
Titus Cieslewski and Davide Scaramuzza 

From Single-Agent to  
Decentralized Multi-Agent SLAM 



Vision-based Navigation of Flying Robots 
 

[AURO’12, RAM’14, JFR’15] 

Event-based Vision for Aggressive Flight 
 

[IROS’3, ICRA’14, RSS’15] 

Visual-Inertial State Estimation (SVO) 
 

[IJCV’11, PAMI’13, RSS’15, TRO’16] 

Our Research Areas 

Deep Learning for End-to-End Navigation 
 

[RAL’16] 



Outline 

 From single-robot SLAM to centralized multi-robot SLAM 

– [Forster 2013] 

 Decentralized multi-robot SLAM: Place Recognition 

– [Cieslewski 2017] 

 Decentralized collaboration with version control 

– [Cieslewski 2015] 
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From single-robot to multi-robot SLAM 
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Single-robot SLAM 

[Mur-Artal 2015 ORB-SLAM] 



Single-robot SLAM components 

 Our focus is on visual / visual-inertial SLAM 
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Multi-robot SLAM 
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Centralized multi-robot SLAM 
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System Overview 

Distributed processing: 

 Each MAV runs an onboard visual odometry and streams point features 
and relative poses (1 Mbit/s instead of 90 Mbit/s for full frames at 30 Hz) 

 The ground station computes local maps for each MAV, detects overlaps, 
and merges different maps into global map 
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Mapping on the Groundstation 
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Mapping on the Groundstation 

MAV 

Groundstation 
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𝑅, 𝑡 Use motion 
estimate from 
Visual Odometry as 
prior 
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Mapping on the Groundstation 

MAV 

Refine pose w.r.t map 
with Bundle Adjustment 

g2o [Kümmerle et al., ICRA’11] 

𝑅, 𝑡 

𝑅𝐵𝐴, 𝑡𝐵𝐴 Groundstation 
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Place Recognition 

1. Appearance-based Detection 

 Bag of Words image retrieval 

2. Geometric Verification 

 3-point RANSAC for point-cloud alignment 
3-point algorithm [Kneip & Scaramuzza,CVPR’11] 

[Sivic et al., 2005] 
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Map Merging (multiple robots) 
Outdoor flight 
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Summary: Centralized multi-robot SLAM 

 Visual odometry on-board the individual robots 

 Ground station 

– Optimization with bundle adjustment 

– Loop closure and map merging with bag-of-words place 
recognition 

 At the heart of active research: 

– [Morrison 2016 MOARSLAM] 

– [Schmuck 2017 Multi] 

– … 
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Why decentralize? 

 Scalability 

 More practical field deployment 

 Robustness to failure 

 Privacy / militaristic considerations 

T. Cieslewski – University of Zurich – From Single-Agent to Decentralized Multi-Agent SLAM 



How to decentralize? 
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How to decentralize map optimization? 
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Decentralized trajectory optimization 

 Filter- based: [Grime 1994 Data], 
[Roumeliotis 2002 Distributed], 
[Nettleton 2003 Decentralised], 
[Carlone 2010 Rao], [Leung 2011 
Distributed] 

 Graph- based: [Kim 2010 
Multiple], [Cunningham 
2010/2013 DDF], [Paull 2015 
Communication], [Choudhary 
2016 Distributed] 

 Approach: Each robot optimizes 
its own map, exchange of 
condensed / marginalized 
information 

From [Choudhary 2016 Distributed] 
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How to decentralize place recognition? 
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Place recognition from other robot’s maps 

 Relative localization with visual 
place recognition instead of direct 
observations 

 Advantages 

– More recall → less redundancy 
e.g. in exploration 

– No special hardware needed 

 Disadvantages 

– Relies on connectivity 

– More bandwidth required 

– Can be prone to Perceptual 
Aliasing 
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Decentralized visual PR: Query everyone? 
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We can do better 
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Distributed Hash Tables (DHTs) 

 Developed by the distributed 
computing community in the 
early 2000s (e.g. [Stoica 
2001]) 

 Efficient Key-Value lookup in 
a distributed map 

 Key insight: Deterministic 
assignment of keys to peers: 
Report new data to and 
query only one peer 
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Distributed Hash Tables (DHTs) 
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Distributed Bag-of-Word Place Recognition 

 Deterministically assign Visual Words to Robots using a DHT! 

 A place query is now split into several partial queries 

 

 

 

 

 Send partial queries to the different robots. 
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Results 

 The amount of data exchanged is significantly reduced 

 In the paper, we discuss consequences in different network types 

 Because of a simplification in aggregation, recall is slightly affected 
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What about full image descriptors? 

 Preliminary work: https://arxiv.org/abs/1705.10739   

 Using NetVLAD [Arandjelović 2016] 

 Simpler: Not visual words, but clusters of full image descriptors 
assigned to robots 

Image source: Yi Cao, Mathworks file exchange 

T. Cieslewski, D. Scaramuzza: Efficient Decentralized Visual Place Recognition From Full-Image Descriptors Arxiv 2017 

https://arxiv.org/abs/1705.10739
https://arxiv.org/abs/1705.10739


Full image descriptors: Preliminary results 

 Performance relative to centralized place recognition similar to the 
Bag-of-Words approach 

 Much smaller queries (0.5 VS 16kB) and better absolute 
performance with our Bag-of-Words implementation 

 However: Bad load balancing:  Inherent difference between 
training and testing distribution. 
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Summary: Decentralized Place Recognition 

 Place recognition from other robot’s maps 

 Up to n-fold bandwidth reduction VS querying all robots 

 Based on Bag-of-Words or full image descriptors 
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Decentralized collaboration 

 SLAM is not the only multi-robot task 

 Can we make a general framework for multi-robot collaboration? 

 Shared state with different levels of ownership 

 How do humans collaborate on a shared state? 

– Version control 

Autonomous  

Systems Lab 
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Decentralized version control for robots 

 Like typical version control: 

– Optimistic Concurrency Control (checkout/commit) 

– Conflict handling (rule-based) 

 Unlike typical version control: 

– Partial participation in the distributed state 

– Fully decentralized 

– Changes are implicitly pushed 

– Deals with time delays 

 More features: 

– Decentralized lookup 

Autonomous  

Systems Lab 
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 We originally wanted to use it in decentralized multi-session SLAM 

 Problem: Constraints propagate through the entire graph 

 Map API better suited for locally restricted tasks 

 

 

 

 

 

Why we developed it 
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Do you see a use case? 

 Decentralized version control for your robot teams 

 C++ 

 We open source it! 

 https://github.com/ethz-asl/map_api  

Autonomous  

Systems Lab 
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https://github.com/ethz-asl/map_api
https://github.com/ethz-asl/map_api
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Summary 

 Overview of multi-robot SLAM 

– How a centralized system works 

– Centralized VS Decentralized 

 Decentralized Place Recognition 

– Recognize from maps for higher recall 

– A DHT-based method for less bandwidth 

 Decentralized general collaboration framework 

– Version control for robots. 

– Available as open-source code! 
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