer

local all all md5

host all all 127.0.0.1/32 md5

At this point, PostgreSQL is totally setted up. The installation continues with the Apache
setup.

2.2 Apache setup

The first line of the script installs the HTTP server Apache. The following sudo ufw commands
are used to set up the firewall. This command will list the available applications which are
Apache, Apache Full, Apache Secure and CUPS.

sudo apt install apache2

sudo ufw app list

After that, the status of the firewall is tested and ApacheFull is allowed to go through the
firewall.

sudo ufw status

sudo ufw allow ’Apache Full’

Then, the good functioning of the server is tested. The first command verifies if the server is
active and launches it. A final test is made by typing the localhost address into a web browser.
If everything has been setted up correctly, a ”it works” message will appear on the web page.

sudo systemctl status apache2

http://localhost

Finally, php must be installed in order to execute scripts on the server and to return the
corresponding HTML content. As the computer used for this installation was running Ubuntu
18.04, the available php version was 7.2 This installation has been done in this way:

sudo apt-get install php libapache2-mod-php

sudo apt-get install php-pgsql

2.3 Creating and loading the local database

The local database has been loaded using the PostGres terminal. The subsequent commands
are executed in order to connect to postgres, to create the database named tdfb and to create
a superuser called php client.

nathalie.torrent@uzh.ch 2/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

sudo su -postgres

createdb tfdb

createuser -s php_client

psql -d table_name -c "alter user php_client with password ’php_client’;"

Finally the two last commands will duplicate the database.

psql -d tfdb

psql -d tfdb < dump.181207

psql -d tfdb -c "alter database tfdb set search_path to dataschema, public;"

At this point, the full database is loaded on the computer. The final step is the installation of
the web application.

2.4 Web Application

In order to install the web application, the following commands must be executed in the feedbase
directory. RSA public and private key pairs are generated. Then using those keys, a SSL
connection is established.

cd ~/SW/Feedbase

ssh-keygen -t rsa -b 2048 -f jwtRS256.key

openssl rsa -in jwtRS256.key -pubout -outform PEM -out jwtRS256.key.pub

Finally the server is installed which allows to consult the web application of the database in a
web browser at http://localhost:3000.

node -v

npm install

npm i npm@latest -g

node bin/www # without supervisor

npm install supervisor -g

npm start # if supervisor is installed

http://localhost:3000

If the application can’t be seen in the web browser, it is possible that postgreSQL doesn’t run
on the same port as the web server. The postgreSQL port can be found be typing in the psql
command shell /conninfo. This port must be the one written in the params.json file. In the
params json file, the user php client, the database tdbd and the port on wich postgreSQL run
can be seen:

"db": {

"user": "php_client",

"password": "php_client",

"database": "tfdb",

"host": "localhost",

"port": 5432}

nathalie.torrent@uzh.ch 3/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

1

*

1

*

1

*

1

*

*

1

1

*

d_nutrient_analysis

nutrient_analysis_key integer

d_feed

feed_key integer

old_key integer

d_nutrient

nutrient_key int

d_origin

origin_key int

kanton_nr smallint

d_sample

sample_key integer

old_feed_key integer

d_time

time_key integer

fact_table_clean

measure_pkey int

lims_number varchar

quantity double

id_feed_fkey integer

id_nutrient_fkey integer

id_sample_fkey integer

id_origin_fkey integer

id_time_fkey integer

id_nutrient_fkey_old integer

id_nutrient_analysis_fkey integer

Figure 1: Relevant part of the database for the data import

3 Database Schema

Due to the size and the complexity of the database, only the tables relevant for the data import
are represented in this star schema (figure 1). The full schema of the database can be seen in
the appendix.

The central table is the fact table clean. This table, with a primary key named measure pkey,
references six other tables: d feed , d nutrient, d sample, d origin, d time and d nutrient
analysis.

The Agroscope receives feed samples on which they make analyses. In a oversimplified way, it
can be admitted that one analysis correspond to one entry in the fact table clean. Informa-
tion about the sample itself, such as biological and technical properties, are saved in the table
d sample. The fact table clean maps the sample table using the foreign key id sample fkey

Each sample is a feed sample, so there is a foreign key id feed fkey pointing to the table d feed.
A sample has a defined origin which is saved in the table d origin, therefore the fact table clean
keeps a reference of it using the foreign key id origin fkey. A sample also has time information,
that is saved in d time and referenced into the main table with the foreign key id time fkey.
On a single sample, different nutrient analyses are done. So the fact table clean keeps track of
the analysed nutrient with id nutrient fkey and of the respective analysis with the foreign key
id nutrient analysis fkey. A detailled example will be provided in the part 5.2.

nathalie.torrent@uzh.ch 4/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

4 Requirement Analysis

4.1 Current Solution

At present, the person in charge of the database at the Agroscope imports data by using an
application. This person needs to fulfill a excel file consisting of two parts. The first part contains
103 columns in a fix order with information about the type of feed, the origin of the sample,
the time and the properties of the sample. In the second part, nutrient analysis are written in a
free order. Once the import file is filled out with data respecting the predefined order, the user
can lauch an executable jar file in order to import data. This application launches a window in
which the user is invited to choose an excel file, indicate his username and password. This java
application will read the content of the excel file and put it into the database. The detailled
data provided in the excel file will be added to the table fact table clean. This application only
loads data into the database but not on the web application. After each execution of the import
jar file, the user must manually execute a maintenance function so that the newly added data
become accessible on the web application.

4.2 Requirements for the new application

4.2.1 Excel Template

Before considering any changes in the template files, it should be remembered that the main
user of the future import application mentioned that she has been used to fill in the current
excel template and that she is an expert in agronomy and not in informatics. Due to this
reasons, the provided solution must be simple to use. The main idea is to continue using the
same structure with some simplifications. The detailled new version of the excel file will be
presented in the following part.

4.2.2 Import Application

In order to be simple to use, detailled explanations should be provided to the user when the
import script goes wrong. As the import application should be able to import approximately
2000 data in a respectable time, it becomes really complicated to detect a mistake. Therefore
detailled error reports would be really helpful. They can inform the user about the lines of the
excel files that haven’t been imported. They should also contain the reason why the excel line
wasn’t imported.

Below are listed errors that must be detected.

• when the provided data is not complete: no feed key or no lims number is given

• when the given feed key doesn’t exist in the database

• when the given nutrient key doesn’t exist in the database

• when the given nutrient analysis key doesn’t exist in the database

If the lims number is missing, the corresponding data must not be imported, as the lims num-
ber is the main identification number into the Agroscope system. If the data was loaded, it
would be loaded without it main property. The same occurs for the feed key. It’s necessary to

nathalie.torrent@uzh.ch 5/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

detect when the three above mentioned keys doesn’t exist in the database as new values into
the corresponding table , d feed, d nutrient and d nutrient analysis, must be manually added.
This manual step is required because the content of those table is complex. If any of those
conditions aren’t respected, the script won’t import the data. At the end of the execution, the
user will get a notification about the lines that haven’t been imported.

Important remark
If a cell in the excel needs to contain a string, it is not allowed to use the character ’ in it as
this character is used in the sql statements. If they are used, the will cause mistakes. So if the
user wants to write ”ensillage d’herbes”, he should write ”ensillage d’herbes” instead. The ’
character must not be used in any of the cells of the excel file.

5 Import File

5.1 Superficial structure of the import file

As mentionned before, the goal of the import application is to fill the table fact table clean.
This table contains the following entry:

• id feed fkey

• id origin fkey

• id time fkey

• lims number

• id sample fkey

• id nutrient fkey

• id nutrient fkey old

• id nutrient analyses fkey

• quantity

The template file should contain all the necessary information to fill the fact table clean. The
import application won’t fill the entry id nutrient fkey old, as this is not used anymore. How-
ever this field hasn’t been removed from the database as many item into the database are still
referencing to the corresponding table.
Based on the entries in the fact table clean a template for the excel file has been defined. There
are categories such as feed, origin, time, sample and analysis. As each sample can contain up
to three time information, there will be three different time category into the excel file: harvest
time, sampling time and arrival time. So in total the Excel file contains seven categories all
related to the structure of the fact table clean. This categories which are feed, origin, harvest
time, sampling time, arrival time, sample properties and abbreviations are written in capital
letters on the figure 1. This figure shows an overview of the excel file. The first line of the excel
file containing information in capital letters is a helper for the user because it recapitulates the
main categories. Each category contains different columns header that are written on the line
2 of the excel file. The user will start inserting data at line 3. The detailled functioning of the
excel file will be explained in the following part.

nathalie.torrent@uzh.ch 6/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

1 FEED ORIGIN HARVEST
TIME

SAMPLING
TIME

ARRIVAL
TIME

SAMPLE PROPERTIES ABBREV

2 feed
key

Various
columns
about
origin

Various
columns
about
harvest
time

Various
columns
about
sampling
time

Various
columns
about
arrival
time

Lims
num-
ber

Main Bio Tech Nutrient
key
%
Analysis
key

3 data

Table 1: Basis structure of the excel file

Figure 2: Excel Template: feed information

5.1.1 Feed

Into the database, feeds are registered and can be retrieved using a feed key of type integer.
As an example, if the user has received a sample of chicory, he must indicate it into the excel
file. For that, he needs to retrieve the integer key corresponding to the feed with name chicory
into the database. With a simple Select SQL statement, the corresponding feed key of 1500 is
found. Therefore the user will write 1500 into the column feed key. The lines 4 and 5 on the
figure 2 represent unallowed content for the feed key. The user is not allowed to leave the feed
key empty or to put a feed key that doesn’t exist into the database such as 12000. If one of this
case occurs, the corresponding line won’t be imported into the database.

5.1.2 Origin

Into the database, the origin can be retrieved using an origin key. However it’s not asked to the
user to directly provide the origin key. The user can describe the origin of his sample by filling
the columns corresponding to the origin which are highlited in blue into the excel template.
The columns name and the type of value that must be given are :

• country string

• canton string

• city string

• altitude class string

• altitude in meters int

• postal code int

• latitude float

• longitude float

• animal density int

• region number int

• region name string

As there could be sample without origin information, it’s not mandatory to provide an origin so
it implies that all the mentioned columns can be left empty. If the sample has a defined origin,
it is possible that only part of the origin information is provided. As an exemple if only the
country and the altitude in meters are provided, the user will only fill the corresponding two

nathalie.torrent@uzh.ch 7/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 3: Excel Template: origin information

columns. So it implies that if a origin is provided, only the columns having information must
be filled. On the figure 3, four valid origin line are written. The line 3 to 5 show that it’s not
mandatory to fill all the columns while the line 6 shows that it’s allowed to leave all the origin
columns empty.

This origin information will be used by the import application to make a request into the
database in order to retrieve the corresponding origin key which is of type integer. If the re-
trieval fails, because this origin informations are not already into the database, a new origin
key will be generated. The origin keys of type int have sequential value. So if the last origin
key in the database was 1000, the following key will be 1001. So under the origin key 1001, all
the new origin information will be saved.

5.1.3 Harvest, Sampling and Arrival Time

Into the database, the time information can be retrieved by using a time key. However, it’s easier
for the user to write the time information into separated columns. All the time information
must be written into the pink part of the excel file. As each sample can have up to three
time information, there are three category into the excel file: the harvest time (moment 1), the
sampling time (moment 2) and the arrival time (moment 3). For each moment, the following
columns can be filled.

• day i Date format DD.MM.YYYY

• season en i string

• season de i string

• season fr i string

• month i int

• year i int

Again, the user doesn’t need to fill all the columns for a given moment. If only the year and
the saison are available for the moment 1, he will only fill year 1, season en 1, season de 1,
season fr 1. As a side remark, if the user inserts a season, he must write it in the three different
languages. If the user fills the columns day i, he must really be attentive to use the right time
date format wich is DD.MM.YYYY. If he doesn’t do it, the import will fail. Moreover, if the
user doesn’t have any information about a moment, he can leave all the columns corresponding
to this moment empty.

For readability reason, on the figure 4 , the columns season de i and season fr i have been left
out. On the line 3, the three time information are filled. On the line 4, only the information
about the harvest and the arrival time are filled. On the line 5, only the arrival time is provided.
The lines 3 to 5 are all valid and will be taken into consideration, whereas the line 6 isn’t as
the date format is wrong. It is in the responsability of the user to use the right date format.

nathalie.torrent@uzh.ch 8/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 4: Excel Template: time information

Figure 5: Excel Template: sample information

For each of the available time information, the corresponding time key must be retrieved. If
the key retrieval fails, the corresponding time information must be added into the database.
Again the time key are sequentially added. So a new time key will be generated and all the
corresponding time information will be added into the table d time using this new time key.

5.1.4 Sample Information

The information about the sample must be written into the grey part of the excel file. The
following columns can be filled:

• lims number string

• preparation de string

• info 1 string

• info 2 string

• provenance string

• project code string

• project code ext string

• batch nr string

• labs name string

• bi properties string or integer

• te properties string or integer

Summarized into the name bi properties and te properties are actually 64 fields that represent
detailled information about the biological and technical properties of a sample. This properties
can either be string or integer. The requested format for each bi or te column is indicated
directly into the excel file.
Into the Agroscope system, the sample are referenced by a lims number which is one of the most
important features. As mentioned before, it is not permitted not to provide a lims number into
a excel line. It’s common that not all the sample properties such as bi or te properties are
known. Therefore, if not information is provided, all the columns, except the lims number can
be left empty. On the figure 5, the line 3 and line 5 are valid lines because a lims number is
provided. The line 4 is not valid even if there is information in the column info 1 because no
lims number is provided.

New sample
On the figure 5, the lims number given in the line 3 is a lims number that doesn’t exist in the
table d sample. As a new lims number is provided, a sample key will be sequentially generated

nathalie.torrent@uzh.ch 9/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 6: Excel Template: analysis information

and all the sample information will be inserted into the database using this newly generated
sample key. On the respecting sample key, the following informations will be saved in the table
d sample: Info 1 will contain Luzerne Heu, the provenance will be Agridea and the labs name
will be UFAG.

Overwritting an existing sample
As it can be seen, the lims number provided in the line 5 is identical to the one written in the
line 3. This implies that when the import application will consider the line 5, it will detect that
this lims number is already contained into the table d sample. Therefore the corresponding
sample key will be retrieved. In this case, the sample properties will be overwritten into the
database. As no information is provided in the excel cell info 1, the content of info 1 in the
database won’t be changed. The cell provenance contains a null value, this means that the user
wants to delete the provenance value. So the new content of provenance into the database will
be null which corresponds to ”no information provided”. In the column labs name, AOMC is
written. That means that the user want to change the content of the labs name into AOMC.
So after the insertion, the database entry labs name will contain AOMC instead of UFAG.

5.1.5 Nutrient Analysis

The last part of the excel file contains information about nutrient analysis made on the sample.
The nutrient analysis can be written in a free order. However the user must respect certain
conditions. In the line 1 of the excel file, the user can write ”help” information such as ab-
breviations. This line won’t be read by the import application. In the line 2, the user must
indicate the analysed nutrient and the employed analysis. He must respect the following format:
Nutrient key % Analysis key. In the line 3 he must add the analysed quantity.
On the figure 6, some examples are shown. On line 1, the user wrote abbreviation such as
TVK, TSO, TSL and TSLM in order to help him filling the excel file. The line 2 contains the
nutrient analysis that have been made. As an example a quantity of 892g of nutrient 180 has
been analysed with the analysis method 2. The Agroscope always provide analysis for a sample.
However it’s not necessary that all analyses are done, so the line 4 is valid even if not all the
nutrient analysis are filled. The user must pay attention to provide valid nutrient and nutrient
analyses keys. Valid keys are keys that already exist into the corresponding tables. If unvalid
keys are provided, the corresponding nutrient analysis won’t be imported.

As the nutrient analysis are made on sample, there is also a case distinction based on the fact
that it is a new sample or an existing one.

New sample

nathalie.torrent@uzh.ch 10/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 7: Excel example: New Sample

Considering that the line 3 of the figure 6 refers to a new sample mean that the nutrient analysis
must be added into the database. So each analysis will be introduced into the fact table clean.
At the end of the import, the analysis 180%2 with quantity 892, 144%7 with quantity 901 and
158%2 with quantity 99 will be contained into the database for the given sample.

Overwritting an existing sample It will be admitted that the line 4 of the figure 6 has the same
lims number as the line 3. This means that nutrient analysis must be overwritten. The nutrient
analysis 180%2 won’t be changed into the database as no information is provided on line 4. The
content of the nutrient analysis 144%7 will be changed from a quantity of 901 to a quantity
of 50. The analysis 158%2 will be deleted as the corresponding cell contains the null value.
Finally, a new analysis 163%2 with a quantity of 165 will be added into the fact table clean.

5.2 Detailled exemple of the insertion into the fact table clean

In this part, detailled examples of the insertion into the fact table clean will be presented. Again
a distinction will be made if the sample is new or if it’s an existing one.

New sample
On the figure 7 , the Excel file can be seen. On the line 3, the user wrote the information as
explained before. In order to explain how the import works, the information filled by the user
have been replaced by the corresponding keys. That’s actually what the import application will
do. It will either retrieve or create keys based on the information provided by the user.

As explained before, each sample contains up to three time information. Therefore there are
three time key which are 10571, 10572 and 10573. The time keys implies that each nutrient
analysis must also contain the three time information. So for each nutrient analysis and pro-
vided time information, a new measure pkey will be generated, those keys are also generated
in a sequential order. All the information will be added into the fact table clean using this
generated key.
So the example contained into the excel file will lead to the fact table clean represented on
the figure 8. It can be seen that each nutrient analysis has been tripled. So for each nutrient
analysis and each time information, a new measure pkey has been generated. If there were only
two time information, each nutrient analysis would only be duplicated.

Overwritting an existing sample
On the figure 9 it can be seen that the lims number is the same as in the previous example.
Therefore, the nutrient analysis will be overwritten. If a comparison is made between the cur-
rent excel file and the previous, it can be seen that the analysis 180%2 is new, that the content

nathalie.torrent@uzh.ch 11/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 8: Result into the fact table clean

Figure 9: Excel example: Overwritting Sample

of the analysis 144%7 will be deleted and that the quantity of the analysis 158%2 has changed.
Therefore the fact table clean must be adapted.

As the analysis 158%2 already exists in the table, the corresponding measure pkey are retrieved
and based on them the quantity will be changed. The modified quantity is highlighted in red on
the figure 10 that represents the content of the fact table clean after the overwrite operation. As
the user indicates a value of null for the analysis 144%7, the three measure pkey of this analysis
will be retrieved. The relative database entry will be deleted. The analysis 180%2 is new
analysis, therefore new measure pkey are generated: 12, 13, 14. The new analysis information
are saved under those measure pkey.

6 Description of the import application

In order to describe how the import application works, the code will be first explained. Then
for each code explanation, a leading example will be provided, this leading examples will show
what the code does based on examples. In the examples, the values retrieved for the keys will
be artificial values and not real values contained into the database.
The code concerning the windows handling the data import can be found in the views/u-
pload.pug. The window controller is located in public/javascripts/controllers/upload.js. The
Upload Controller calls the function /upload located into the file route/api/excel.js. All the
code presented below is contained into the last mentioned file.

6.1 Downloading the file

Once the user filled the import excel file, he can go into a webbrowser to access the Swiss Feed
Database. He must then connect as an admin and go on the /upload page (http://localhost:3000/upload).

nathalie.torrent@uzh.ch 12/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 10: Result into the fact table clean after the overwrite

Figure 11: Upload page

This upload page, which is shown on the picture 11, allows the user to import an excel file.
When the user clicks on upload, the import application will start.

The import application will handle the excel file using the package Sheetjs wich allows to
manipulate spreadsheet file over a server. The import application will convert the excel file to
a json file using a defined function of SheetJs. Json files allow a better treatement of data: each
line of the excel file will correspond to a json object. A json object can be seen on the figure
12. It can be seen that the data is represented as an array with the column of the excel file
being used as key to access the data. As an example, the value 1200 which was written under
the column altitude in meters into the excel file is now a json element : altitude in meters :
1200. One big advantage of the convertion of a excel line into a json object is that only the cells
containing information have been converted. However, the json object still maintain a reference
to the excel line into the field rowNum.

The first part of the import application, which can be seen in the listing 1 converts the excel file
into a json file. Then for each json object the function handlerecord is called. In the following
part, a record is used as a synonym of a json object.

1 const workbook = XLSX.read(req.file.buffer , {type: ’buffer ’});

2 const sheet_name_list = workbook.SheetNames;

3

nathalie.torrent@uzh.ch 13/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 12: Json object

4 try {

5 //the option range1 consider the second line of the excel file as the

header

6 const json = XLSX.utils.sheet_to_json(workbook.Sheets[sheet_name_list [0]] ,{

range :1});

7 var error_report = "";

8
9 for (i=0; i<json.length; i++)

10 {

11 var err = await handlerecord(json[i]);

12 error_report = error_report + err;

13 }

14
15 res.send(error_report);

16 } catch (e) {

17 console.log(e);

18 }

19

Listing 1: Conversion excel to json

6.2 handlerecord

The handle record function is the main function that will treat each record (json object) and
insert it into the database. Due to the length of this function, it has been splited into different
listings to explain it easily. The listings combined together form the whole handlerecord func-
tion.
The function handlerecord uses many Builder functions. These functions are actually string
builder. They will return strings that will be used as SQL statements. As the content of thoses
functions consists of concatenating string, they won’t be presented in details.

6.2.1 Prerequesites and feed information

The first part of the handle function can be seen on the listing 2. This first step make sure
that the record contains the main required properties. At first, the function checks if the record
contains a feed key and a lims number. If one of this information is missing, the record will be
ignored and thus won’t be imported.
If the record is valid, the potential feed key will be retrieved from the record. It is necessary
to make sure that this feed key is valid. In order to do that, a sql statement is generated by
calling the function BuilderFeedSQL. This function returns a select statement: ”Select feed key

nathalie.torrent@uzh.ch 14/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 13: Code example: Feed

from d feed where feed key =potential feed key”. This select statement can be seen as a dummy
request because it only makes sure that the given feed key exists in the database. If the execu-
tion of this SQL (db.one(sql feed)) statement provides an error, this will mean that the given
feed key doesn’t exist in the database. Therefore, the whole record won’t be imported. The
user will get informed at the end of the execution that the record hasn’t been imported.

1 if (record.feed_key == undefined){

2 var error_message ="In the excel file a feed key is missing on line " +

record.__rowNum__ + " so this line won’t be imported";

3 return error_message;

4 }

5 if(record.lims_number == undefined){

6 var error_message ="No lims number is provided in the excel line " + record

.__rowNum__ + " so this line won’t be imported");

7 return error_message;

8 }

9
10 //FEED INFORMATION

11 var potential_feed_key = record.feed_key;

12 var sql_feed = BuilderFeedSQL(potential_feed_key);

13 try{

14 var p1 = await db.one(sql_feed);

15 saved_feed_key = p1.feed_key;

16 } catch (error) {

17 //feed key don’t exist

18 var error_message ="The feed key " + potential_feed_key + " doesn’t exist

in the database , it must be added manually. The excel line" +record.

__rowNum__ +" won’t be imported");

19 return error_message;

20 }

Listing 2: Handlerecord part 1

Leading example
In the figure 13, the second column shows what the code does on a real example. It detects if
a feed key is missing, if an unvalid feed key is provided. If a valid feed key is provided, it will
be stored into the variable saved feed key.

6.2.2 Origin information

As explained in the description of the excel template, it’s not mandatory to fulfil the columns
about the origin of the sample. Therefore, the handlerecord function must consider the fact
where no origin information is provided. For that, the function tests if no data is provided for
each origin key. Under the appelation origin keys are all the columns of the excel file related

nathalie.torrent@uzh.ch 15/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

to origin such as country, city, altitude in meters. This simple function return true if origin
information is given and false if not (Listing 3).

1 function originprovided(record){

2 if(record.country == undefined && record.canton == undefined && record.city

== undefined

3 && record.altitude_class == undefined && record.altitude_in_meters ==

undefined

4 && record.postal_code == undefined && record.latitude == undefined &&

record.longitude == undefined

5 && record.animal_density == undefined && record.region_number == undefined

&& record.region_name == undefined){

6 return false;

7 }

8 else {

9 return true

10 }}

Listing 3: originprovided

Origin provided
If an origin is provided, the BuilderOriginSQL is called. This function will return an array
of string. The first string into the array is a select statement and the second one is an insert
statement.
The select statement has this structure: ”SELECT origin key FROM d origin where ori-
gin key 1 = value1 AND AND origin key n IS NULL”. At first, the select statement is
executed. If a origin key is retrieved, it will be saved into the variable saved origin. On the
other hand, if the origin key retrieval fails, this implies that a new origin must be inserted into
the table d origin. This is done by executing the second SQL statement which has the follow-
ing structure: ”INSERT INTO d origin(origin key 1, ...,origin key n) VALUES(value1,...,null)
RETURNING origin key”. This insert statement also returns the newly created origin key that
will be saved into the variable saved origin.

Origin not provided
If the origin is not provided, the BuilderOriginEmpty is called, this will return this select state-
ment: ”Select origin key from d origin where origin key 1 IS NULL AND AND origin key n
IS NULL”. The maintenance script doesn’t allow data without an origin key. Therefore this
SQL statement must be executed. It has been decided to execute this statement in order to
avoid hard coding the origin key corresponding to an empty origin. Again the retrieved key will
be saved into the variable saved origin (Listing 4).

1 // ORIGIN INFORMATION

2 if (originprovided(record) == true){

3 var origin_research = BuilderOriginSQL(record);

4 try{

5 // Checking if the origin is already in the database.

6 var p2 = await db.one(origin_research [0]) ;

7 saved_origin = p2.origin_key;

8 }

9 catch(error){

10 // origin don’t exist it needs to be added

11 try{

12 var p3= await db.one(origin_research [1]);

nathalie.torrent@uzh.ch 16/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 14: Code example: Origin

13 saved_origin = p3.origin_key;

14 }

15 catch(error){

16 console.log("The insertion of a new origin key failed");

17 }

18 }

19 }

20 else{

21 var empty_origin_research = BuilderOriginEmpty () ;

22 try{

23 // Searching the empty origin into the database

24 var p2b = await db.one(empty_origin_research) ;

25 saved_origin = p2b.origin_key;

26 }

27 catch(error){

28 console.log(error);

29 }

30 }

Listing 4: Handlerecord part 2

Leading example

In the figure 14, the three mentionned cases are shown. In order to make the sql statement
easier to understand, the possible origin keys have been reduced to four.
The first line contains an origin that is already into the database. The statement ”SELECT
origin key FROM d origin WHERE country = ‘Switzerland’ AND canton = ‘Zürich’ AND city
IS NULL AND altitude class IS NULL” returns the origin key 12.
The second line illustrates the case where the select statement doesn’t return any key. There-
fore the insert statement ”INSERT INTO d origin(country, canton) VALUES (China, Beijing)
RETURNING origin key” is executed. This statement will return the new origin key of 150.
The last line shows an empty origin. In this case the select statement ”SELECT origin key
FROM d origin WHERE country IS NULL AND canton IS NULL AND altitude class IS
NULL” is executed and returns the key corresponding to an empty origin which is 3257.

6.2.3 Time information

As there can be up to three time information, it is necessary to check if time information is pro-
vided for each moment (moment from 1 to 3). Each time information is considered separately.
As there is no guarantee that a time information is provided, the function timeprovided checks
if the time columns are filled for the corresponding moment. If time information is provided,
the BuilderTimeSQL is called. This function returns an array of string. The first string is a

nathalie.torrent@uzh.ch 17/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

select statement and the second is an insert statement. Again the select statement that aims to
retrieve the time key is executed first. If a time key is retrieved, it will be saved into the array
saved time. If the retrieval fails, the insert statement will be executed and the newly generated
time key will be saved into the table saved time.

1 // TIME INFORMATION

2 var i;

3 for (i =1; i<=3; i++){

4 if (timeprovided(record , i) == true){

5 var time_research = BuilderTimeSQL(record , i);

6 try{

7 // Searching if the time information i are already in the database

8 var p4 = await db.one(time_research [0]) ;

9 saved_time[i-1] = p4.time_key;

10 }

11 catch(error){

12 //The time information doesn ’t exist in the database , need to be added.

13 try{

14 // generating a new time key

15 var p5= await db.one(time_research [1]);

16 saved_time[i-1] = p5.time_key;

17 }

18 catch(error){

19 console.log("The insertion of a new time key failed", error);

20 var error_format ="ERROR : Wrong date format for the line " + record.

__rowNum__ + " This line won’t be imported \n"

21 return error_format;

22 }}

23
24 }

25 else{

26 continue;

27 }}

Listing 5: Handlerecord part 3

Leading example
In the figure 15, two time information are provided: the sampling and the arrival time.
At first, the handlerecord function will consider the harvest time. The timeprovided function
will return false as no information is provided. Therefore the saved time[0] will be undefined.
Secondly, as information is provided about the sampling time, the timeprovided function will
return true and SQL statements will be generated. The select statement, ”SELECT time key
FROM d time WHERE tday IS NULL AND month = 5 AND year = 2015 and moment = 2
and ts = 20150501 and te=20150531 ”, will return the time key 150, this will be saved into saved
time[1]. It is necessary to point out that the SQL statement contains a entry called moment.
This entry keeps track of the different time information: a moment of 1 represents the harvest
time, a moment of 2 the sampling time and a moment of 3 the arrival time. The entry ts and
te represent the time intervals.
Finally the arrival time is considered. The corresponding select statement fails to retrieve a time
key, therefore a new time key must be generated. This is done by executing the insert state-
ment ”INSERT INTO d time(year, moment, ts, te) VALUES (2019,3, 20190101, 20191231)
RETURNING time key”.

nathalie.torrent@uzh.ch 18/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 15: Code example: Time

6.2.4 Sample information

In the listing 6, the sample information are treated. At first the BuilderSampleSQL is called,
this builder returns the string ”SELECT sample key FROM d sample WHERE lims number =
’ValueLimsNumber’”.
The result of the execution of this sql statement will define if a new sample is provided or if a
existing sample must be overwritten.

Overwritting an existing sample
If the select statement returns a sample key, this means that the given lims number was already
into the database. Therefore the sample information must be overwritten. In order to do that,
the BuilderSampleOverwrite is called. This function returns a string in the form of ”UPDATE
d sample SET key1 = VALUE, ..., keyn = null WHERE lims number = ValueLimsNumber”.
If the update statement contains keyn= null , this means that the current keyn value into the
database will be deleted.

New sample
On the other hand if the provided lims number is not into the database, the select statement
won’t return any sample key. If this happens, the BuilderSampleInsert will be called and will
return an insert statement. Based on this insert statement, a new entry will be added into the
table d sample. Once the insertion is done, the new sample key will be returned and will be
saved into the variable saved sample key.

1 // SAMPLE INFORMATION

2 try{

3 //The lims number is already in the database , it must be overwritten

4 var sample_research = BuilderSampleSQL(record);

5 var p6 = await db.one(sample_research);

6 saved_sample_key = p6.sample_key;

7 try{

8 var sample_overwrite = BuilderSampleOverwrite(record);

9 var p6b= await db.none(sample_overwrite);

10 overwrite = true;

11 }

12 catch(error){

13 console.log("ERROR while updating the sample",error);

14 }}

nathalie.torrent@uzh.ch 19/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 16: Code example: Sample

15 catch (error){

16 //the lims number doesn ’t exist , a new sample is inserted into the database;

17 try{

18 var sample_creation = BuilderSampleInsert(record);

19 var p7 = await db.one(sample_creation);

20 saved_sample_key = p7.sample_key;

21 }

22 catch(error){

23 console.log("ERROR while trying to insert a new sample", error);

24 }}

Listing 6: Handlerecord part 4

Leading example
In the figure 16, the first line contains a lims number that is not registered into the database.
So the select statement, ”SELECT sample key FROM d sample WHERE lims number = ‘1012-
4’”, won’t return a sample key. This implies that the insert statement, ”INSERT INTO
d sample(info 1, provenance, batch nr) VALUES (‘Luzerne’,’AGRIDEA’, 13) RETURNING
sample key”, will be executed. The new sample will be saved under the sample key 160.
The second line of the figure 16 represents the fact where the lims number is already contained
into the table d sample. The select statement will return a value of 10 for the sample key. As
a sample key has been retrieved, the information must be updated, this is done by executing
the following sql statement: ”UPDATE d sample SET info 1 = null, provenance = ‘LABO13’
WHERE lims number =’1012-5’”

6.2.5 Nutrient and Nutrient Analysis

Finally the handlereport will start filling the fact table clean. For that, the function will consider
each nutrient analysis that can be identified with a key containing % . An example of a nutrient
analysis will be 120%2: 30. The nutrient key is 120, the nutrient anaylsis key is 2 and the
analysed quantity is 30. The following will be executed for each key containing %.
At first, the function will split the key into two part in order to retrieve the nutrient key which
will be saved in res[0] and the nutrient analysis key that will be saved in res[1]. Then the
function will make sure that both keys are existing keys in the database by executing a select
statement for each case. The select statement for the test of the existence of the nutrient key
is defined by the BuilderNutrientResearch while the existence of the nutrient analysis key is
defined by the BuilderAnalysisResearch. If those keys are retrieved, they will be saved into
variables in order to be used later. If one of the key retrieval fails, the corresponding analysis
won’t be imported into the database. This can be seen in the listing 7. The star at the end of
the listing 7 indicates that the rest of the function is shown in the listing 8.

nathalie.torrent@uzh.ch 20/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

1 // NUTRIENT AND NUTRIENT ANALYSIS

2 for (key in record){

3 if (/%/. test(key)){

4 saved_quantity = record[key];

5 var str =key;

6 var res = str.split (/%/);

7 //in res [0] the nutrient key is saved , in res [1] the nutrient analysis key

8 // Looking if the nutrient and nutrient analysis key are valid

9 try{

10 var nutrient_research = BuilderNutrientResearch(res [0]);

11 var p8 = await db.one(nutrient_research);

12 saved_nutrient = p8.nutrient_key;

13 // Checking if the nutrient analysis key is valid

14 try{

15 var analysis_research = BuilderAnalysisResearch(res [1]);

16 var p9 = await db.one(analysis_research);

17 saved_nutrient_analyses = p9.nutrient_analyses_key

18 }

19 catch(error){

20 error_report_analysis ="ERROR: The nutrient analysis key"+ res [1]+ "

is not valid , so the related analysis won’t be imported , excel line" +

record.__rowNum__;

21 continue;

22 }

23 }

24 catch(error){

25 error_report_analysis ="ERROR: The nutrient key"+ res [0]+ "is not

valid , so the related analyis won’t be imported , excel line" + record.

__rowNum__;

26 continue;

27 }

28 *******

Listing 7: Handlerecord part 5

If the nutrient and nutrient analyses keys are retrieved, data can be inserted into the fact table clean.
Again a distinction must be made if the analysis is made on a sample that was already included
into the database or if it was made on a new sample.

New sample
If the sample is new, the handlerecord executes the part of the listing that is represented at the
line 29 of the listing 8. In this case, new analyses will be added into the fact table clean. The
BuilderInsertFactTable will be called to provide the corresponding insert statement.

Overwrite an existing sample
If the sample has been overwritten, this implies that some analyses may already exist into the
fact table clean. Therefore it is necessary to check if the given analysis already exists into the
database. This check must be executed for each timestamp. As a quick remember, a single
analysis occupies three lines in the fact table clean, therefore there will be three different mea-
sure pkey.
So for each timestamp, the BuilderFactTableResearch will provide a select statement: ”SE-
LECT measure pkey FROM fact table clean WHERE id feed fkey = value AND id time fkey =
value i AND lims number = value and id origin key = value and id nutrient fkey = value AND
id nutrient analyses fkey = value”. If a measure key is retrieved, the given analysis must be

nathalie.torrent@uzh.ch 21/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

overwritten. Therefore the BuilderAnalysisOverwrite is called. This Builder can either provide
an upload or a delete sql statement. If the analysed quantity is null, the BuilderAnalysisOver-
write will return a delete statement. ”DELETE FROM fact table clean WHERE measurepkey =
Value”. If a analysed quantity is provided, the BuilderAnalysisOverwrite will return an update
statement.
It is also possible that new analysis are added on existing samples. In this case, the BuilderIn-
sertFactTable will generate the corresponding insert statement.

1 *******

2 if(overwrite == true){

3 var j;

4 for (j=0; j< saved_time.length; j++){

5 if(saved_time[j]!= undefined){

6 try{

7 var analysis_research = BuilderFactTableResearch(saved_feed_key ,

saved_time[j], record.lims_number , saved_origin , saved_nutrient ,

saved_nutrient_analyses);

8 // retrieve the measure pkey

9 var p10 = await db.one(analysis_research);

10 var measure_pkey_saved = p10.measure_pkey;

11 try{

12 var analysis_overwrite = BuilderAnalysisOverwrite(

measure_pkey_saved , saved_quantity);

13 await db.none(analysis_overwrite);

14 }catch(error){}

15 }

16 catch(error){

17 // There is a new analysis that must be added.

18 try{

19 var insertion_final = BuilderInsertFactTable (saved_feed_key ,

saved_time[j], saved_sample_key , record.lims_number , saved_origin ,

saved_nutrient , saved_nutrient_analyses , saved_quantity);

20 // console.log(insertion_final);

21 var p10a = await db.one(insertion_final);

22 var measurekey = p10a.measure_pkey;

23
24 }catch(error){console.log(error);}

25 }}}}

26
27 else{

28 var j;

29 for (j=0; j< saved_time.length; j++){

30 try{

31 if(saved_time[j]!= undefined){

32 var insertion_final = BuilderInsertFactTable (saved_feed_key ,

saved_time[j], saved_sample_key , record.lims_number , saved_origin ,

saved_nutrient , saved_nutrient_analyses , saved_quantity);

33 // console.log(insertion_final);

34 var p10 = await db.one(insertion_final);

35 var measurekey = p10.measure_pkey;

36 }

37 }

38 catch(error){

39 console.log ("An error occured while inserting into fact table ",

error);

40 }}}}

41
42 else{

nathalie.torrent@uzh.ch 22/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 17: Code example: Analysis

43 continue;

44 }}

45 var success = "Line " + record.__rowNum__ + " has been successfully inserted \n

";

46 var success = error_report_analysis + success;

47 return success;

Listing 8: Handlerecord part 6

Leading example

The first line of the example in the figure 17 assumes that the sample with lims number 1012-4
is new, therefore the insert statement will be executed. Below is provided one insert statement
that must be executed for the analysis 180%2. As each analysis can have up to three time
information , there must be one insert statement pro time key for each nutrient analsis. A feed
key of 1500, an origin key of 12, a time key of 150, a sample key of 160 are considered. The
insert statement would be: ”INSERT INTO fact table clean(id feed fkey, id origin, id time fkey,
id sample fkey, lims number, id nutrient fkey, id nutrient analyses fkey, quantity’) VALUES(’
1500, 12, 150, 160, ‘1012-4’, 180, 2, 13) RETURNING measure pkey’”.
The second lines aims to show the case where the sample with a sample key of 10 must be
overwritten. In this case, the content of the analysis 180%2 was already into the database,
therefore the quantity must be updated. Again there will be an update statement for each
measure pkey corresponding to the analysis: ”UPDATE fact table clean SET quantity = 150
where measure pkey = 1566; ”.
The last examples aims to delete all the values corresponding to the analysis 144%7. At first
the corresponding measure pkey must be retrieved. Then for each of the three measure pkey the
following statement will be executed: ”DELETE FROM fact table clean WHERE measure key
= value”

6.3 End of the import

When the handlereport function has been executed for each report, the error report will be
shown on the web browser (Figure 18). The goal of this error report is to help the user knows
what happened. The idea is that the user copies the excel line that haven’t been imported into
a new excel file, corrects them and then tries to upload them again.

Following messages can be seen:

1. ERROR: in the excel file a feed key is missing on line X so this line wasn’t imported.

nathalie.torrent@uzh.ch 23/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Figure 18: Error report

2. ERROR: No lims number was provided in the excel line X so this line wasn’t imported.

3. ERROR: The feed key Y doesn’t exist in the database, it must be added manually. The
excel line X won’t be imported.

4. ERROR: Wrong date format for the line X and the moment i. This line won’t be imported.

5. ERROR: impossible to overwrite the sample given on line X. Possible error causes: apos-
trophe or space contained into a cell that must contain a numerical value. Please remove
them. Overwrite statement causing the issue

6. ERROR: impossible to insert the sample given on line X. Possible error causes: apostrophe
or space contained into a cell that must contain a numerical value. Please remove them.
By looking at the following insert statement, you can see where if they are 2 commas in
the VALUE part and find the corresponding header Insert statement causing the issue

7. ERROR: The nutrient analysis key Y is not valid so the related analysis won’t be imported,
excel line X

8. ERROR: The nutrient key Y is not valid so the related analysis won’t be imported, excel
line X

9. Line X inserted into the database.

The errors 1, 2, 3, 7 and 8 are easy to detect. The error 4 is harder to detect. This error can
occurs if the user used the wrong date format in excel : he used DD/MM/YYYY instead of
DD.MM.YYYY. This error can also happen if the cell is not in a date format or if the cell day i
is not empty e.g it contains a space. Before trying to reimport this line, the user should check
the above mentionned cases. The first thing he should do, is select all the empty cells day i and
click on delete to make sure that they are really empty.
The errors 5 and 6 have similar causes. This can occurs if the character ’ is contained in one
of the excel cells. This character is a special character used into the SQL statements. So if
the user writes the character ’, this will implies that the corresponding SQL statements will be
wrong. So at first the user should open the excel file, click ”Ctrl + F” and search for ’ and
replace it by a space. If this doesn’t work, he can delete the content of all the empty cell to
make sure that no blank space is contained in them, as this is the second source of errors.
For each line that have been correctly inserted, ”Line X inserted into the screen” will be shown.
Once the error report appears on the webpage, it implies that the content of the excel file has

nathalie.torrent@uzh.ch 24/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

been introduced into the database. However the new entries are still not accessible on the web
application. In order to push the newly added data on the database, the maintenance step must
be executed.

6.4 Maintenance

The maintenance step aims to delete old content into the views of the database, insert the newly
added data, to reindex the table and to recompute statistics. This step is mainly executed by
executing the SQL statement: Select * from maintenance global().
As this step is time and ressource consuming, it has been decided that the user should execute
this sql statement manually after he imported the data. It can be judicious to execute this
maintenance step at night or outside of the working hours.

7 Conclusion and remaining issues

The detailled functioning of the application has been explained. At first, the new import file
has been described in details using many different example. The goal of this explanation was
to make sure that the user knows exactly how to fulfill the file. He must at least provide
two information: a feed key and a lims number and must especially pay attention not the use
the character ’. Then the source code of the application has been explained. Basically the
application goes through each line of the excel file. At first it retrieves the feed key, then take
care of the origin information. After that, each timestamp is considered and in total three time
keys are generated. One advantage in the management of the origin and time information is
that the application can handle the fact where no information is provided. Then the sample
information were considered. The application is able to handle new and existing samples. If the
sample is new, it will be inserted into the database. If on contrario the sample already exists,
the sample information will be overwritten. Finally the nutrient analysis are considered. This
part is the most complicated part of the import application as there must be a distinction based
on the fact that nutrient analysis are made on a new or on a existing sample. If the sample
is new, all the nutrient analysis will be inserted into the database. It must be remembered
that each nutrient analysis must be inserted into the database up to three times: there is a
new entry for each nutrient analysis and for each provided timestamp. On the other hand, if
the analysis were made on an existing sample, some analysis may be modified, added or even
deleted. After a discussion with Ms. Bracher, it has been found out that the deletion of analysis
is a possible case even if it happens rarely. However this special case is still considered by the
import application. Once the whole file has been treated the error report will be shown to the
user. This is a signal that the execution of the import application is complete. Then the user
must manually execute the maintenance step. Regarding the given time, it was more important
to provide a working import application as the old one was slowly getting obsolete. Therefore,
the focus was put on the import part rather than on the maintenance part.
One of the main programming issue was the fact that Javascript could be considered as an
asynchronous language. Trials have been done to create a progress bar in addition to the error
report. This comes out to be a way more complicated than expected. At the end, it has been
decided to focus only on what was more important for the user. Therefore, only errors were
reported. It is actually more helpful for the user to get a feedback about what has functioned
and what hasn’t instead of only getting a progress bar. However, a further developpment of
this import application could include a progress bar in addition to the error report.

nathalie.torrent@uzh.ch 25/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Regarding the errors that can occur, the fact that the character ’ is not allowed can lead to
many errors if the user has forgotten not to use it. Actually all the sql statements are made
of string concatenation: so if a character ’ is found, the functions will be provide a wrong sql
statement especially in the insert statement. This point and the fact that the date format must
be really precise is one of the issue that could go against the robustness of the application.
Considering the ease of use, the webpage is simple to use as only one action is required from
the user: select the excel file to upload. The detailled report are also an interesting way to help
him understand what has been going on. Moreover inserting around 200 excel lines into the
database will take maximally one minute. So the application works well even if a large amount
of data is provided into the excel file.

nathalie.torrent@uzh.ch 26/28

mailto:nathalie.torrent@uzh.ch

Nathalie Torrent

Appendices

nathalie.torrent@uzh.ch 27/28

mailto:nathalie.torrent@uzh.ch

1

1

1

*
1

*

1

*

1

*

*

1

1

1
1

1

1

*

1

*

1

*

1

*

1

1

1

1

1

*

1

*
1

*

1

*

1
*

1
*

1

*

1

*

1

*

1

*

1

*

1

*1

*

1
*

1

*

1

*

1

*

1

*

1

*

1
*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

*

1

*

1

1

*

fact_table

measure_pkey int

lims_number varchar

id_nutrient_fkey integer

id_feed_fkey integer

id_origin_fkey ubteger

id_time_fkey integer

id_sample_fkey integer

fact_table_clean

measure_pkey int

lims_number varchar

id_feed_fkey integer

id_nutrient_fkey integer

id_origin_fkey ubteger

id_time_fkey integer

id_sample_fkey integer

id_nutrient_fkey_old integer

id_nutrient_analysis_fkey integer

vr_cube

feed_key integer

nutrient_key integer

origin_key integer

time_key integer

vc_cube

feed_key integer

nutrient_key integer

origin_key integer

time_key integer

d_feed

feed_key integer

old_key integer

t_formula_feed

id_feed integer

id_formula integer

t_formula

id integer

nutrient_fkey integer

d_nutrient

nutrient_key int

z_id integer

d_nutrient_old

nutrient_key integer

d_nutrient_analysis_map

nutrient_fkey integer

nutrient_analyses_fkey integer

old_nutrient_key integer

reference_data_temp

id integer

fkey_feed_old_key integer

feed_fkey integer

nutrient_fkey integer

reference_data

id integer

fkey_feed_old_key integer

feed_fkey integer

nutrient_fkey integer

vc_classified_feeds

feed_key integer

old_feed_key integer

feed_group_id integer

vc_agridea_feeds

feed_key integer

vc_unclassified_feeds

feed_key integer

vs_classified_feeds

feed_key integer

old_feed_key integer

feed_group_id integer

vs_classified_nutrients

z_id integer

z_group_id integer

vs_classified_nutrients_tree

z_group_id integer

z_specie_id integer

vs_classified_nutrients_root

z_specie_id integer

z_group_id integer

vr_classified_feeds

feed_key integer

old_feed_key integer

feed_group_id integer

vr_agridea_feeds

feed_key integer

vr_unclassified_feeds

feed_key integer

vr_classified_feeds_tree

feed_group_id integer

parent_feed_group_id integer

vs_classified_feeds_tree

feed_group_id integer

parent_feed_group_id integer

vc_classified_feeds_tree

feed_group_id integer

parent_feed_group_id integer

Vostemp

g text

t date

e varchar

queries

id integer

dd_places

places_key integer

userclicks

id integer

username varchar

d_cantons

kanton_nr integer

contributors

name text

role text

spatial_ref_sys

srid integer

d_nutrient_analysis

nutrient_analysis_key integer

users

username varchar

d_sample

sample_key integer

old_feed_key integer

d_origin

origin_key int

kanton_nr smallint

d_time

time_key integer

	Introduction
	Installation
	PostgreSQL setup
	Apache setup
	Creating and loading the local database
	Web Application

	Database Schema
	Requirement Analysis
	Current Solution
	Requirements for the new application
	Excel Template
	Import Application

	Import File
	Superficial structure of the import file
	Feed
	Origin
	Harvest, Sampling and Arrival Time
	Sample Information
	Nutrient Analysis

	Detailled exemple of the insertion into the fact table clean

	Description of the import application
	Downloading the file
	handlerecord
	Prerequesites and feed information
	Origin information
	Time information
	Sample information
	Nutrient and Nutrient Analysis

	End of the import
	Maintenance

	Conclusion and remaining issues
	Appendices

