
GuideGen – A Tool for Keeping Requirements and Acceptance
Tests Aligned

Sofija Hotomski and Martin Glinz
Department of Informatics, University of Zurich, Switzerland

Email:{hotomski,glinz}@ifi.uzh.ch

ABSTRACT
When changes in requirements occur, their associated tests must
be adapted accordingly in order to maintain the quality of the
evolving system. In practice, inconsistencies in requirements and
acceptance tests—together with poor communication of changes—
lead to software quality problems, unintended costs and project
delays. We are developing GuideGen, a tool that helps require-
ments engineers, testers and other involved parties keep require-
ments and acceptance tests aligned. When requirements change,
GuideGen analyzes the changes, automatically generates guid-
ance on how to adapt the affected acceptance tests, and sends
this information to subscribed parties. GuideGen also flags all
non-aligned acceptance tests, thus keeping stakeholders aware
of mismatches between requirements and acceptance tests. We
evaluated GuideGen with data from three companies. For 262
non-trivial changes of requirements, the suggestions generated by
GuideGen were correct in more than 80 percent of the cases for
agile requirements and about 67 percent for traditional ones.
Demo video: https://vimeo.com/254865530

CCS CONCEPTS
• Software and its engineering → Software notations and tools;
Requirements analysis; Acceptance testing; Software evolution;

ACM Reference Format:
Sofija Hotomski and Martin Glinz. 2018. GuideGen – A Tool for Keeping
Requirements and Acceptance Tests Aligned. In ICSE ’18 Companion: 40th
International Conference on Software Engineering , May 27-June 3, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3183440.3183484

1 INTRODUCTION
Weak alignment of requirements-related activities with validation
and verification tasks leads to software quality problems, unin-
tended costs, wasted effort and delays. In particular, when re-
quirements documents are not aligned with their corresponding
acceptance tests, features might be incorrectly verified or not ver-
ified at all [4]. Maintaining the alignment is a difficult task due
to many factors, such as poor communication of changes among
team members and manual tracing between requirements and
acceptance tests. For instance, when a requirements engineer

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183484

changes a requirement, but does not timely communicate this to
developers and testers, testers will report bugs for newly added or
removed features. Time and effort is wasted for understanding the
causes of such problems and making the documentation consis-
tent again [9]. Furthermore, communicating changes explicitly is
time-consuming and prone to misunderstandings. Problems also
stem from using different tools for managing requirements and ac-
ceptance tests where traces between artifacts must be established
and maintained manually. In some companies, requirements and
tests are still captured in spreadsheets or text documents, having
barely or no traces between documents.

We are developing GuideGen, a tool that keeps requirements
and acceptance tests closely together and aligned when require-
ments evolve. The core idea of our tool, which distinguishes it
from other document management tools, is that it automatically
generates guidance on how to adapt the impacted acceptance
tests according to changes in requirements. In such a way, Guide-
Gen supports requirements engineers in easily communicating
requirements changes to testers and test engineers in properly
adapting acceptance tests when their related requirements change.
In addition, GuideGen automatically creates the traces between
requirements and acceptance tests as soon as a new acceptance
test is added for a requirement.

In this paper, we focus on the main features of the tool and how
they are used. The technical details as well as the evaluation of the
GuideGen approach are described in [10] and [11]. We describe
the main features of the tool in Section 2 and summarize the
evaluation in Section 3. Section 4 briefly discusses related work.

2 THE GUIDEGEN TOOL
GuideGen is a web application, written in Java using Servlet and
JSP technology [8]. It is deployed on Apache Tomcat [19]. On the
one hand, GuideGen supports requirements engineers in main-
taining the requirements of a system and in communicating all
changes of requirements to testers, developers and other inter-
ested parties on-time and with almost no effort. On the other
hand, GuideGen supports testers, who maintain acceptance test
documents, by providing them with guidance on how to modify
impacted tests so that they stay aligned with the modified require-
ments. In addition, by flagging all non-aligned acceptance tests,
any stakeholder can easily see which acceptance tests are cur-
rently mis-aligned with their corresponding requirement—be it
that tests do not exist yet or that they have not been updated after
changes in the requirements.

The current version of GuideGen is limited to one acceptance
test per requirement. This is no severe limitation: in a previous
study [9] we found that a one-to one correspondence between
requirements and acceptance tests frequently occurs in practice.

https://doi.org/10.1145/3183440.3183484
https://doi.org/10.1145/3183440.3183484
https://doi.org/10.1145/3183440.3183484


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Sofija Hotomski and Martin Glinz

2.1 Using GuideGen
Upon starting the application, a user can (1) upload a collection
of existing requirements and acceptance tests into GuideGen,
(2) view the current list of requirements and acceptance tests, or
(3) add a new requirement. The resulting list is shown in Figure 1.

Figure 1: List of requirements and their acceptance tests.

The acceptance tests shown in Figure 1 are all aligned with their
requirements—they are green and no warning flags are shown.
When a user clicks on the identifier of a requirement or acceptance
test, GuideGen shows the selected requirement or test in detail
and the user can edit it. Subsequently, we describe three typical
scenarios for working with GuideGen.

Scenario 1: Changing a requirement. Let’s assume that a re-
quirements engineer selects and edits the requirement REQ3:

A student can edit his personal data and the knowledge level.
Only teachers can edit students’ knowledge level.
- The knowledge level can be: – beginner, – intermediate, – advanced,
– proficient. This change is due to users’ feedback.

Added words are green and underlined, removed ones are red
and struck through, while unchanged text is shown in black. As
soon as the requirements engineer saves the changes, GuideGen
identifies the relevant change patterns and, within about three
seconds, generates guidance on how to adapt the associated ac-
ceptance test. Figure 2 shows the guidance generated for the pre-
viously presented changes.

1

2

Figure 2: List of generated suggestions. A user may ignore sug-
gestions (1) and e-mail the other ones to interested parties (2).

1

2

Figure 3: The warning flag showing a mismatch (1) and the but-
ton for displaying the non-aligned documents only (2).

Figure 4: The form for editing TEST-3.

The guidance generated by GuideGen consists of a suggestion
per added, deleted or modified sentence. GuideGen lets the re-
quirements engineer review the suggestions and allows her to
mark those that she considers irrelevant or wrong (Fig. 2). As soon
as she confirms, GuideGen automatically creates an e-mail and
sends it to all GuideGen users who have subscribed for receiving
change alerts. This e-mail consists of three parts: (1) the test case
to be modified, (2) the generated suggestions, and (3) the original
and the changed requirement. GuideGen also flags non-aligned
tests in the list of requirements and acceptance tests with yellow
color and a warning sign, as shown in Figure 3.

Scenario 2: Adapting an acceptance test. Let’s assume that a
tester receives an e-mail about the change in requirement REQ3
as described above, reads the message, and decides to adapt the
impacted acceptance test. After launching GuideGen, the tester
clicks TEST-3 which is flagged as non-aligned by GuideGen (see
Figure 3). GuideGen then displays a form for editing the test case
(see Figure 4). In the edit field on the left, the current version of
the test is displayed. On the right side, the suggestions generated
by GuideGen about how to change the test case are displayed. The
tester can now edit the test according to the given suggestions,
without having to analyze the changed requirement manually.
When he saves his changes, GuideGen will remove the warning in
the requirements list and display the test-ID in green.

Scenario 3: Overview of non-aligned tests. A stakeholder can
get an overview of all acceptance tests which are currently not
aligned by opening the list of requirements and acceptance tests
in GuideGen (Figure 3) and filtering it for non-aligned entries by
clicking the “Non-aligned” button.



GuideGen – Keeping Requirements and Acceptance Tests Aligned ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

2.2 The Algorithms Used in GuideGen
In this subsection, we briefly describe how our approach works.
GuideGen first identifies relevant change patterns and then gener-
ates the text of the suggestions. For more details see [11].

Identifying relevant change patterns. Relevant change patterns
characterize those changes in requirements that require the as-
sociated acceptance test to be adapted. We classify the changes
into relevant and irrelevant ones by analyzing changes both on
the sentence level and on the level of individual words.

In the analysis on the sentence level, we identify added, deleted
and modified sentences. First, we split the old version of the
changed requirement (oldReq in further text) and the new ver-
sion (newReq) into sentences using an implementation of the
Stanford sentence splitting algorithm [13]. We then compare the
sentences from oldReq with the sentences from newReq by using
a semantic similarity toolkit [17]. If the similarity between a sen-
tence in oldReq and one in newReq is equal to one, that sentence is
unchanged. For distinguishing between deleted and modified sen-
tences, we use an experimentally determined similarity threshold
of 0.6. If for a sentence s in oldReq there is no sentence in newReq
with a similarity score above the similarity threshold, we consider
s to be deleted. Otherwise, s has been modified. We identify the
corresponding sentence s’ in newReq by choosing the pair (s, s’)
with the highest similarity score among all candidate pairs.

When we remove best matches, unchanged sentences and al-
ready identified deleted sentences, the leftovers in newReq are
added sentences and the leftovers in oldReq are deleted sentences.

For modified sentences, we then analyze the changes on the
word level. First, we split each modified sentence into a list of
words. Then our diff engine determines whether the words have
been added, deleted, modified or are unchanged. We adapted
the algorithm implemented in Text_Diff [7], so that we get the
changes at a word level, instead of a phrase level as in the original
implementation. We then identify a word class (e.g. noun, verb)
and grammatical function (e.g. subject, object) for each word.
For identifying word classes we use SyntaxNet [2]. SyntaxNet also
identifies dependencies between words, presented as dependency
numbers, which is used later when we generate suggestions. An
example of the output of SyntaxNet is shown in Figure 5.

ID	 	TEXT 	 						WORD		 			DEPENDENCY			GRAMMATICAL	
	 	 	 	 	 	CLASS										NUMBER											FUNCTION	

	
1 	 	A 	 	 	 				DET 	 	 			2	 	 	 	 	det 		
2 	 	student	 				NOUN	 	 			4	 	 	 	 	nsubj		
3 	 	can 	 	 				VERB 	 	 			4	 	 	 	 	aux	
4 	 	edit 	 	 				VERB 	 	 			0	 	 	 	 	ROOT	
5 	 	personal 				ADJ	 	 	 			6	 	 	 	 	amod	
6 	 	data 	 	 				NOUN	 	 			4	 	 	 	 	dobj	
7 	 	and 	 	 				CONJ 	 	 			6	 	 	 	 	cc	
8 	 	the 	 	 				DET 	 	 			10 	 	 	 	det	
9 	 	knowledge			NOUN	 	 			10 	 	 	 	nn	
10	 	level 	 	 				NOUN	 	 			6	 	 	 	 	conj	
11	 	. 	 	 	 				PUNCT 	 			0	 	 	 	 	ROOT	

Figure 5: The SyntaxNet output for the old version of the first
sentence in the example shown above.

Finally, we classify the changes into relevant and irrelevant
ones. As acceptance tests contain a list of actions to be performed,
and actions are generally expressed using verbs in English sen-
tences, we consider a change in a requirement to be relevant if

it involves an addition, deletion or modification of a verb or of
another word class that relates to a verb, such as nouns (subjects,
objects). Changes of other word classes, such as determiners, rela-
tive pronouns or prepositions are irrelevant, since we assume that
they do not influence any actions.

Generating guidance. For all relevant changes, we now formu-
late a list of suggestions on how to adapt the affected test cases.
We identify static parts first, then we identify dynamic parts and
finally we combine them to formulate a suggestion.

The static parts are identified by analyzing the change patterns.
For instance, when a whole sentence has been added, the static
part is “Add new steps or modify existing steps to verify that”. When
a sentence has been deleted, the static part is “Delete steps or their
parts which verify that”. If a sentence has been modified, the static
parts are formulated according to the modification type: whether a
verb, subject, object, adjective or number has been added, deleted
or modified. For instance, if a subject has been added, the static
parts of the suggestion are “Make sure that now +{dynamic part}”
and “Add the steps which verify this activity.”

We then identify the dynamic parts. When a whole sentence has
been added or deleted, the dynamic part contains that sentence.
When a sentence has been modified, we formulate the dynamic
parts by finding and sorting the related words of the changed word.
For instance, when “the knowledge level” has been deleted, we
identify that the object “level” refers directly to the noun “data”
by a conjunction (see Figure 5). In this case we find verbs and
subjects that are related to the main object (“data”). The verb “edit”
with its auxiliary verb “can” is directly related to the noun “data”
and the subject “student” with its determiner “a” directly refers to
the verb “edit”. The noun “knowledge” with its determiner “the”
directly refers to the object “level”. We sort the words by their index
and formulate the dynamic part of the suggestion: “a student can
edit the knowledge level”. Since the change pattern is “an object is
deleted”, the static part is “Delete steps or their parts which verify
that”. Finally, when we combine the static and the dynamic part,
the following suggestion is generated: “Delete steps or their parts
which verify that a student can edit the knowledge level.”

GuideGen is applicable for requirements and acceptance tests
written in (free-form or structured) natural language. We have not
explored generating suggestions for how to change the test code
when using automated, executable tests.

3 EVALUATION
In this section, we summarize the results of a first evaluation of
the GuideGen approach with real-world data. The details are de-
scribed in [11].

Study design. We obtained 262 requirements changes from
three companies. Companies C1 and C2 work with user stories,
while company C3 writes traditional textual requirements. For ev-
ery change, we used GuideGen to generate guidance about how to
change the associated acceptance test. We then asked experts from
the three companies to evaluate the generated suggestions with
respect to seven questions: (1) correct with respect to suggested
actions? (2) grammatically correct? (3) complete? (4) understand-
able? (5) self-explanatory?, (6) unnecessary?, and (7) any missed
changes?



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Sofija Hotomski and Martin Glinz

Results. For companies C1 and C2, the experts found more
than 80% of the suggestions to be correct in terms of actions. For
C3, there was some disagreement among the experts resulting
in 66.7% of the suggestions being considered correct on average.
Grammatical correctness ranged from 67.5% (C2) to over 80% (C1
and C3). Over 93% of all suggestions were considered to be com-
plete and understandable by all experts. Over 70% were considered
to be self-explanatory. With respect to necessity, results were good
for C1 and C2: the experts found only 7 to 10% of the suggestions
to be unnecessary. In C3, however, two experts considered about
30% of the suggestions unnecessary and one expert even found
50% to be unnecessary. The rate of missed changes (i.e., no sug-
gestion was generated although it would have been appropriate
to create one) was only 3 to 6%. When comparing our results with
a gold standard of 100% correct suggestions, GuideGen achieves a
very high recall (94-97%) with rather high accuracy.

In follow-up interviews, all experts deemed GuideGen to be
useful for communicating changes on time and with less effort,
and helpful for test engineers to update acceptance tests. They
also preferred the explicit guidance produced by GuideGen over
just being notified about changes in requirements.

4 RELATED WORK
In order to keep software documentation consistent when a sys-
tem evolves, researchers propose information retrieval [6], [12] or
natural language processing [3] methods to automatically identify
which documents are related to each other and which of them
are impacted by a change. However, there is little research about
how to actually update impacted documents, although it would
be beneficial to have guidance about how to handle the changes
and what actions to perform [15]. Our tool provides concrete sug-
gestions for testers on how to handle changes.

Many researchers studied the role of communication in the suc-
cess of software projects and its challenges [18], [5], [1]. Some sug-
gest that face-to-face communication should be the main source
of knowledge sharing, since writing e-mails or documents is time-
consuming [14]. However, having only verbal communication in-
troduces the risk of misunderstandings and miscommunicated
changes due to many factors, such as geographic, temporal, cul-
tural, and linguistic distance [16]. GuideGen reduces the effort
needed for communicating changes by automatically providing
e-mails with information regarding the change.

5 CONCLUSION
Summary. We presented GuideGen, a tool that (1) automatically
generates guidance on how to align acceptance tests with evolving
requirements, (2) provides e-mail notifications with that guidance
and a summary of changes, and (3) sets warning flags that make
stakeholders aware of mismatches between requirements and
associated acceptance tests. The evaluation of our approach shows
promising results with respect to the correctness, completeness
and understandability of the generated guidance.

Limitations. Currently, GuideGen is a standalone tool, which
limits its applicability in projects that use existing tool chains for
managing requirements and tests. This is due to the fact that our
tool is part of ongoing research where the focus is on principles

rather than on features. As mentioned above, the current version
is also limited to one acceptance test per requirement. Further,
GuideGen does not check whether the generated suggestions are
actually followed when an acceptance test is updated.

Future Work. We are currently evaluating the GuideGen ap-
proach with respect to its usefulness and applicability in indus-
trial practice. We also plan to address the current limitations of
the GuideGen tool.

ACKNOWLEDGEMENTS
This work was partially funded by the Swiss National Science Foun-
dation under grant 200021-157004/1.

REFERENCES
[1] Gojko Adzic. 2009. Bridging the communication gap: specification by example

and agile acceptance testing. Neuri Limited.
[2] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,

Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized
transition-based neural networks. arXiv preprint arXiv:1603.06042 (2016).

[3] Chetan Arora, Mehrdad Sabetzadeh, Arda Goknil, Lionel C Briand, and Frank
Zimmer. 2015. Change impact analysis for natural language requirements: An
NLP approach. In 23rd IEEE International Requirements Engineering Conference
(RE’15). 6–15.

[4] Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalmsteiner,
Emelie Engström, Björn Regnell, Giedre Sabaliauskaite, Annabella Loconsole,
Tony Gorschek, and Robert Feldt. 2014. Challenges and practices in aligning
requirements with verification and validation: a case study of six companies.
Empirical Software Engineering 19, 6 (2014), 1809–1855.

[5] Elizabeth Bjarnason and Helen Sharp. 2017. The role of distances in require-
ments communication: a case study. Requirements Engineering 22, 1 (2017),
1–26.

[6] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raffaella Settimi, and Eli
Romanova. 2007. Best practices for automated traceability. IEEE Computer 40,
6 (2007), 27–35.

[7] Chuck Hagenbuch and Jan Schneider. 2017. Text_Diff-Engine for performing
and rendering text diffs. (2017). https://pear.horde.org/

[8] Marty Hall. 2003. Core servelet and JavaServer Pages, online version. Sun Mi-
crosystems Press available at: http://www. coreservlets. com.

[9] Sofija Hotomski, Eya Ben Charrada, and Martin Glinz. 2016. An Exploratory
Study on Handling Requirements and Acceptance Test Documentation in In-
dustry. In 24th IEEE International Requirements Engineering Conference (RE’16’).
116–126.

[10] Sofija Hotomski, Eya Ben Charrada, and Martin Glinz. 2017. Aligning Require-
ments and Acceptance Tests via Automatically Generated Guidance. In 4th
Workshop on Requirements Engineering and Testing (RET).

[11] Sofija Hotomski, Eya Ben Charrada, and Martin Glinz. 2018. Keeping Evolving
Requirements and Acceptance Tests aligned with Automatically Generated
Guidance. In International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2018).

[12] Andrea Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk. 2012.
Information Retrieval Methods for Automated Traceability Recovery. Software
and Systems Traceability (2012), 71–98.

[13] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford coreNLP natural language
processing toolkit. In ACL (System Demonstrations). 55–60.

[14] Grigori Melnik and Frank Maurer. 2004. Direct verbal communication as a
catalyst of agile knowledge sharing. In Agile Development Conference. 21–31.

[15] Sunil Nair, Jose Luis de la Vara, and Sagar Sen. 2013. A Review of Traceability
Research at the Requirements Engineering Conference (RE@21). In 21st IEEE
International Requirements Engineering Conference (RE’13). 222–229.

[16] John Noll, Sarah Beecham, and Ita Richardson. 2011. Global Software Devel-
opment and Collaboration: Barriers and Solutions. ACM Inroads 1, 3 (2011),
66–78.

[17] Vasile Rus, Mihai C Lintean, Rajendra Banjade, Nobal B Niraula, and Dan Ste-
fanescu. 2013. SEMILAR: The Semantic Similarity Toolkit. In ACL (Conference
System Demonstrations). 163–168.

[18] Vibha Sinha, Bikram Sengupta, and Satish Chandra. 2006. Enabling collabo-
ration in distributed requirements management. IEEE Software 23, 5 (2006),
52–61.

[19] Chanoch Wiggers, Ben Galbraith, Vivek Chopra, Sing Li, Debashish Bhattachar-
jee, Amit Bakore, Romin Irani, Sandip Bhattacharya, and Chad Fowler. 2004.
Professional Apache Tomcat. John Wiley & Sons.

https://pear.horde.org/

