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Proving programs and properties"

When developing critical software, we are interested in 
formally proving that"

●  A program is correct (i.e., it satisfies its specification)"
●  A model actually has certain required properties"

❍  First case: Classical program proofs, i.e. proving  P    S 
for a program P and its specification S"

❍  Second case: This kind of proof is called Model Checking: 
Let M be a model and Φ a required property (typically 
specified as a formula in temporal logic). We have to prove 
that M    Φ, i.e., M satisfies Φ.  "
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 [Clarke and Emerson 1981, Queille and Sifakis 1982]  "



Ways of using Model Checking"

Model Checking is typically used in two ways:"
❍  Partial verification of programs:"
"Let M be a program and Φ some critical part of its 
specification. M    Φ means proving the correctness of 
program M with respect to the part Φ of its specification"

❍  Proving properties of a specification:"
"Let M be a specification and Φ a property that this 
specification is required to have. M    Φ means proving that 
the property Φ actually holds for this specification"
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Classes of properties to be proven"

❍  There are two classes of required properties"
❍  Safety properties:  unwanted/forbidden/dangerous states 

shall never be reached"
❍  Liveness properties: desired states shall always be 

reached sometimes"

❍  Typical safety properties: impossibility of deadlock, 
guaranteed mutual exclusion"

❍  Typical liveness properties: eventual termination of a 
program, impossibility of starvation or livelock"
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[Lamport 1977; Owicki and Lamport 1982]"
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Expressing time in logic formulae"

❍  Safety and liveness properties imply a notion of time"
❍  However: no notion of state or time in propositional logic 

and predicate logic"
❍  Extension needed for state or time dependent statements"

❍  Various potential forms of temporal and modal logic"
❍  We use Linear temporal logic (LTL) here"
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[Pnueli 1977]"



Linear time logic (LTL)"

❍  Time is modeled as an ordered sequence of discrete states"
❍  The existential and universal quantifiers of predicate logic 

are generalized to four temporal quantifiers:"
●  S holds forever from now"
●  S will hold sometimes in the future"
●  S will hold in the next state"
●  S holds until T becomes true"

❍  LTL formulae are interpreted over so-called Kripke 
structures"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 8"



Kripke structures"

Let S be a finite set of states and P a finite set of atomic 
propositions"

A System (S, I, R, L) consisting of"
●  the set S of states,"
●  a set I of initial states, I ⊆ S"
●  a transition relation R ⊆ S x S, such that there is no terminal 

state in S"
●  a labeling function L: S → IP(P), mapping every state s ∈ S to 

a subset of propositions which are true in state s"

is called a Kripke structure (or Kripke transition system)"
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[Kripke 1963]"

IP(P) denotes the power set of P, i.e., the set of all subsets of P"



Example: a traffic light"

Let P = {off, red, yellow, green}"
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s1" s2" s3"

{red}" {red, yellow}"

s4"

{green}" {yellow}"

Exercise: Modify the given Kripke structure such that it also models 
a yellow flashing light."



Formulae in LTL"

❍  Formulae in LTL are constructed from"
●  atomic propositions"
●  the Boolean operators ¬, ∧, ∨, →"
●  the temporal quantifiers"

•  X (next)"
•  G (globally)"
•  F (finally)"
•  U (until)"

❍  Interpretation: always on a path in a Kripke structure"
❍  Example: For any path s2 → s3 → s4 → ...   in our traffic 

light model, we have: X green, G ¬off, F (red ∧ ¬yellow)"
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Alternate Notation:"
   f "for X f"
   f "for G f"
   f "for F f"
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Model Checking with LTL"

❍  A Kripke structure M satisfies the LTL formula Φ, formally 
speaking M    Φ, iff Φ is true for all paths in M."

❍  Now we can precisely define Model Checking with LTL as 
follows:"
●  Let M be a model, expressed as a Kripke structure and Φ a 

formula in LTL that we want to prove"
●  Model Checking is an algorithmic procedure for proving  

M    Φ "
●  If the proof fails, i.e., M    ¬Φ, holds, the procedure yields a 

counter example: a concrete path in M for which Φ is false"
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Example: mutual exclusion"

We consider the problem of two processes p1 and p2 and a 
critical region c which must not be used by more than one 
process at every point in time."

Let "ci"≡ "pi uses the critical region c"
x " "ti "≡ "pi tries to enter the critical region c"
x " "ni"≡ "pi does something else"

Now we can state the mutual exclusion problem formally as"
(1) "G ¬(c1 ∧ c2)"

Further, we want the following property to hold:"
(2) "G ((t1 → F c1) ∧ (t2 → F c2))"

"
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Explain why we state property (2). 
What kind of property is this?"



Example: mutual exclusion – 2"

Now we model a simple mutual exclusion protocol as a Kripke 
structure:"
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s1"

s2" s3"

s5" s6"s4"

s7" s8"

{n1,n2}"

{t1,n2}" {n1,t2}"

{n1,c2}"{t1,t2}"{c1,n2}"

{c1,t2}" {t1,c2}"

Model Checking proves:"
• "G ¬(c1 ∧ c2) holds"
• "G ((t1 → F c1) ∧ (t2 → F c2)) 
"does not hold"



Example: mutual exclusion – 3"
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Exercise: 
Give a counter example showing 
that 
(2) "G ((t1 → F c1) ∧ (t2 → F c2))"
does not hold."

Modify the model such that 
property (2) holds on all paths."



A simple Model Checking algorithm"

Given a model M as a Kripke structure and a LTL formula Φ "
Parse the formula Φ"
WHILE not done, traverse the parse tree in post-order sequence"

"Take the sub-formula ρ represented by the currently visited 
node of the parse tree""
"Label all nodes of M for which ρ is true1) with ρ	

ENDWHILE"
IF all nodes of M have been labeled with Φ2) 
"THEN success 
"ELSE fail  

ENDIF"
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1) "Due to the order of traversal, all terms needed for 
evaluating ρ are already present as labels"

2) "The root of the parse tree represents the full 
formula Φ "



Tractability of Model Checking"

❍  The computational complexity of efficient model checking 
algorithms is O(n), with n being the number of states"

❍  However, the number of states grows exponentially with 
the number of variables in the model:"
●  n binary variables:  2n states"
●  n variables of m Bit each: 2nm states"

❍  Even with the fastest algorithms, Model Checking is 
intractable for programs / models of real-world size"

➪ Simplification required"
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Lossless simplification of Model Checking"

Representing models and formulae with so-called ordered 
binary decision diagrams"

●  allows significantly faster algorithms"
●  is called symbolic Model Checking"
●  Still proves  M    Φ  or M    ¬Φ"
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Simplification by abstracting the state space"

Deliberate simplification of the model (to be performed 
manually)"

❍  The full domain of a variable is replaced by a few 
representative values 
(for example, an Integer with 232 states is replaced by a 
small set of representative values, e.g., {-4, 0, 1, 13}"

❍  A successful Model Checking run is no longer a proof of   
M    Φ. It only provides strong evidence for M    Φ."

❍  A failing run still proves  M    ¬Φ "
➪ Model Checking a simplified state space constitutes a 

systematic automated test"
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Practical application"

❍  Regularly used in industry for verifying"
●  electronic circuit designs"
●  safety-critical components of software systems, particularly in 

avionics"
●  security-critical software components, particularly in 

communication systems"

❍  Models can be created in a notation resembling a 
programming language; no need to build actual Kripke 
structures"
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Tools"

Two well-known tools in the public domain"
❍  SPIN [Holzmann 1991, 1997, 2003]"

●  Available at: http://spinroot.com"
●  Uses LTL"
●  Models are written in the Promela language"

❍  SMV [McMillan 1993] "
●  Available at: http://www.cs.cmu.edu/~modelcheck/"
●  Uses CTL (computation tree logic)"

Many other model checking tools available"
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