
© 2016 Hans-Peter Hoidn & Kai Schwidder

Enterprise IT Architectures

Solution IT Architectures – Key Elements 2

Quality and Constraints

Kai Schwidder
Distinguished IT Architect

© 2016 Hans-Peter Hoidn & Kai Schwidder 2

Enterprise IT Architectures

Agenda (Part I - today)

§ Qualities & Constraints in IT Architecture – overview
– What are “qualities and constraints” in IT Architecture?
– Non-Functional Requirements and their quality

§ Focus on Availability
– Availability modelling
– Availability design techniques

§ Focus on Performance
–  The Performance Engineering Lifecycle
–  Volumetrics
–  Estimation and Modelling
– Optional exercise

© 2016 Hans-Peter Hoidn & Kai Schwidder 3

Enterprise IT Architectures

“The wider context”

Your work
•  system testing
•  user testing
•  performance testing

Other systems

Users Requirements

Architecture

Infrastructure

HW OS DBMS Middleware Tools

Interfaces

Design
choices

« How do we identify and
deal with the constraints of
the existing infrastructure?

« How do we represent significant
“qualities and constraints”

accurately in our requirements?

« How do we identify all
significant user needs?

« How do we
design the system
to meet all the
requirements?

© 2016 Hans-Peter Hoidn & Kai Schwidder 4

Enterprise IT Architectures

Technical
Transaction

Map

Parametric
Costs

Architectural Thinking — Method support

Reference
Architecture

Fit/Gap
Analysis

dependencies to
and from most
other WPs

Use Case
Model

UI Design
Guidelines UI

Conceptual
Model

Class
Diagram

Architecture
Overview
Diagram

Architectural
Decisions

Architectural
Template

Component
Model

System
Context

IT Services
Strategy

Deployment
Units

Viability
Assessment

Technical
Prototype

Software
Distribution

Plan

Change
Cases

Operational
Model

KEY Design

Operations

Usability

Architecture

Vital
Architecture

key “qualities & constraints” related work products highlighted

Performance
Model

Current IT
Environment

Service
Level Char.

Analysis

Non-functional
Requirements

Standards

© 2016 Hans-Peter Hoidn & Kai Schwidder 5

Enterprise IT Architectures

Qualities and Constraints are often referred to as ‘Non-
Functional Requirements’

§ Non-functional requirements (or NFRs) define the
desirable qualities of a system and the constraints
within which the system must be built

– Qualities define the properties and characteristics which the
delivered system should demonstrate

– Constraints are the limitations, standards and environmental
factors which must be taken into account in the solution

Qualities Constraints

NFRs

© 2016 Hans-Peter Hoidn & Kai Schwidder 6

Enterprise IT Architectures

Constraints

§ The business aspects of the
project, customer's business
environment or IT organization
that influence the architecture

§ The technical environment and
prevailing standards that the
system, and the project, need to
operate within

Regulatory

Organisational

Risk Willingness

Marketplace
factors

Schedule &
Budget

Legacy
Integration

Development
Skills

Existing
Infrastructure

Technology State
of the art

IT Standards

Business Technical

© 2016 Hans-Peter Hoidn & Kai Schwidder 7

Enterprise IT Architectures

Qualities

§ Runtime qualities are
‘measurable’ properties, often
expressed as “Service Level
Requirements”.

§ Qualities might also be related
to the development,
maintenance, or operational
concerns that are not expressed
at runtime.

Performance &
Capacity

Availability

Manageability

Security

Usability

Portability

Reliability

Efficiency

Scalability

Maintainability

Data Integrity

Run-time Non-Runtime
focus of this

session

© 2016 Hans-Peter Hoidn & Kai Schwidder 8

Enterprise IT Architectures

Quality-of-Service "metrics" have an impact on a company's
bottom line – consider online services …

§ Tangible metrics are ones which can be quantified as a measure of
“Loss per transaction”:

–  In the online world it's important to do a great job with buyers
–  People leave ".com" sites because of pages being unavailable or too slow
–  Even if a site is available and fast – it is usable?
–  Slow sites and/or poor navigation techniques cost companies sales

§  Intangible metrics are less quantifiable and require estimation:
–  Consider a web site to be really just an extension of a company's BRAND
–  Visiting a web site is the same as visiting a store with the company's logo on

it
–  Even if the experience produces no revenue, it can have an impact on return

visits
–  Ideally, a customer should develop a mechanism for taking into account

these “soft” costs in order to work out their quality of service requirements

© 2016 Hans-Peter Hoidn & Kai Schwidder 9

Enterprise IT Architectures

The best technique for reducing the risk of poor quality of
service is to consider the qualities from the start

§ Build ‘quality’ into the solution
starting with early design
Ø Understand the risks to the project
Ø Conduct quality of service

engineering from the first elaboration
of the architecture model

Ø Set guidelines for the developers
(software & infrastructure)

Ø Test the application/system at each
major stage of development

Ø Make sure that the live support teams
will be able to manage quality

§ Fix it early, and save money and
problems later …

© 2016 Hans-Peter Hoidn & Kai Schwidder 10

Enterprise IT Architectures

(This is not a requirements engineering module, but …)
Common problems with Non-Functional “requirements”

§ Requirements are often vague or unactionable
–  They need further elaboration, clarification, investigation (and possibly rejection)
–  It may be possible to derive clear, actionable intentions from them

§ Requirements can be statements of principle or good intention but come
with little enforcement

–  The organisation’s governance models are central
§ Once captured, requirements are often treated as “musts” or “givens”

whereas in fact they are “tradable” and may need to be challenged
–  Classic example is “given” technology standards (e.g. “all applications in .NET”)

or infrastructure constraints (“64kbps links to offices”)
§ Requirements are often of poor quality

–  Watch out for these issues: Unrepresentative, unclear, inaccurate, inconsistent,
incomplete or unnecessarily constraining

§ NFRs documents often become “dumping grounds” for things which don’t
have another home

–  (regardless of quality or suitability)

© 2016 Hans-Peter Hoidn & Kai Schwidder 11

Enterprise IT Architectures

In reality, “requirements” are actually “influences” whose
characteristics we have to be clear about

§  A “requirement” in the widest sense …
stems from many sources … [Context]
is either an aspiration or a constraint …[Polarity]
may be negotiable (i.e. varying in importance) … [Strength]
may be generic or specific … [Level of generality]
may be directly actionable or difficult to interpret …

[Actionability]
may affect many components of the Solution … [Affected

objects]
may be helpful (good quality) or unhelpful (poor quality)

[Quality]

§  Unless we understand the real context and importance of each
requirement, we risk producing the wrong solution

© 2016 Hans-Peter Hoidn & Kai Schwidder 12

Enterprise IT Architectures

Beware: a BALANCE must be maintained between risk and cost

Actions to contain the risk
are required – but over-
engineering could be
unnecessarily costly

Failure to engineer for
high QoS creates
technical & business
risks

© 2016 Hans-Peter Hoidn & Kai Schwidder 13

Enterprise IT Architectures

Availability

© 2016 Hans-Peter Hoidn & Kai Schwidder 14

Enterprise IT Architectures

The reality of Availability is that customers directly relate it
to the End User experience

The Availability of a system is a measure of its readiness for usage

© 2016 Hans-Peter Hoidn & Kai Schwidder 15

Enterprise IT Architectures

There are certain key terms that are used to define Availability-
related concepts

§  High Availability is taken to mean a requirement for a system or service to be over
99% available – typically implies thorough design and may require redundant
components

§  Disaster Recovery means the recovery of essential services in the event of a major
business disruption that has resulted from the occurrence of a disaster

§  Business Continuity means the continued operation of business processes to a
predetermined acceptable level in the event of a major business disruption

§  Unscheduled Outage is a time period when the system is not ready for use and the
users expect it to be. These are unplanned outages caused by ‘Random Events’

§  Scheduled Outage is a time period when the system is not ready for use and the
users do not expect it to be. These are planned outages driven by predefined
events

§  Continuous Operations is the requirement for perpetual operations 365 days per
year 24 hours per day with perhaps very rare scheduled outages

§  Fault Tolerance is that property of a component, sub-system or system that means
that normal service continues even though a fault has occurred within the system

§  Reliability is the probability that an item will perform its intended function for a
specified interval under stated conditions

§  Maintainability (or Recoverability) is the probability that using prescribed
procedures and resources, an item can be retained in, or restored to, a specific
condition within a given period

© 2016 Hans-Peter Hoidn & Kai Schwidder 16

Enterprise IT Architectures

Key Availability terms – Mean Times …

§  Mean Time to Recover (MTTR) is the typical time that it takes to
recover (includes repair) a component, sub-system or a system.

§  Mean Time to Failure (MTTF) is the mean time between
successive failures of a given component, sub-system or
system.

§  Mean Time between Failure (MTBF) is the average time between
successive failures of a given component, sub-system or
system

Down! Up!

MTTR MTTF
MTBF

Down!

© 2016 Hans-Peter Hoidn & Kai Schwidder 17

Enterprise IT Architectures

One of the attributes of the design that should be understood
for Availability Engineering is the effect of using components in
series

Functional Operational

  Components connected is a chain, relying on the previous component for
availability

  The total availability is always lower than the availability of the weakest link

Server Switch Firewall

Availability (A) = A1 x A2 x A3

1 2 3

Application Server

Product Catalogue

Database Manager

© 2016 Hans-Peter Hoidn & Kai Schwidder 18

Enterprise IT Architectures

Another attribute of the design that should be understood for
Availability Engineering is the effect of using components in
parallel

Functional
Application aware

Operational
–  Separate nodes all serving the same

IP address
–  Load balancer is a multiplexer

  Component redundancy through duplication
  Total availability is higher than the availability of the individual links

Request
Broker

Authentication
Server

3

Availability = 1-[(1-A(1))x(1- A(2))x (1-A(3))]

2

1

3

2

1

Load
Balancer

Authentication
Server

Authentication
Server

© 2016 Hans-Peter Hoidn & Kai Schwidder 19

Enterprise IT Architectures

Exercise 2 – Serial vs. Parallel Availability

§ Q1. What is the overall availability of this serial structure
of nodes?

§ Q2. What is the overall availability of this combined
structure of nodes?

§ 5 minutes

N1 N2 N3

A = 0.98 A = 0.98 A = 0.98

N3

N2

N1

N_Load
Balancer

A = 0.95
(N1 - 3)

A = 0.99

© 2016 Hans-Peter Hoidn & Kai Schwidder 20

Enterprise IT Architectures

Separation of Concern is a technique that can be used to enable
a loose coupling for components that provide critical services

Functional
§  Loose coupling of HA Components

Operational

  The separation of components with regard to business importance and
their availability characteristics

Critical Non-Critical Vs Critical
Non-Critical

Product Catalogue Product Catalogue

Shopping Basket Shopping Basket

Customer
Complaints

HA-focused Nodes

Non HA-focused Nodes

Part Details Product
Catalogue System Border

vs.
Part Details Product

Catalogue System Border

Inventory
Adder

Process
Scheduler

© 2016 Hans-Peter Hoidn & Kai Schwidder 21

Enterprise IT Architectures

Fault Tolerance is a technique that can be used to enable the
detection and correction of latent errors before they become
effective

Functional
§  Use try and catch blocks

throughout code
§  Consider the case when “Bad Data”

arrives and how to continue. E.g.
put “Bad Data” in repair queues

Operational
§  Achieved through duplications. For

examples: Disk Mirroring, e.g. RAID
§  Specialised operations staff
§  Autonomic Computing mechanisms

  Error Processing - Error processing is aimed at handling errors and
exceptions, wherever possible, before the occurrence of a true failure.

  Error Treatment - Fault treatment is aimed at preventing previously
activated faults from being reactivated.

Vs
Error Error

Total Service

No Service

Total Service
Degraded Service

© 2016 Hans-Peter Hoidn & Kai Schwidder 22

Enterprise IT Architectures

Availability – a final word

§ It is estimated that
–  ~20% of your total availability is a function of your use of

technology
–  ~80% is a function of your people and processes

§ E.g. someone says the:
– Root cause was that firewall logs were full
–  The real reason was there was insufficient process in place to

monitor the logs and clear them down
§ Technology and design is important, however don’t
assume that is your only challenge

© 2016 Hans-Peter Hoidn & Kai Schwidder 23

Enterprise IT Architectures

Performance

© 2016 Hans-Peter Hoidn & Kai Schwidder 24

Enterprise IT Architectures

What is Performance?

§ Definition
–  “Performance. The degree to which a system or component

accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage.” [IEEE-610.12]

§ In general
–  Timeliness of response, and predictability, are the two main goals
–  “Faster” is not always enough, as in for example, a real time

system requires extremely consistent performance
§ An (old) quote (from ICCM):

–  “A manager's goal should always be to strike the right balance
between system function, processing costs, people costs, and
performance. This is why the technical aspects of performance
can never be entirely divorced from organizational politics”

© 2016 Hans-Peter Hoidn & Kai Schwidder 25

Enterprise IT Architectures

There are three main, heavily inter-related aspects of
Performance to be considered

§ Response Times
– On-line response times
– Batch run times

§ Throughput
–  Transactions per second
– Records processed per hour

§ Capacity
– Component sizing to handle load
– Contingency and Scalability

Sufficient capacity is
required to meet
throughput
requirements

Must have adequate
throughput to avoid
poor response times

© 2016 Hans-Peter Hoidn & Kai Schwidder 26

Enterprise IT Architectures

Major activities a Performance Engineer executes across the
project lifecycle

Manage the Solution

Solution Macro Micro Build Deploy-

Solution Delivery

Manage the Solution
Solution
Start-up

Close the
Solution Solution

Outline
High Level

Design
Detailed
Design

Build Cycle Deployment

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das
Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn
weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Design, Development & Tracking

Reqmnts & Early Design

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um
das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei.
Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Test Planning & Execution

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann
erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Estimation & Modelling

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder
das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen
Sie das Bild möglicherweise löschen und dann erneut einfügen.Volumetrics

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder
das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen
Sie das Bild möglicherweise löschen und dann erneut einfügen.Technology Research

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x
angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.

Risk & Performance Management

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den
Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Live Monitoring & Capacity Mgmt

© 2016 Hans-Peter Hoidn & Kai Schwidder 27

Enterprise IT Architectures

Technology research is a vital part of performance engineering

§ Purpose: to determine sufficient
information about components to
be able to build an effective
Performance Model

§ Can we reduce risks by
researching?

–  Has this been done before?
–  Are there any relevant benchmarks?
–  Is there a recognised Centre of

Competence?
–  Have any prototypes been built? Is

one required?
–  Is there an accessible reference

site?

§  For each key component and
transaction type, identify and seek
required information, e.g.

–  Structural understanding and behaviour
of components

–  Parametric cost of operation (CPU
required, number of I/Os, …)

§  Focus deep technology research on the
key components

–  New technology
–  New usage of existing technology
–  Unknown performance characteristics
–  Early performance and capacity

estimates indicate component is
performance critical

§  Treat all sources of data with great care
–  Especially benchmarks
–  What was their exact configuration?
–  How relevant is the data for YOUR

system?

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu
öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x
angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Technology Research

© 2016 Hans-Peter Hoidn & Kai Schwidder 28

Enterprise IT Architectures

A range of Performance Test types are used for different
purposes Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig

Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und
öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild
möglicherweise löschen und dann erneut einfügen.Test Planning & Execution

Positioning volume tests

Transaction Volume or Load

R
es

po
ns

e
tim

e

Volume for:
Single thread test

Volume for:
Target volume test
Acceptance test
Soak test
Response profiling test

Volume for:
Stress test

Target
response

time

Volume at which
system fails or

goes into serial
execution

Response time
at which system

is unusable

© 2016 Hans-Peter Hoidn & Kai Schwidder 29

Enterprise IT Architectures

Live Monitoring and Capacity Planning activities aim to ensure that
the system continues to meet its performance targets once in live

§  Once in live, there is the possibility of collecting real performance data, such as:
–  Real business volumetrics (volumes of events, business entity volumes)
–  Technical volumetrics (transaction volumes, data sizes, …)
–  Response times (at various tiers of the system)
–  Traffic profile information (peaks, distributions)

§  Systems are subject to change from many perspectives:
–  Future business demand
–  Changes in user behavior (e.g. affecting workload mix)
–  Infrastructure change (network upgrade, hardware platform change, consolidations, …)
–  Application change (product upgrades, replacement of middleware, new functional

requirements …)

§  As with initial performance modelling, the capacity plan needs cover all
resources which could cause a system to perform poorly

–  Performance bottlenecks can occur at any part of the chain
–  Incentives to ensure the system makes optimum use of the available resources

§  This process starts at the design phase
–  Capacity planning will likely be the responsibility of a different group
–  The ability to record and report performance data must be considered during the design

phase
–  Systems management design needs to support the capacity planning processes
–  Applications may have to be explicitly instrumented to record response time data

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder
das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird,
müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Live Monitoring & Capacity Mgmt

© 2016 Hans-Peter Hoidn & Kai Schwidder 30

Enterprise IT Architectures

Performance ::
Volumetrics

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu
öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x
angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Volumetrics

© 2016 Hans-Peter Hoidn & Kai Schwidder 31

Enterprise IT Architectures

The Importance of Numbers

Performance Architects rely on
VOLUMETRIC DATA and
ASSUMPTIONS in order to ….

Feed performance and
capacity models, in
order to ….

Predict system performance
•  online and batch
Size systems
Evaluate & improve designs
Plan capacity
Plan testing

Or difficult to map
down to the technical
level?

What do you do
when these are
vague or difficult
to get?

© 2016 Hans-Peter Hoidn & Kai Schwidder 32

Enterprise IT Architectures

Enterprises often cannot provide detailed volumetric
information – often, it has to be derived (or guessed!)
Real questions IBM Performance Engineers have been asked by customers

§ “We’re just about to spend £20m on advertising our
new brand. How many web servers do we need?” -
Insurance company

§ “Will this new digital audio broadcasting solution
perform OK, given we don’t know how we are going
to use it yet?” – Public service radio broadcaster

§ “How fast is the Internet?” – Offshore bank

© 2016 Hans-Peter Hoidn & Kai Schwidder 33

Enterprise IT Architectures

BUSINESS VOLUMETRICS

SITE MAP

USE CASES

SCENARIOS

MARKETING &
ADVERTISING
PLANS AND
FORECASTS

TECHNICAL
INFRASTRUCTURE

DESIGN

TECHNICAL TXN
MAP

ORDER
HARDWARE

CAPACITY MODEL

PERFORMANCE
TEST PLAN

USER ACTIVITY
MODEL

HISTORICAL
FIGURES

VOLUME &
BEHAVIOUR

ASSUMPTIONS

PERFORMANCE
REQ’TS

RISK
ASSESSMENT

Volumetric data can be traced from various sources
An example “volumes map” used on an engagement

© 2016 Hans-Peter Hoidn & Kai Schwidder 34

Enterprise IT Architectures

The “Volumetrics Magic Quadrant”
Relationship to Contracts and Targets

Volumetric Reality
Realistic Unrealistic

C
om

plete,
C

lear
Incom

plete
/ Vague

§  Risk of mis-sized system
§  May need additional effort

to ask “will it really work”
§  Depends on how well your

contract is written!

§  Ideal – performance modelling
matches expected live
scenarios

§  Testing is realistic
§  Traceability of requirements

§  Incomplete picture – risk of
overlooking key aspects

§  Risk of mismatch of
expectation with client and
future disagreement

§  Very risky
§  Difficult to pursue any

sensible performance
modelling C

la
ri

ty
 /

Q
ua

lit
y

of
 V

ol
um

et
ri

c
D

at
a

© 2016 Hans-Peter Hoidn & Kai Schwidder 35

Enterprise IT Architectures

Exercise 3 - Volumetric estimation

§ Q1. Estimate, using your own knowledge and means, the
number of orders per day the UK’s 3rd largest
supermarket has through its online shopping site

– Document your assumptions
– Be prepared to outline your thinking process

§ 10 minutes

© 2016 Hans-Peter Hoidn & Kai Schwidder 36

Enterprise IT Architectures

Performance ::
Estimation and Modelling

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und
öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.Estimation & Modelling

© 2016 Hans-Peter Hoidn & Kai Schwidder 37

Enterprise IT Architectures

Cost /
Effort

Accuracy / Benefit

Rules of
thumb

Analytical
Modelling

Utility tools

Simulation

Prototyping

Modelling Tools

Queueing Theory
Statistical Techniques

Spreadsheets

Performance characteristics of a system can be investigated in
more detail by creating a model

§ Different techniques are available different levels of effort to
provide answers with different levels of reliability

© 2016 Hans-Peter Hoidn & Kai Schwidder 38

Enterprise IT Architectures

Analytical performance model typical structure

This is a outline (simplified) view of the relationships of the data sets and analysis
steps required to build a analytic model

Business
Volumes

User activity
volumes

Business
assumptions

This is often
the ‘Use

Case’ level

User activity
assumptions

Technical transaction
volumes

Includes peak-
time assumptions

Technical
transaction map

Resources model
(hardware, etc.) Parametric

costs Resource utilisation
predictions

Response time
predictions

Queuing model
& assumptions

© 2016 Hans-Peter Hoidn & Kai Schwidder 39

Enterprise IT Architectures

The ‘hotspot' concept is a good way of understanding
where to conduct detailed performance analysis

§ Typical questions you should
seek the answers to …

–  Where are important functions
(s/w execution) and data going
to be located?

–  What rate of transactions will be
required?

–  Are there any large volumes of
data being sent over low
bandwidth links?

–  What is the impact of multiple
instances?

e.g. many branches to one
data-centre

Ø Which parts of the architecture
may prove to be ‘bottlenecks’?

© 2016 Hans-Peter Hoidn & Kai Schwidder 40

Enterprise IT Architectures

Characteristics and principles of Queuing Systems

Queuing System

Server(s)

... Queue

Queue length

Arriving units of work:
- How many tasks enter the

queue per unit of time?
- What is the interarrival time

distribution?
-  From finite or infinite

population?

Servers and Service time:
- How many servers?
- What is the ‘service time’ – i.e.

average to processing time for one
work unit?

- What is the service time distribution?

Dispatching policy:
-  FCFS – standard queue
-  LCFS – ‘stack’
- Priorities
-  ‘Round robin’ or straight

through?

dispatch
-ing

Time
Wait time (Tw) Service time (Ts)

Response time, Tr = Tw + Ts

Rate of arrival (λ)

© 2016 Hans-Peter Hoidn & Kai Schwidder 41

Enterprise IT Architectures

Response times degrade severely at high utilisations

Effect of service time on expected response time with c=1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0% 10

%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Utilization

R
es

po
ns

e
tim

e

ts=0.03
ts=0.02
ts=0.01
ts=0.005

Shorter service time
flattens the curve

© 2016 Hans-Peter Hoidn & Kai Schwidder 42

Enterprise IT Architectures

Notation for major types of queues

α Type of probability distribution that represents the periods between arrivals into the
queue (M = Exponential, D = Deterministic, G = General)

σ Type of probability distribution that represents the periods required to service each
request in the queue (values as above)

m Number of servers at the queuing center

Note: Other factors can be specified which define more advanced queue types, including:
Buffer Size or storage capacity in the queue
The allowed population size, which may be finite or infinite
The type of service policy e.g. FIFO, LIFO, RR, PS

Formal notation for queues: α/σ/m, where:

 Μ/Μ/1
Known as the 'Poisson process'
Exponentially distributed
interarrival and service times
around known averages; single
server
Reasonable approximation to
most single server queues
Mathematics are manageable

 Μ/Μ/k
Exponentially distributed
interarrival and service times
around known averages
Multiple servers
Mathematics more
complicated

 Others, e.g. M/G/k
Generalised distributions of
either interarrival and service
times
Multiple servers
Mathematics beyond most of us
If important, consider specialist
tooling or simulation

α
σ

m

© 2016 Hans-Peter Hoidn & Kai Schwidder 43

Enterprise IT Architectures

Utilization Throughput
(tps)

Average
service time

(s)

10% 0.5 0.2

Queue i's
throughput

Average #
of visits to

queue i

System
throughput

12 3 4

Service
demand at
resource i

Resource i's
utilization

System
Throughput

0.2 0.4 2

Average # in
the Node

Throughput
of the node

(tps)

Average
time in the

node (s)

3 10 0.3

Utilization Law: Ui = Xi * Si Forced Flow Law: Xi = Vi * Xo

Service Demand Law: Di = Ui / Xo Little's Law: N = X * R

Even some simple equations can provide some useful results

© 2016 Hans-Peter Hoidn & Kai Schwidder 44

Enterprise IT Architectures

Example M/M/1 queue calculation

§ Requests arrive at the rate of
λ per second

§ Average service time is Ts

§ Server utilisation U

§ Average queuing time formula
for M/M/1 queues: Tw = Ts *
U / (1-U)

§ Average Response time
Tr = Ts + Tw

§ Average population in the
system (Little's Law), N

λ = 10 / s

Ts = 0.08s

U = 10 * 0.08 = 0.8 (or 80%)

Tw = 0.08 * (0.8 / (1 - 0.8))
 = 0.08 * 4 = 0.32s

Tr = 0.08 + 0.32 = 0.40s

N = 10 * 0.40 = 4.0

© 2016 Hans-Peter Hoidn & Kai Schwidder 45

Enterprise IT Architectures

In actual models we need to sum response times for all
components an end-to-end transaction relies on

§ Utilisation of each resource based on the total workload
and workmix

§ End-to-end response times based on multiple steps in the
end-to-end transaction path

© 2016 Hans-Peter Hoidn & Kai Schwidder 46

Enterprise IT Architectures

Simulation Modelling

§ A technique for modelling system behaviour in which:
–  the model is a simplified representation (abstraction) of a system
–  the model is executable and dynamically simulates events within the

system
–  events and relationships within a system are processed (simulated) and

displayed over time

DISCRETE EVENT SIMULATION
•  System behaviour modelled as a series of discrete
events
•  Times at which the system state does not change
are skipped
•  Particularly good for modelling computer hardware
and software

CONTINUOUS SIMULATION
•  System behaviour modelled as a series of
equations
•  System state is updated at all times
•  Particularly good for modelling growth and step-
changes (for example, continuous flow chemical
plants)

Time

State

A

B

Time

State

A

B

© 2016 Hans-Peter Hoidn & Kai Schwidder 47

Enterprise IT Architectures

How does discrete event simulation work?

§ This diagram shows how a discrete event simulation of a queuing
model works internally

transaction arrivals

Time Average
Utilisation

Current
Queue
Length

Average
Response

Time

Average
Service

Time
1.8 0 0 0 0
2.8 0.36 0 1.0 1.0
4.5 0.22 0 1.0 1.0
5.2 0.33 1 1.0 1.0
5.5 0.36 2 1.0 1.0
5.8 0.41 1 1.18 1.18
6.8 0.48 0 1.29 1.10
8.2 0.57 0 1.65 1.18

.....
16.0 0.52 0 1.59 1.04

Transaction
Number Ts Tw Tr

1 1.00 0 1.00
2 1.35 0 1.35
3 0.94 0.60 1.53
4 1.41 1.30 2.71
5 0.47 0 0.47
6 1.65 0 1.65
7 0.94 1.24 2.18
8 0.53 1.29 1.82

Event status Transaction results

© 2016 Hans-Peter Hoidn & Kai Schwidder 48

Enterprise IT Architectures

To demonstrate the capabilities of simulation as a
technique, we will now look at an example model
§ The demonstration models customers in a supermarket. It shows:

–  A method of modelling a system
–  The power of a model in 'what if' analysis

§ A supermarket is used as it has many of the features that we need to
consider in an IT system

–  Features
Static resource = shopping carts
Server = checkout
Delay = time spent shopping
Queues for carts and checkouts

–  Output
Utilisation - of carts and checkouts
Time - overall shopping time
Queue length - for carts and checkouts

§ The demo uses the Ptolemy II simulation modelling tool
–  Open Source simulation toolkit written in Java

available from http://ptolemy.eecs.berkeley.edu/ptolemyII
–  The model is a Discrete Event simulator

It has been extended with some custom actors (in porkbench.jar)

Demo à

© 2016 Hans-Peter Hoidn & Kai Schwidder 49

Enterprise IT Architectures

Application to real IT Systems

§ We use the same concepts to model an IT system
–  Static resources = memory, thread pools, …
–  Server = processor time
–  Delay = wait time (e.g. disk I/O not modelled)
–  Queues = for resources and servers

§ Output
–  Utilisation - resources and servers
–  Time - overall response time
–  Queue length - for resources and servers

§ However, a general purpose package has significant costs:
–  Steep learning curve
–  Needs detailed understanding of problem
–  Have to model all elements from scratch
–  Needs careful calibration

§ Commercial simulation modelling tools provide significant usability
–  They are adapted to the problem space
–  Provide pre-canned, pre-calibrated modelling components
–  e.g. HyPerformix, OpNet

© 2016 Hans-Peter Hoidn & Kai Schwidder 50

Enterprise IT Architectures

Simulation modelling has significant advantages … but
beware …

§  Provides a safe environment in which to
understand the effects of change (an
environment for experimentation)

–  Parameterise models to ask any number
of "what-if" questions

–  E.g. Test out different placement and
configuration options

§  Powerful and flexible modelling
capabilities

–  Model complex interactions between
layers, components, subsystems, etc.

–  Use probability distributions for service
times, arrival rates, etc.

–  Model different queue servicing
disciplines (fcfs, round robin, priority ...)

–  Analyse time-dependent variations in
incoming workloads

§  Modeller does not need to know or use
complex formulae

§  Promotes real understanding of the
system through visualisation and / or
animation

–  See peaks, troughs, start-up, cool down
periods

–  See times of specific events
§  Promotes real understanding of end-to-

end behaviour
–  model complex interactions between

components, subsystems, etc.
–  model interaction between human and IT

domains

§  However:
–  has high start-up cost in both skills and

resource
–  can be costly
–  requires detailed system knowledge and/

or access to subject matter experts
–  is only as accurate as inputs
–  has a danger of false confidence
–  is only as good as the model

© 2016 Hans-Peter Hoidn & Kai Schwidder 51

Enterprise IT Architectures

Exercise 4 - Estimating system performance

§  Inputs:
–  ‘AmGro-from-Home’ Case Study document (handout)
Ø Consider the ‘Year 2’ Scenario only

§ Q1: Calculate the likely rate of the technical transaction “Serve HTTP
request” in the peak period

§ Q2: Estimate the utilisation of the web (‘Presentation’) server node
(PN5)

–  How many such nodes will be required?
§ Q3: Estimate the end-to-end response time for the user ‘Search/Browse

for Item’ transaction
–  Complete the response time breakdown table at the end of the document

§ Q4: Given your results, what recommendations would you make for the
design of either the infrastructure or the AmGro-from-Home Order
Management Application?

§ 45-60 minutes

© 2016 Hans-Peter Hoidn & Kai Schwidder 52

Enterprise IT Architectures

Assumptions traceability
The Technical Assumptions and Metrics 'Lifecycle'

Solution Outline Macro Design Micro Design Build

Requirements
& Early Design

Estimation
& Modelling

Design, Devel.
& Tracking Testing Live Monitoring

& Cap.Planning

Initial
assumption

'Educated'
assumption

'Validated'
assumption

'Tested'
assumption Actual

Published
benchmarks

Technical
Research

Rules of
Thumb

Specialist
Advice

Purpose
built-benchmarks Prototypes

early / unit
test

detailed test
measurements

live
measurements

© 2016 Hans-Peter Hoidn & Kai Schwidder 53

Enterprise IT Architectures

Summary

© 2016 Hans-Peter Hoidn & Kai Schwidder 54

Enterprise IT Architectures

Summary of Topic

§ Despite continuing advances in technology, IT Architects spend
significant amounts of time engineering systems to account for
Quality of Service requirements

–  In the context of often significant constraints
–  Software and infrastructure designs need to be iterated together to achieve

goals
§ Non-functional requirements & service levels may be contractually

binding
–  Failure to achieve targets may result in financial penalties for the IT provider,

and/or lost business for the customer
–  If a design cannot be established which meets requirements, this is top

severity project issue
§ Modelling theory, techniques and tools are available to assist with

evaluating design alternatives
–  Employing them successfully requires understanding of the systems

elements, management of assumptions and appropriate modelling skills
§ Regardless of the quality of design, the quality of implementation

must be validated through testing
–  QoS design should inform test strategy and test planning

§ The effort expended should always be proportionate to the risk
involved

© 2016 Hans-Peter Hoidn & Kai Schwidder 55

Enterprise IT Architectures

