

Department of Informatics

Martin Glinz Software Quality Chapter 2

Model Checking

© 2014-2016 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties.

2.1 Motivation

- 2.2 Temporal Logic
- 2.3 Principles of Model Checking with LTL
- 2.4 Model Checking in Practice

Proving programs and properties

When developing critical software, we are interested in formally proving that

- A program is correct (i.e., it satisfies its specification)
- A model actually has certain required properties
- First case: Classical program proofs, i.e. proving $P \vdash S$ for a program P and its specification S
- Second case: This kind of proof is called Model Checking: Let *M* be a model and Φ a required property (typically specified as a formula in temporal logic). We have to prove that *M* ⊨ Φ , i.e., *M* satisfies Φ .

[Clarke and Emerson 1981, Queille and Sifakis 1982]

Ways of using Model Checking

Model Checking is typically used in two ways:

• Partial verification of programs:

Let *M* be a program and Φ some critical part of its specification. $M \models \Phi$ means proving the correctness of program *M* with respect to the part Φ of its specification

• Proving properties of a specification:

Let *M* be a specification and Φ a property that this specification is required to have. $M \models \Phi$ means proving that the property Φ actually holds for this specification

Classes of properties to be proven

- There are two classes of required properties
- Safety properties: unwanted/forbidden/dangerous states shall never be reached
- Liveness properties: desired states shall always be reached sometimes

[Lamport 1977; Owicki and Lamport 1982]

- Typical safety properties: impossibility of deadlock, guaranteed mutual exclusion
- Typical liveness properties: eventual termination of a program, impossibility of starvation or livelock

2.1 Motivation

2.2 Temporal Logic

2.3 Principles of Model Checking with LTL

2.4 Model Checking in Practice

- Safety and liveness properties imply a notion of time
- However: no notion of state or time in propositional logic and predicate logic
- Extension needed for state or time dependent statements
- Various potential forms of temporal and modal logic
- We use Linear temporal logic (LTL) here

Linear time logic (LTL)

- Time is modeled as an ordered sequence of discrete states
- The existential and universal quantifiers of predicate logic are generalized to four temporal quantifiers:
 - S holds forever from now
 - S will hold sometimes in the future
 - S will hold in the next state
 - S holds until T becomes true
- LTL formulae are interpreted over so-called Kripke structures

Let *S* be a finite set of states and *P* a finite set of atomic propositions

- A System (S, I, R, L) consisting of
 - the set S of states,
 - a set I of initial states, $I \subseteq S$
 - a transition relation $R \subseteq S \ge S$, such that there is no terminal state in S
 - a labeling function L: S → IP(P), mapping every state s ∈ S to a subset of propositions which are true in state s

is called a Kripke structure (or Kripke transition system)

IP(P) denotes the power set of P, i.e., the set of all subsets of P

Example: a traffic light

Let P = {off, red, yellow, green}

Exercise: Modify the given Kripke structure such that it also models a yellow flashing light.

Formulae in LTL

• Formulae in LTL are constructed from

- atomic propositions
- the Boolean operators ¬, ∧, ∨, →
- the temporal quantifiers
 - X (next)
 - G (globally)
 - F (finally)
 - U (until)

Alternate Notation:
○ f for X f
□ f for G f
◇ f for F f

- Interpretation: always on a path in a Kripke structure
- O Example: For any path s2 → s3 → s4 → ... in our traffic light model, we have: X green, G ¬off, F (red ∧ ¬yellow)

- 2.1 Motivation
- 2.2 Temporal Logic

2.3 Principles of Model Checking with LTL

2.4 Model Checking in Practice

- A Kripke structure *M* satisfies the LTL formula Φ , formally speaking *M* ⊨ Φ , iff Φ is true for all paths in *M*.
- Now we can precisely define Model Checking with LTL as follows:
 - Let *M* be a model, expressed as a Kripke structure and Φ a formula in LTL that we want to prove
 - Model Checking is an algorithmic procedure for proving $M \models \Phi$
 - If the proof fails, i.e., $M \models \neg \Phi$, holds, the procedure yields a counter example: a concrete path in *M* for which Φ is false

We consider the problem of two processes p_1 and p_2 and a critical region c which must not be used by more than one process at every point in time.

Let $c_i \equiv p_i$ uses the critical region c $t_i \equiv p_i$ tries to enter the critical region c $n_i \equiv p_i$ does something else

Now we can state the mutual exclusion problem formally as

(1) $G \neg (C_1 \land C_2)$

Further, we want the following property to hold:

(2) G (($t_1 \rightarrow F c_1$) \land ($t_2 \rightarrow F c_2$))

Explain why we state property (2). What kind of property is this? Now we model a simple mutual exclusion protocol as a Kripke structure:

Example: mutual exclusion – 3

```
Exercise:
Give a counter example showing that
(2) G((t_1 \rightarrow F c_1) \land (t_2 \rightarrow F c_2))
does not hold.
Modify the model such that
```

property (2) holds on all paths.

Software Quality

A simple Model Checking algorithm

Given a model *M* as a Kripke structure and a LTL formula Φ

Parse the formula Φ

WHILE not done, traverse the parse tree in *post-order* sequence

Take the sub-formula ρ represented by the currently visited node of the parse tree

Label all nodes of *M* for which ρ is true¹) with ρ

ENDWHILE

IF all nodes of *M* have been labeled with $\Phi^{2)}$

THEN success ELSE fail ENDIF

- Due to the order of traversal, all terms needed for evaluating ρ are already present as labels
- ²⁾ The root of the parse tree represents the full formula Φ

Tractability of Model Checking

- \odot The computational complexity of efficient model checking algorithms is O(n), with n being the number of states
- However, the number of states grows exponentially with the number of variables in the model:
 - n binary variables: 2ⁿ states
 - n variables of m Bit each: 2^{nm} states
- Even with the fastest algorithms, Model Checking is intractable for programs / models of real-world size
- ⇒ Simplification required

Lossless simplification of Model Checking

Representing models and formulae with so-called ordered binary decision diagrams

- allows significantly faster algorithms
- is called symbolic Model Checking
- Still proves $M \models \Phi$ or $M \models \neg \Phi$

Simplification by abstracting the state space

Deliberate simplification of the model (to be performed manually)

- The full domain of a variable is replaced by a few representative values
 (for example, an Integer with 2³² states is replaced by a small set of representative values, e.g., {-4, 0, 1, 13}
- A successful Model Checking run is no longer a proof of $M \models \Phi$. It only provides strong evidence for $M \models \Phi$.
- A failing run still proves $M \models \neg \Phi$
- Model Checking a simplified state space constitutes a systematic automated test

- 2.1 Motivation
- 2.2 Temporal Logic
- 2.3 Principles of Model Checking with LTL
- 2.4 Model Checking in Practice

Practical application

Regularly used in industry for verifying

- electronic circuit designs
- safety-critical components of software systems, particularly in avionics
- security-critical software components, particularly in communication systems
- Models can be created in a notation resembling a programming language; no need to build actual Kripke structures

Two well-known tools in the public domain

- O SPIN [Holzmann 1991, 1997, 2003]
 - Available at: http://spinroot.com
 - Uses LTL
 - Models are written in the Promela language
- SMV [McMillan 1993]
 - Available at: http://www.cs.cmu.edu/~modelcheck/
 - Uses CTL (computation tree logic)

Many other model checking tools available

References

E.M. Clarke, E.A. Emerson (1981). Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic. In: D. Kozen (ed.), *Logics of Programs, Workshop*, Yorktown Heights, NY. Lecture Notes in Computer Science Volume 131. Berlin-Heidelberg: Springer. 52–71.

E.M. Clarke, E.A. Emerson and A.P. Sistla (1986). Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. *ACM Transactions on Programming Languages and Systems* **8**(2):244–263.

G.J. Holzmann (1991). *Design and Validation of Computer Protocols*. Englewood Cliffs, N.J.: Prentice Hall.

G.J. Holzmann (1997). The Model Checker SPIN. *IEEE Transactions on Software Engineering* **23**(5):279–295.

G.J. Holzmann (2003). The Spin Model Checker: Primer and Reference Manual. Addison-Wesley.

M.R.A. Huth, M.D. Ryan (2000). *Logic in Computer Science: Modelling and Reasoning about Systems*. Cambridge: Cambridge University Press.

S.A. Kripke (1963). Semantic Considerations on Modal Logic. Acta Philosphica Fennica 16:83-94.

L. Lamport (1977). Proving the Correctness of Multiprocess Programs. *IEEE Transactions on Software Engineering* **SE-3**(2):125–143.

K.L. McMillan (1993). Symbolic Model Checking. Kluwer Academic Publishers.

References – 2

S. Owicki, L. Lamport (1982). Proving Liveness Properties of Concurrent Programs. *ACM Transactions on Programming Languages and Systems* **4**(3):455–495.

A. Pnueli (1977). The Temporal Logic of Programs. *Proc. 18th IEEE Symposium on the Foundations of Computer Science*, Providence, R.I. 46–57.

J.P. Queille, J. Sifakis (1982). Specification and Verification of Concurrent Systems in CESAR. In: M. Dezani-Ciancaglini, U. Montanari (eds.), *International Symposium on Programming, 5th Colloquium, Turin, April 6-8, 1982. Proceedings*. Lecture Notes in Computer Science vol. 137. Berlin-Heidelberg: Springer. 337–351.

