
University of
Zurich""

Department of lnformatics

University of Zürich
Department of lnformatics
B¡nzmühlesr. 14
CH-8050 Zürich
Phone. +41 44 635 43 1 1

Fax +41 44 635 68 09
www.if i.uzh.ch/dbtg

UZH, Dept. of lnformatics, Binzmühlestr. 14, CH-8050 Zürich Prof. Dr. Michael Böhlen
Professor
Phone +41 44 635 43 33
Fax +41 44 635 68 09
boehlen@ifi.uzh.ch

Zürich,13. August 2018

MSc Basismodul
Topic: lmplementing the Adaptive Radix Tree (ART)

The advent of in-memory database systems has fundamentally changed the requirements for

index structures. Block transfers from disks are no longer the deciding factor in index perfor-

mance, while efficient CPU cache utilization has become an important performance charac-

teristic. These new requirements make standard B+ tree indexes inappropriate for in-memory

settings. While hash indexes are an efficient method for point queries in in-memory systems,

they do not support range queries.

The Adaptive Radix Tree (ART) [1] promises to fillthis gap, offering efficient support for upda-

tes, point and range queries for in-memory databases. A standard radix tree splits the digital

representation of a search-key into pieces (i.e., bit sequences) of fixed span s. These pieces

are hierarchically indexed. A node in a radix tree has a fanout of 2" pointers, and a s bit piece

of the key is used as offset into a node to either find a pointer to the next inner node of the

tree or a pointer to a value in case of a leaf node. The static parameter s affects the size and

performance of the tree. lf s is small, the tree is compact but deep, which slows down queries.

Likewise, if s is large, the tree requires more space, but offers better query performance.

Like a standard radix tree, ART uses nodes that logically can store up to 2' pointers, where

typically s : 8. ARI however, adaptively changes the actual capacity of a node depending

on the number of non-null pointers that are stored in a node. ART defines a set of four node

types (lloae4, Node16, Node48, and Node2so) that are highly optimized (e.9., through SIMD in-

structions). Adapting a node's capacity promises a lower storage consumption, while retaining

good query performance. Standard radix trees often create chains of nodes (each with only

one child) in the tree when long keys are inserted in the tree. Likewise, these long chains are

pruned if keys are deleted. ART implements two optimizations, path compression and lazy

expansion, that eliminate these long chains in order to save space.



Æ\
I(à EEJ ¡]}w Universityof

Zurichu'"
2

The goal of this project is to study, implement, and empirically evaluate ART.

Tasks

1 . Study and understand the Adaptive Radix Tree [1].

2. lmplement a prototype of ART in C++. The following functionality must be supported

insertion, deletion, and point and range queries.

3. Evaluate your implementation of ART experimentally.

o Evaluate the runtime for insertion, deletion, and point and range queries.

o Report the number of times ART applies lazy expansion and path compression.

o Use the DELL dataset provided to you.

4. Summarize your findings in a short report.

OptionalTasks

1 . Compare ART with C++'s built in std: : nap (red-black tree based) and a standard text-

book radix tree.

2. lmplement range queries

3. Extend your implementation of point and range queries to use SIMD instructions.

References

[1] V. Leis, A. Kemper, and T. Neumann. The Adaptive Radix Tree:ARTful lndexing for Main-

Memory Databases. ln 29th IEEE lnternational Conference on Data Engineering, ICDE

201 3, Brisbane, Australia, April B-1 2, 201 3, pages 38-49, 2013.

Supervisor: Kevin Wellenzohn (wellenzohn@ifi.uzh.ch)

Start date: 02.07.2018

End date: 02.10.2018
3

Oral exam date: 25.09.2018, ipm

University of Zurich

Department of lnformatics

Prof. Dr. Michael Böhlen

Professor


