Portfolio Compression in Financial Networks: Incentives and Systemic Risk

Steffen Schuldenzucker1,2 and Sven Seuken1

1 Computation and Economics Research Group, University of Zurich
2 Algorithms and Complexity Research Group, Goethe University Frankfurt

Workshop on the Systemic Impact of Digitalization on Finance
University of Zurich
December 20, 2019
Financial interconnectedness gives rise to systemic risk via financial contagion
To reduce interconnectedness, eliminate cycles = Portfolio Compression
To reduce interconnectedness, eliminate cycles = Portfolio Compression

Research Questions:
1. When socially beneficial?
2. Incentives to do it?
Compression is mandatory today

When counterparties have more than 500 contracts outstanding with each other, [there is an] obligation to have procedures to analyse the possibility to conduct the exercise [of portfolio compression].

— EMIR Regulations, 2017
Portfolio Compression: Process

1. Financial Institution
2. Financial Service Provider
3. Contracts
4. Find Cycles
5. Unwind Proposal
6. Accept / Reject

All involved banks need to accept for the compression to become effective!
Prior Work

• Central Clearing and Systemic Risk: A lot
 • Duffie and Zhu (2011), Duffie et al. (2015), Amini et al. (2015), ...

• Portfolio Compression: Algorithms / Compressed Amount
 • O’Kane (2017), D’Errico and Roukny (2019)

• Portfolio Compression and Systemic Risk: Very little
 • Schuldenzucker, Seuken, Battiston (note, 2016): Can be socially detrimental
 • Veraart (WP, 2019): Can be detrimental; simple sufficient conditions

• Network Structure & Systemic Risk
 • Elliott ea. (2014), Acemoglu ea. (2015), Glasserman and Young (2015), ...

• Change in Network Structure
 • Feinstein et al. (WP, 2017): Sensitivity to changes in network, keep absolute liabilities the same (≠ compression)
Formal Model: Financial Network (Rogers and Veraart, 2013)

\[X = (N, e, l, \alpha, \beta) \]

- **Financial System**
 - Set of banks: \(N \), single bank \(i \in N \)
 - External Assets: \(e \) with \(e_i \in \mathbb{R}^+ \) (shocked)
 - Nominal Liabilities: \(l \) with \(l_{i,j} \in \mathbb{R}^+ \) = what \(i \) owes to \(j \)
 - Default Cost Parameters: \(\alpha, \beta \in [0, 1] \)
Formal Model: Clearing Payments (Rogers and Veraart, 2013)

Theorem (Rogers and Veraart, 2013): There is a unique point-wise maximal matrix p of payments such that:

$$p_{i,j} = \begin{cases} l_{ij} & \text{if } a_i(p) \geq l_i \quad \text{(No Default)} \\ \frac{l_{ij}}{l_i} \cdot a'_i(p) & \text{if } a_i(p) < l_i \quad \text{(Default)} \end{cases}$$

where...

- **Total Assets of i**
 \[a_i(p) = e_i + \sum_j p_{ji} \]

- **Total Assets after Default Costs**
 \[a'_i(p) = \alpha e_i + \beta \sum_j p_{ji} \]

- **Total Liabilities of i**
 \[l_i = l_i^* \]
Formal Model: Portfolio Compression

A compression: \(c = (c_{ij}) \) that is a circulation in \(l \), i.e.:

1. \(0 \leq c_{ij} \leq l_{ij} \quad \forall i, j \)
2. \(\sum_j c_{ij} = \sum_j c_{ji} \quad \forall i \)

Cf. D’Errico and Roukny (2019)

Compressed Financial System: \(X^c := (N, l - c, e, \alpha, \beta) \)
Research Questions, formal

Bank’s Utility := Equity = \(E_i = \max(0, a_i(p) - l_i) \)
Social Welfare = Total Equity = \(E_\Sigma := \sum_i E_i \)

Given \(X, c \):

1. When is \(c \) socially beneficial?
 i. Pareto improvement: \(E_i^c \geq E_i \ \forall i \)
 ii. Welfare improvement: \(E_\Sigma^c \geq E_\Sigma \)

2. When is \(c \) incentivized for participating banks?
 \(E_i^c \geq E_i \ \forall i \in N(c) \)
 where \(N(c) = \{i \in N \mid c_i > 0\} \) and \(c_i := \sum_j c_{ij} \)
Compression may be socially detrimental / not incentivized

\[\alpha = \beta = 0.5 \]

\[E_\Sigma = 6.75 \]

\[E_\Sigma = 5.75 \]
The effect depends on the parameters in a complex and non-monotonic way
Sufficient conditions for Pareto Improvement: Relative Liability Change

Relative Liabilities: $\pi_{ij} := \frac{l_{ij}}{l_i}$

Difference in Relative Liabilities: $\Delta \pi_{ij} = \pi^c_{ij} - \pi_{ij}$

$\Delta \pi_{ij} < 0 \rightarrow$ "inside"
$\Delta \pi_{ij} > 0 \rightarrow$ "leaving"
Theorem: Assume for all \(i, j \) with \(\Delta \pi_{ij} > 0 \), we have at least one of:

a) High Recovery: \(r_i \geq \beta \)

b) High capitalization wrt. compressed liabilities:
\[
\frac{e_i}{l_i - c_i} \geq \frac{\beta}{\alpha}
\]

c) Full default costs on interbank liabilities: \(\beta = 0 \)

d) Sufficiently not leaving / uniform compression at \((i, j) \):
\[
\eta \left(\frac{c_{ij}}{l_{ij}} \right) \geq \beta
\]

Then \(c \) is a Pareto improvement.
Homogenous \Rightarrow Pareto Improvement

(X, c) homogeneous if all equal across $i \in N(c)$:

- e_i
- $\sum_{j:c_{ji}=0} p_{ji}$
- $\sum_{j:c_{ji}>0} l_{ji}$

Theorem: homogeneous \Rightarrow Pareto improvement
Conjecture: Degree of Homogeneity

E: 0
B: 0.5
C: 0.5
F: 0
A: 0.5
D: 0
Conclusion

• Ex-post analysis of portfolio compression = cycle elimination
• Compression may be socially detrimental / not incentivized
• Feedback paths necessary for non-incentivized compression
• Sufficient Conditions for Pareto Improvement
• Homogeneity is good for compression

Future Work:
• Additional benefits $b_i \geq 0$ from compression \Rightarrow No qualitative change?
• Ex-ante view / distribution of shocks

http://ssrn.com/abstract=3483919