11 Validating requirements

2 \ nt needs

“ “ ||||| MIHCW H‘i\n Chapte
,.'H C ‘M\ h e

O Every requirement needs to be validated
(see Principle 6 in Chapter 2)

O Validate content, form of documentation and agreement
O Establish short feedback cycles
O Use appropriate techniques

o Work with the right people (i.e., stakeholders for
requirements)

O Separate the processes of problem finding and correction

O Validate repeatedly / continuously

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 228

Validation of content

|dentify requirements that are
e |nadequate or wrong
e Incomprehensible
e Incomplete or missing
e Ambiguous

Also look for requirements with these quality defects:
e Not verifiable
e Unnecessary
e Infeasible
e Not traceable
e Premature design decisions

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 229

Validation of requirements work products

Scope: checking the requirements work products (e.g., a
systems requirements specification or a collection of user
stories) for formal problems

|dentify requirements that are
e Inconsistent with each other
e Missing
e Non-conforming to documentation rules, structure or format
e Redundant
O

Hard to modify / y
| /&
\//‘\ —

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 230

Validation of agreement I@

O Requirements elicitation involves achieving consensus
among stakeholders having divergent needs

O When validating requirements, we have to check whether
agreement has actually been achieved

e All known conflicts resolved?

e For all requirements: have all relevant stakeholders for a
requirement agreed to this requirement in its documented
form?

e For every changed requirement, have all relevant
stakeholders agreed to this change?

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 231

Requirements validation techniques

Review
e Main means for requirements validation
e Walkthrough: author guides experts through the specification
e Inspection: Experts check the specification

e Author-reviewer-cycle: Requirements engineer continuously
feeds back requirements to stakeholder(s) for review and
receives feedback

Construction of other work products

e Acceptance criteria / test cases help disambiguate / clarify
requirements

e Writing user manuals or creating models for textual
requirements may help identify missing or wrong requirements

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 232

Requirements validation techniques — 2

Prototyping

e Lets stakeholders judge the practical usefulness of the
specified system in its real application context

e Prototype constitutes a sample model for the system-to-be

e Most powerful, but also most expensive means of
requirements validation

Simulation/Animation
e Means for investigating dynamic system behavior

e Simulator executes specification and may visualize it by
animated models

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 233

Requirements validation techniques — 3

Requirements Engineering tools
e Help find gaps and contradictions

Formal Verification / Model Checking / Model Analysis
e Formal proof of critical properties

e Automated, systematic and comprehensive test of critical
properties (when proofs are not tractable)

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 234

Reviewing practices

O Paraphrasing
e Explaining the requirements in the reviewer’s own words

O Perspective-based reading

e Analyzing requirements from different perspectives,
e.g., end-user, tester, architect, maintainer,...

O Playing and executing
e Playing scenarios
e Mentally executing acceptance test cases

O Checklists

e Using checklists for guiding and structuring the review
process

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz

235

Requirements negotiation

O Requirements negotiation implies @
e |dentification of conflicts -

e Conflict analysis
e Conflict resolution
e Documentation of resolution

O Requirements negotiation can happen
e While eliciting requirements
e When validating requirements

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 236

Conflict analysis

|dentifying the underlying reasons of a conflict helps select
appropriate resolution techniques

Typical underlying reasons are
e Subject matter conflict (divergent factual needs)
e Conflict of interest (divergent interests, e.g. cost vs. function)
e Conflict of value (divergent values and preferences)

e Relationship conflict (emotional problems in personal
relationships between stakeholders)

e Organizational conflict (between stakeholders on different
hierarchy and decision power levels in an organization)

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 237

Conflict resolution

O Various strategies / techniques

o Conflicting stakeholders must be involved in resolution

o Win-win techniques
e Agreement
e Compromise
e Build variants

O Win-lose techniques
e Overruling
e \Voting

e Prioritizing stakeholders (important stakeholders override
less important ones)

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 238

Conflict resolution — 2

O Decision support techniques
e PMI (Plus-Minus-Interesting) categorization of potential
conflict resolution decisions

e Decision matrix (Matrix with a row per interesting criterion
and a column per potential resolution alternative. The cells
contain relative weights which can be summarized per

column and then compared)

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 239

Acceptance testing

DEFINITION. Acceptance — The process of assessing whether
a system satisfies all its requirements.

DEFINITION. Acceptance test — A test that assesses whether a
system satisfies all its requirements.

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 240

Requirements and acceptance testing

Requirements engineering and acceptance testing are
naturally intertwined

O For every requirement, there should be at least one
acceptance test case

O Requirements must be written such that acceptance tests
can be written to validate them

O Acceptance test cases can serve
e for disambiguating requirements

e as detailed specifications by example - acceptance criteria
for user stories

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz 241

Choosing acceptance test cases

Potential coverage criteria:
O Requirements coverage: At least one case per requirement
O Function coverage: At least one case per function

O Scenario coverage: For every type scenario / use case
e All actions covered
e All branches covered

O Consider the usage profile: not all functions/scenarios are
equally frequent / important

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 242

12 Innovative requirements

Satisfying stakeholders is not enough
(see Principle 8 in Chapter 2)

O Kano’s model helps identify...

e what is implicitly expected
(dissatisfiers)

e what is explicitly required

il

Customer

* Over time, delighters :
delighted

turn into satisfiers and
fin
di

\

[Kano et al. 1984]

Delighters

-

™

(satisfiers)

e what the stakeholders
don’t know, but would
delight them if they get it:
Innovative requirements

Expectations
not fulfilled

Customer
disappointed

o QOver time, delighters degrade toward plain expectations

Requirements Engineering | — Part II: RE Practices © 2019 Martin Glinz

243

How to create innovative requirements?

. \ 1/
Encourage out-of-the-box thinking y
o Stimulate the stakeholders’ creativity B 4

e Imagine/ make up scenarios for possible futures
e Imagine a world without constraints and regulators

e Find and explore metaphors
e Study other domains

O Involve solution experts and explore what’s possible with
available and future technology
O Involve smart people without domain knowledge

[Maiden, Gitzikis and Robertson 2004]
[Maiden and Robertson 2005]

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 244

Where to innovate

O Functionality — new exciting features

O Performance — not just a bit more, but significantly more
powerful than previous or competing systems

O Usability — making usage an exciting experience

Requirements Engineering | — Part II: RE Practices © 2018 Martin Glinz 245

13 Requirements management

o Organize
e Store and retrieve
e Record metadata (author, status,...)

O Prioritize
O Keep track: dependencies, traceability

O Manage change

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 246

13.1 Organizing requirements

Every requirement needs

O a unique identifier as a reference in acceptance tests,
review findings, change requests, traces to other artifacts,
etc.

O some metadata, e.q.
e Author
e Date created
e Date last modified
e Source (stakeholder(s), document, minutes, observation...)

e Status (created, ready, released, rejected, postponed...)
e Necessity (critical, major, minor)

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 247

Storing, retrieving and querying

Storage
e Paper and folders
e Files and electronic folders
e A requirements management tool

Retrieving support
e Keywords
e Cross referencing
e Search machine technology

Querying
e Selective views (all requirements matching the query)
e Condensed views (for example, statistics)

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 248

13.2 Prioritizing requirements

O Requirements may be prioritized with respect to various
criteria, for example

e Necessity

e Cost of implementation
e Time to implement

e Risk

e Volatility

O Prioritization is done by the stakeholders
O Only a subset of all requirements may be prioritized

O Requirements to be prioritized should be on the same level
of abstraction

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 249

Simple prioritization (by necessity)

Ranks all requirements in three categories with respect to
necessity, i.e., their importance for the success of the system

O Critical (also called essential, or mandatory)
The system will not be accepted if such a requirement is not met

o Major (also called conditional, desirable, important, or
optional)

The system should meet these requirements, but not meeting
them is no showstopper

o Minor (also called nice-to-have, or optional)
Implementing these requirements is nice, but not needed

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 250

Selected prioritization techniques

Single criterion prioritization

O Simple ranking

Stakeholders rank a set of requirements according to a given
criterion

O Assigning points

Stakeholders receive a total of n points that they distribute
among m requirements

O Prioritization by multiple stakeholders may be consolidated
using weighted averages. The weight of a stakeholder
depends on his/her importance

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 251

Selected prioritization techniques — 2

Multiple criterion prioritization

O Wiegers’ matrix [Wiegers 1999]

e Estimates relative benefit, detriment, cost, and risk for each
requirement

e Uses these values to calculate a weighted priority
e Ranks according to calculated priority values

o AHP (Analytic Hierarchy Process) [Saaty 1980]
e An algorithmic multi-criterion decision making process
e Applicable for prioritization by a group of stakeholders

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 252

13.3 Traceability

[Gotel and Finkelstein 1994]

DEFINITION. Traceability — The ability to trace a requirement
(1) back to its origins,

(2) forward to its implementation in design and code,

(3) to requirements it depends on (and vice-versa).

Origins may be stakeholders, documents, rationale, etc.

Pre- Post-

traceability |Fequirements | yraceqpijity | SOlUtion
Sources specification Modules
Stakeholders T |j]
Documents Requizaments Test cases ﬁ]

Rationale

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 253

Establishing and maintaining traces

O Manually

e Requirements engineers explicitly create traces when
creating artifacts to be traced

e Tool support required for maintaining and exploring traces
e Every requirements change requires updating the traces
e High manual effort; cost and benefit need to be balanced

O Automatic

e Automatically create candidate trace links between two
artifacts (for example, a requirements specification and a set

of acceptance test cases)
e Uses information retrieval technology
e Requires manual post processing of candidate links

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 254

13.4 Requirements evolution

The problem (see Principle 7 in Chapter 2):
Keeping requirements stable...
... While permitting requirements to change

Potential solutions

e Agile /iterative development with short development cycles
(1-6 weeks)

e EXxplicit requirements change management

Every solution to this problem further needs requirements
configuration management

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 255

Requirements configuration management

Keeping track of changed requirements
O Versioning of requirements

O Ability to create requirements configurations, baselines and
releases

O Tracing the reasons for a change,
for example

e Stakeholder demand

e Bug reports / improvement suggestions
e Market demand

e Changed regulations

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 256

Classic requirements change management

Adhering to a strict change process

1) Submit change request

2) Triage. Result: [OK | NO | Later (add to backlog)]

3) If OK: Perform impact analysis

4) Submit result and recommendation to Change Control Board

5) Decision by Change Control Board

6) If positive: make the change, create new baseline/release,
(maybe) adapt the contract between client and supplier

(
(
(
(
(
(

Change control board — A committee of client and supplier
representatives that decides on change requests.

Requirements Engineering | — Part II: RE Practices © 2018 Martin Glinz 257

Requirements change in agile development

In agile and iterative development processes, a requirements
change request ...
e ... never affects the current sprint / iteration, thus ensuring
stability
e ... is added to the product backlog

Decisions about change requests are made when prioritizing
and selecting the requirements for the subsequent sprints /
iterations

Requirements Engineering | — Part II: RE Practices © 2017 Martin Glinz 258

14 Requirements and design

A traditional belief:
O Requirements are about what a system ought to do

O Design deals with the problem of how to realize what has
been stated in the requirements

O Requirements Engineering and System Design should be
kept separate, with requirements preceding design

O Sounds good and is popular, but does not work

Requirements Engineering | — Part II: RE Practices © 2018 Martin Glinz 259

Design has two facets

o Technical Design: Creating the architectural structure of a
system and designing its components in detalil

O Product Design: Shaping a product (or a system) with
respect to its capabilities, behavior, outer form, and usage

Traditional RE: Product Design comes after RE

Modern RE: Product design shapes the essence of a product
—> crucial for meeting the stakeholders’ desires and needs
- Product Design and RE are strongly intertwined

Product design for digital products is also called “Digital Design”

Requirements Engineering | — Part II: RE Practices © 2018 Martin Glinz 260

Why care about both RE and product design?

NONE OF US HAS

DESIGNED A NUCLEAR

POWER PLANT BEF

BUT WE CAN FIGURE
- IT OUT BY USING
OUR PROCESS.

ORE

www.dilbert.com scottadams@acl.com

IN PHASE ONE WE
WILL GATHER
CUSTOMER REQUIRE-
MENTS.

\

#|a0|02. @ 2002 United Feature Syndicate, Inc

S0... YOU WANT FREE
ELECTRICITY, WITHOUT
MUTATING, UNLESS
THE MUTATION GIVES
YOU X-RAY

VISION.

I DESIGNED THE
USER INTERFACE
MYSELF. HOW DO
YOU LIKE THE

COLORS?

Requirements Engineering | — Part II: RE Practices

wwwi.dllbert.com scottadasms@aolcom

ate, Inc

FLU? INTERFACE
|' DESIGN.

\

‘ﬂ 1Yo ® 2002 United Feature Syndic

7eN]

| i

© 2018 Martin Glinz

- We need RE
competencies

—> and product
design
competencies

261

Complementary contributions

O RE contributes competencies about
e Stakeholder identification
e Elicitation of wishes and needs
e Documentation of non-touchable things
e Requirements negotiation, prioritization, and validation

O Product Design contributes competencies about
e Usability
e User experience design

e Materials for physical & cyber-physical products,
“digital materials” for digital products

e Empirical product validation

Requirements Engineering | — Part II: RE Practices © 2018 Martin Glinz

262

Meeting requirements may not suffice
to satisfy stakeholders

A requirement The participant entry form shall have
fields for the participant data name,

first name, sex, and person ID and a
submit button.

can be ruined by
bad product design

Requirements Engineering | — Part II: RE Practices © 2018 Martin Glinz 263

