
Department of Informatics!

Martin Glinz 
  

Software Quality 
  
Chapter 2  
  

Model Checking"

© 2014-2016 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material
for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties."

Software Quality "2. Model Checking "© 2014 Martin Glinz " 2"

2.1 "Motivation"

2.2 "Temporal Logic"

2.3 "Principles of Model Checking with LTL"

2.4 "Model Checking in Practice"

"

Proving programs and properties"

When developing critical software, we are interested in
formally proving that"

●  A program is correct (i.e., it satisfies its specification)"
●  A model actually has certain required properties"

❍  First case: Classical program proofs, i.e. proving P S 
for a program P and its specification S"

❍  Second case: This kind of proof is called Model Checking: 
Let M be a model and Φ a required property (typically
specified as a formula in temporal logic). We have to prove
that M Φ, i.e., M satisfies Φ. "

Software Quality "2. Model Checking "© 2014 Martin Glinz " 3"

 [Clarke and Emerson 1981, Queille and Sifakis 1982] "

Ways of using Model Checking"

Model Checking is typically used in two ways:"
❍  Partial verification of programs:"
"Let M be a program and Φ some critical part of its
specification. M Φ means proving the correctness of
program M with respect to the part Φ of its specification"

❍  Proving properties of a specification:"
"Let M be a specification and Φ a property that this
specification is required to have. M Φ means proving that
the property Φ actually holds for this specification"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 4"

Classes of properties to be proven"

❍  There are two classes of required properties"
❍  Safety properties: unwanted/forbidden/dangerous states

shall never be reached"
❍  Liveness properties: desired states shall always be

reached sometimes"

❍  Typical safety properties: impossibility of deadlock,
guaranteed mutual exclusion"

❍  Typical liveness properties: eventual termination of a
program, impossibility of starvation or livelock"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 5"

[Lamport 1977; Owicki and Lamport 1982]"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 6"

2.1 "Motivation"

2.2 "Temporal Logic"

2.3 "Principles of Model Checking with LTL"

2.4 "Model Checking in Practice"

"

Expressing time in logic formulae"

❍  Safety and liveness properties imply a notion of time"
❍  However: no notion of state or time in propositional logic

and predicate logic"
❍  Extension needed for state or time dependent statements"

❍  Various potential forms of temporal and modal logic"
❍  We use Linear temporal logic (LTL) here"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 7"

[Pnueli 1977]"

Linear time logic (LTL)"

❍  Time is modeled as an ordered sequence of discrete states"
❍  The existential and universal quantifiers of predicate logic

are generalized to four temporal quantifiers:"
●  S holds forever from now"
●  S will hold sometimes in the future"
●  S will hold in the next state"
●  S holds until T becomes true"

❍  LTL formulae are interpreted over so-called Kripke
structures"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 8"

Kripke structures"

Let S be a finite set of states and P a finite set of atomic
propositions"

A System (S, I, R, L) consisting of"
●  the set S of states,"
●  a set I of initial states, I ⊆ S"
●  a transition relation R ⊆ S x S, such that there is no terminal

state in S"
●  a labeling function L: S → IP(P), mapping every state s ∈ S to

a subset of propositions which are true in state s"

is called a Kripke structure (or Kripke transition system)"

Software Quality "2. Model Checking "© 2016 Martin Glinz " 9"

[Kripke 1963]"

IP(P) denotes the power set of P, i.e., the set of all subsets of P"

Example: a traffic light"

Let P = {off, red, yellow, green}"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 10"

s1" s2" s3"

{red}" {red, yellow}"

s4"

{green}" {yellow}"

Exercise: Modify the given Kripke structure such that it also models
a yellow flashing light."

Formulae in LTL"

❍  Formulae in LTL are constructed from"
●  atomic propositions"
●  the Boolean operators ¬, ∧, ∨, →"
●  the temporal quantifiers"

•  X (next)"
•  G (globally)"
•  F (finally)"
•  U (until)"

❍  Interpretation: always on a path in a Kripke structure"
❍  Example: For any path s2 → s3 → s4 → ... in our traffic

light model, we have: X green, G ¬off, F (red ∧ ¬yellow)"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 11"

Alternate Notation:"
 f "for X f"
 f "for G f"
 f "for F f"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 12"

2.1 "Motivation"

2.2 "Temporal Logic"

2.3 "Principles of Model Checking with LTL"

2.4 "Model Checking in Practice"

"

Model Checking with LTL"

❍  A Kripke structure M satisfies the LTL formula Φ, formally
speaking M Φ, iff Φ is true for all paths in M."

❍  Now we can precisely define Model Checking with LTL as
follows:"
●  Let M be a model, expressed as a Kripke structure and Φ a

formula in LTL that we want to prove"
●  Model Checking is an algorithmic procedure for proving  

M Φ "
●  If the proof fails, i.e., M ¬Φ, holds, the procedure yields a

counter example: a concrete path in M for which Φ is false"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 13"

Example: mutual exclusion"

We consider the problem of two processes p1 and p2 and a
critical region c which must not be used by more than one
process at every point in time."

Let "ci"≡ "pi uses the critical region c"
x " "ti "≡ "pi tries to enter the critical region c"
x " "ni"≡ "pi does something else"

Now we can state the mutual exclusion problem formally as"
(1) "G ¬(c1 ∧ c2)"

Further, we want the following property to hold:"
(2) "G ((t1 → F c1) ∧ (t2 → F c2))"

"
Software Quality "2. Model Checking "© 2014 Martin Glinz " 14"

Explain why we state property (2). 
What kind of property is this?"

Example: mutual exclusion – 2"

Now we model a simple mutual exclusion protocol as a Kripke
structure:"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 15"

s1"

s2" s3"

s5" s6"s4"

s7" s8"

{n1,n2}"

{t1,n2}" {n1,t2}"

{n1,c2}"{t1,t2}"{c1,n2}"

{c1,t2}" {t1,c2}"

Model Checking proves:"
• "G ¬(c1 ∧ c2) holds"
• "G ((t1 → F c1) ∧ (t2 → F c2)) 
"does not hold"

Example: mutual exclusion – 3"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 16"

Exercise: 
Give a counter example showing
that 
(2) "G ((t1 → F c1) ∧ (t2 → F c2))"
does not hold."

Modify the model such that
property (2) holds on all paths."

A simple Model Checking algorithm"

Given a model M as a Kripke structure and a LTL formula Φ "
Parse the formula Φ"
WHILE not done, traverse the parse tree in post-order sequence"

"Take the sub-formula ρ represented by the currently visited
node of the parse tree""
"Label all nodes of M for which ρ is true1) with ρ	

ENDWHILE"
IF all nodes of M have been labeled with Φ2) 
"THEN success 
"ELSE fail  

ENDIF"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 17"

1) "Due to the order of traversal, all terms needed for
evaluating ρ are already present as labels"

2) "The root of the parse tree represents the full
formula Φ "

Tractability of Model Checking"

❍  The computational complexity of efficient model checking
algorithms is O(n), with n being the number of states"

❍  However, the number of states grows exponentially with
the number of variables in the model:"
●  n binary variables: 2n states"
●  n variables of m Bit each: 2nm states"

❍  Even with the fastest algorithms, Model Checking is
intractable for programs / models of real-world size"

➪ Simplification required"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 18"

Lossless simplification of Model Checking"

Representing models and formulae with so-called ordered
binary decision diagrams"

●  allows significantly faster algorithms"
●  is called symbolic Model Checking"
●  Still proves M Φ or M ¬Φ"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 19"

Simplification by abstracting the state space"

Deliberate simplification of the model (to be performed
manually)"

❍  The full domain of a variable is replaced by a few
representative values 
(for example, an Integer with 232 states is replaced by a
small set of representative values, e.g., {-4, 0, 1, 13}"

❍  A successful Model Checking run is no longer a proof of  
M Φ. It only provides strong evidence for M Φ."

❍  A failing run still proves M ¬Φ "
➪ Model Checking a simplified state space constitutes a

systematic automated test"
Software Quality "2. Model Checking "© 2014 Martin Glinz " 20"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 21"

2.1 "Motivation"

2.2 "Temporal Logic"

2.3 "Principles of Model Checking with LTL"

2.4 "Model Checking in Practice"

"

Practical application"

❍  Regularly used in industry for verifying"
●  electronic circuit designs"
●  safety-critical components of software systems, particularly in

avionics"
●  security-critical software components, particularly in

communication systems"

❍  Models can be created in a notation resembling a
programming language; no need to build actual Kripke
structures"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 22"

Tools"

Two well-known tools in the public domain"
❍  SPIN [Holzmann 1991, 1997, 2003]"

●  Available at: http://spinroot.com"
●  Uses LTL"
●  Models are written in the Promela language"

❍  SMV [McMillan 1993] "
●  Available at: http://www.cs.cmu.edu/~modelcheck/"
●  Uses CTL (computation tree logic)"

Many other model checking tools available"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 23"

References"

E.M. Clarke, E.A. Emerson (1981). Design and Synthesis of Synchronization Skeletons Using Branching
Time Temporal Logic. In: D. Kozen (ed.), Logics of Programs, Workshop, Yorktown Heights, NY. Lecture
Notes in Computer Science Volume 131. Berlin-Heidelberg: Springer. 52–71."
E.M. Clarke, E.A. Emerson and A.P. Sistla (1986). Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and
Systems 8(2):244–263."
G.J. Holzmann (1991). Design and Validation of Computer Protocols. Englewood Cliffs, N.J.: Prentice
Hall."
G.J. Holzmann (1997). The Model Checker SPIN. IEEE Transactions on Software Engineering 23(5):279–
295."
G.J. Holzmann (2003). The Spin Model Checker: Primer and Reference Manual. Addison-Wesley."
M.R.A. Huth, M.D. Ryan (2000). Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge: Cambridge University Press."
S.A. Kripke (1963). Semantic Considerations on Modal Logic. Acta Philosphica Fennica 16:83-94."
L. Lamport (1977). Proving the Correctness of Multiprocess Programs. IEEE Transactions on Software
Engineering SE-3(2):125–143."
K.L. McMillan (1993). Symbolic Model Checking. Kluwer Academic Publishers."
"

"
"

"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 24"

References – 2"

S. Owicki, L. Lamport (1982). Proving Liveness Properties of Concurrent Programs. ACM Transactions on
Programming Languages and Systems 4(3):455–495."
A. Pnueli (1977). The Temporal Logic of Programs. Proc. 18th IEEE Symposium on the Foundations of
Computer Science, Providence, R.I. 46–57."
J.P. Queille, J. Sifakis (1982). Specification and Verification of Concurrent Systems in CESAR. In: M.
Dezani-Ciancaglini, U. Montanari (eds.), International Symposium on Programming, 5th Colloquium,
Turin, April 6-8, 1982. Proceedings. Lecture Notes in Computer Science vol. 137. Berlin-Heidelberg:
Springer. 337–351. "
"

"
"

"

Software Quality "2. Model Checking "© 2014 Martin Glinz " 25"

