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Abstract In databases with time interval attributes,

query processing techniques that are based on sort-

merge or sort-aggregate deteriorate. This happens be-

cause for intervals no total order exists and either the

start or end point is used for the sorting. Doing so leads

to inefficient solutions with lots of unproductive compar-

isons that do not produce an output tuple. Even if just

one tuple with a long interval is present in the data,

the number of unproductive comparisons of sort-merge

and sort-aggregate gets quadratic.

In this paper we propose DIP (Disjoint Interval

Partitioning), a technique to efficiently perform sort-

based operators on interval data. DIP divides an input

relation into the minimum number of partitions, such

that all tuples in a partition are non-overlapping. The

absence of overlapping tuples guarantees efficient sort-

merge computations without backtracking. With DIP
the number of unproductive comparisons is linear in the

number of partitions. In contrast to current solutions

with inefficient random accesses to the active tuples,

DIP fetches the tuples in a partition sequentially. We

illustrate the generality and efficiency of DIP by de-

scribing and evaluating three basic database operators

over interval data: join, anti-join, and aggregation.
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1 Introduction

Many databases model real-world states that change.

To model state changes the most common approach is

to associate each tuple with a time interval T = [Ts, Te)

that represents the time period during which the tuple

is valid [8]. In this paper we propose an efficient tech-

nique to perform sort-based computations over tempo-

ral relations, i.e., relations with an interval attribute.

For example, the temporal relations in Figure 1 record

the bookings of luxury suites at hotels R and S, where

T is the booking period of room # at price $.

R T # $

r1 [1, 5) 1 80

r2 [6, 8) 1 60

r3 [7, 8) 2 80

r4 [7, 10) 3 75

r5 [10, 11) 2 70

r6 [10, 13) 5 80

S T # $

s1 [0, 8) 6 60

s2 [1, 2) 2 70

s3 [3, 4) 2 80

s4 [5, 11) 3 60

s5 [9, 12) 2 90

s6 [11, 12) 1 90

Fig. 1: Temporal relations R and S

Techniques based on sorting have a long tradition

in DBMSs and are used extensively by the query eval-

uation engine. Specifically, sort-merge is used for joins,

anti-joins and nearest neighbour joins [6], whereas sort-

aggregate is used for aggregations and duplicate elim-

ination [12]. Consider a temporal join where tuples

ri ∈ R and sk ∈ S shall be joined iff their intervals

overlap. To ensure that all join matches for an outer

tuple ri+1 are found, sort-merge must backtrack in the

inner relation to the first tuple sj ∈ S that overlaps

with tuple ri. This is equivalent to the handling of non-

key attributes in sort-merge joins [21], but the crucial
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difference when dealing with T is that the join matches

in S for tuple ri+1 are non-consecutive, and many non-

matching tuples might have to be rescanned. Backtrack-

ing makes sort-merge inefficient for interval data.

Example 1 To compute a temporal join using sort-

merge, R and S are sorted by start point Ts and then

processed as illustrated in Figure 2. The middle part

illustrates the pairs of tuples that are compared. The

numbering illustrates the order in which the compar-

isons are performed. Thus, we first compare r1 with

S T # $

s1 [0, 8) 8 60

s2 [1, 2) 2 70

s3 [3, 4) 2 80

s4 [5, 6) 3 60

s5 [9, 12) 2 90

s6 [11, 12) 2 90
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Fig. 2: Temporal join using sort-merge: for ri+1 ∈ R, back-
tracking must go back in S to the first join match of ri.

s1. The tuples are joined since [1, 5) overlaps with [0, 8).

We proceed with the tuples from S until we fetch a tu-

ple that starts after r1 ends. Thus, no tuples after s4

must be looked at. Next, tuple r2 is fetched and we

must backtrack in S. To ensure that all join matches

for r2 are found, we must go back to the first join match

of r1 (i.e., s1), and compare tuple r2 with s1, s2, s3, s4,

and s5. Similarly all other tuples in R are processed.

Observe that r2 joins with non-consecutive tuples in

S: it joins with s1, does not join with s2 and s3, joins

with s4, and does not join with s5. In total 29 tuple

comparisons are done.

A comparison that does not produce a result tuple

is an unproductive comparison. A sort-merge join may

perform many unproductive comparisons due to back-

tracking. To limit the amount of unproductive com-

parisons in sort-merge computations, we propose DIP
(Disjoint Interval Partitioning). DIP partitions an in-

put relation into the smallest possible number of par-

titions, each storing tuples with non-overlapping time

intervals. Figure 3 shows the result of DIP applied

to our example relations. The partitioning yields three

outer and two inner DIP partitions. Note that tuples

of different partitions may overlap, but inside a sin-

gle partition tuples do not overlap. Thus, a subsequent

merge that does a coordinated scan of partitions to de-

termine the overlapping tuples, does not have to back-

track. Moreover, since DIP produces partitions with

tuples that are sorted, no additional sorting is required

prior to computing a merge.

R1 T # $

r1 [1, 5) 1 80

r2 [6, 8) 1 60

r6 [10, 13) 5 80

R2 T # $

r3 [7, 8) 2 80

r5 [10, 11) 2 70

R3 T # $

r4 [7, 10) 3 75

S1 T # $

s1 [0, 8) 6 60

s5 [9, 12) 2 90

S2 T # $

s2 [1, 2) 2 70

s3 [3, 4) 2 80

s4 [5, 11) 3 60

s6 [11, 12) 1 90

Fig. 3: CreateDIP(R) and CreateDIP(S)

Example 2 Figure 4 illustrates the computation of the

temporal join over DIP partitions. Two merge steps
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Fig. 4: A temporal join between DIP partitions is performed
without backtracking.

are computed. First, all partitions of R are joined with

S1 (comparison 1 to 9), and then all partitions of R

are joined with with S2 (comparison 10 to 22). During

a merge step each input partition is scanned just once.

For example, for joining the R partitions with partition

S1, tuple r1 is compared with s1, and, since the tuples

overlap, a join match is produced. Since r1 ends before

s1, we advance in R1 and fetch r2 producing a second

join match. Tuple r6 is fetched next and compared to s1

without producing a join match. Since r6 ends after s1

we are sure that in R1 we have found all tuples overlap-

ping s1. We therefore switch to partition R2 (and later

to R3), which is processed similarly. After the tuples

overlapping s1 have been found in all outer partitions,

we fetch s5 from S1 and resume the scan of R1 from

where it stopped (i.e., r6): no backtracking is necessary.

The middle part of Figure 4 illustrates that with DIP
partitions the number of comparisons is much less than

the number of comparisons in Figure 2 where no DIP
partitions are used.

DIP guarantees that the number of unproductive

comparisons is upper-bounded by c × n where c is the

number of partitions and n is the number of tuples. The

number of partitions is the maximum number of tuples
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in a relation that overlap at a common time. While

backtracking makes sort-merge quadratic as soon as one

long-lived tuple exists in a relation, DIP gets quadratic

only if there exists a time point that is included in the

intervals of all tuples in a relation.

Existing partitioning techniques segment the time

domain and place the tuples into segments they overlap

[7]. Various research questions have been tackled in this

context. Among others, disjoint segments [27], overlap-

ping segments [10], variable-size segments [10], and the

replications of tuples in all segments they overlap [20]

have been investigated. In all cases the (implicit) goal

has been to place tuples with similar intervals into the

same partitions. DIP does exactly the opposite: it puts

tuples that do not overlap into the same partition. This

yields more joins between partitions, but the joins no

longer require a nested-loop and are performed much

more efficiently: in O(n) rather than O(n2) time.

Our approach is general, simple and systematic: to

compute a temporal join, anti-join, or aggregation, we

first compute DIP on the input relations, and then

apply a sequence of merges on the partitions. In our

experiments we show that DIP, despite its generality,

manages data histories much more efficiently than the

more specialized state-of-the-art solutions. The number

of partitions is independent of the length of the history,

and there is only a linear dependency between the run-

time and the size of partitions. Furthermore, we show

that current solutions with less unproductive compar-

isons are slower than DIP since they suffer from ran-

dom (disk or memory) accesses: the Timeline Index [16]

since it does one index look-up for each matching tuple;

the Sweepline algorithm [3] since, after a series of inser-

tions into and deletions from the list of active tuples,

the active tuples are scattered in memory [24].

Our technical contributions are as follows:

1. We propose the CreateDIP(R) algorithm to effi-

ciently partition a relation R into the minimum

number of DIP partitions with non-overlapping tu-

ples.

2. We introduce reduction rules to compute joins, anti-

joins, and aggregations over temporal relations us-

ing DIP partitions. We prove that the number

of unproductive comparisons per tuple is upper-

bounded by the number of DIP partitions for any

of those operators.

3. We introduce an efficient algorithm, DIPMerge, to

efficiently compute a temporal join, anti-join, and

aggregation over multiple DIP partitions with one

sequential scan of the input partitions and no back-

tracking.

4. We experimentally show that DIP is the only tech-

nique that, either with disk- or memory-resident

data, computes temporal joins, anti-joins, and ag-

gregations without deteriorating if the data history

grows.

The paper is organized as follows. Section 2 dis-

cusses related work. After the background in Section

3, we present Disjoint Interval Partitioning (DIP) in

Section 4 and its implementation in Section 5. Section

6 quantifies the costs for, respectively, a temporal join,

anti-join, and aggregation using DIP. Section 7 de-

scribes the implementation of DIPMerge. Section 8

reports the results of our empirical evaluation. Section

9 draws conclusions and points to future work.

2 Related Work

We discuss related works based on the class of prob-

lems they solve: first we describe general approaches

that cover temporal joins [27, 25] as well as temporal

aggregations [4, 30]; next we describe solutions for tem-

poral joins; finally we conclude with solutions for tem-

poral aggregations. Temporal anti-joins have received

very little attention: only temporal alignment [9] offers

a solution for computing them.

General solutions: Dignös et al. [9] proposed an ap-

proach that computes temporal operators by first pro-

ducing all adjusted time intervals that appear in the

result (through a normalization or alignment operation

[2]), and then applies the corresponding non-temporal

operator to the relations with adjusted time intervals.

The interval adjustment is computed with a left outer

join on T with inequality conditions on the start and

end points of intervals. This is a difficult to optimize

primitive and is computed through a nested-loop with

a quadratic number of comparisons.

The Timeline Index [16] has been introduced to

compute temporal joins and temporal aggregations

with the main memory system SAP HANA. The Time-

line Index consists of a Version Map that stores an

Event ID for each Ts and Te, and of an Event List that

stores, for each Event ID, the ID of the tuples starting

(indicated by 1) and ending (indicated by 0) their va-

lidity. Since the index tracks all tuples that are valid at

each time point, temporal queries can be implemented

by scanning Event List and Version Map concurrently.

Temporal aggregates are computed cumulatively while

scanning the index. For COUNT, the index is scanned

and, for each interval delimited by two timestamps, the

count is incremented or decremented according to the

number of 0s and 1s. For SUM and AVG each time-

stamp requires a look-up to fetch the value of the tu-

ple(s) originating or ending to incrementally update the

aggregate value. For MIN or MAX, while scanning the
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index, a list of the Top-K Min/Max values is kept (to

use in case the current Min/Max value ceases its valid-

ity). For each newly fetched tuple, the validity of each

of the K tuples must be checked. No solution is given

for determining K. Temporal Joins are computed using

sort-merge on the indexes. After a joined pair is built, a

look-up for each tuple ID is done (implying that, if a tu-

ple is a join match for k tuples in R, k look-ups for the

same tuple are done). We experimentally show that this

method inherits the disadvantages of traditional index

joins, i.e., it is only efficient when few index look-ups

are done, otherwise it does not scale.

Solutions for joins: Dignös et al. [10] introduced

Overlap Interval Partitioning (OIP). The approach di-

vides the time domain into k granules, creates parti-

tions with increasing length that span the entire time

domain, and puts each tuple into the shortest parti-

tion into which the tuple fits. The join is computed

by identifying for each outer partition the overlapping

inner partitions. Finding the overlapping partitions is

very efficient, but a nested-loop is necessary to join par-

titions with overlapping tuples. This is a performance

bottleneck. When joining partitions with short intervals

many unproductive comparisons happen since short tu-

ples overlap with only few other tuples. If the length of

the data history increases, the number of short parti-

tions increases too, causing a high number of unproduc-

tive comparisons.

Enderle et al. [11] proposed the Relational Interval

Tree [19] to compute temporal joins. This approach is

index-based, similar to the TimeLine Index, but can

be applied to joins only. As mentioned above, index-

based techniques are good for few look-ups but, even

if a single look-up is fast, cannot compete with more

advanced techniques for computing joins if the number

of index look-ups is high.

A Sweepline algorithm has been proposed by Arge

et al. [3]. It sorts the relations by Ts, and, while scan-

ning the relations, keeps a list of the active R (and S)

tuples. When a new R (or S) tuple is fetched, it is

compared with all active S (or R) tuples. If an active

tuple ceases its validity, it is removed from the list. The

allocation and deallocation yields a poor memory local-

ity since, after a series of insertions and deletions into

the list of active tuples, the elements of the list become

scattered in memory [24]. This causes random accesses

when traversing the list, which are considerably slower

than sequential accesses [28]. Piatov et al. [24] address

this drawback by pre-allocating the space for the active

tuples and, when an active tuple is removed from the

list, the last inserted active tuple is moved to the free

place. This requires that all tuples of the relation have

the same size, which is not a realistic assumption in the

general case.

MapReduce [7] has been used to compute interval

joins. The proposed approach partitions the time do-

main into q segments, and assigns to each reducer Ri

all tuples overlapping the i-th segment. Similar to other

approaches it uses a nested-loop to join the tuples of two

partitions, outputs the joined tuples, and broadcasts

the tuples that span multiple segments to the other

reducers. A similar approach that is not MapReduce-

based has been proposed by Soo et al. [27]. Both ap-

proaches do not give an efficient solution for the nested-

loop join between partitions.

Solutions for aggregations: In order to incrementally

compute temporal aggregates, the Aggregation Tree has

been proposed [18]. The approach has two limitations.

First, the entire tree must be kept in memory. For a

relation R, the size of the tree is up to 2n (i.e., the

number of different values for Ts and Te). Second, if the

input is sorted by Ts (as is often the case for temporal

data), the aggregation tree will be unbalanced, and the

time to create it is O(n2). The Balanced Aggregate Tree

[23] addresses the unbalancedness of the Aggregation

Tree with a red-black tree. Since the tree stores time

instants rather than time intervals it cannot be used to

compute Min/Max aggregations. Moreover, to deter-

mine an aggregate value at a specific point in time, the

tree must be scanned from the beginning to the look-up

time point. The SB-Tree [31] reduces the number of tree

nodes since multiple intervals are stored in each node

(like a B-Tree), each with its corresponding aggregate

value. All approaches can only be applied to distribu-

tive aggregation functions [13] and must duplicate the

index for each aggregation function. Our partitioning is

run once and also works for non-distributive functions

(e.g., standard deviation).

Moon et al. [23] present a scalable algorithm based

on buckets. They partition the time domain into q uni-

form buckets and assign to each bucket every tuple that

overlaps. Tuples spanning multiple buckets are split and

assigned to each overlapping bucket. Aggregation is ap-

plied inside each bucket by using one of the above men-

tioned algorithms. To reconstruct the tuples that have

been split, adjacent result tuples are merged if they

have the same aggregation value. This violates change

preservation (lineage) [5] because if two adjacent result

tuples have the same aggregation value, but originate

from different tuples, the result will only include one

tuple instead of two.

Sort-aggregate [12] is a common technique to com-

pute non-temporal aggregates based on sorting and is

implemented in many commercial DBMSs. It sorts the

data by the grouping attributes, and then computes the
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aggregate over the tuples within the same group (which,

after the sorting, are placed next to each other). This

approach can also be applied to temporal data (e.g.,

sorting the relation by Ts), but backtracking is needed

to fetch tuples that have been scanned before and are

still valid. As for sort-merge, we experimentally show

that this approach becomes quadratic as soon as one

tuple with a long time interval exists.

3 Preliminaries

3.1 Notation

We assume a relational schema (T,A1, . . . , Ap) where

A1, . . . , Ap are the non-temporal attributes, and T =

[Ts, Te) is an interval attribute with Ts and Te being,

respectively, its inclusive starting and exclusive ending

points. R is a relation over schema (T,A1, . . . , Ap) with

cardinality n. For a tuple r ∈ R and an attribute Ai,

r.Ai denotes the value of Ai. Given tuples r and s, r

is disjoint from s iff r.Te ≤ s.Ts ∨ r.Ts ≥ s.Te, other-

wise the tuples are overlapping. For example, the tuples

([1, 3), a) and ([2, 6), b) are overlapping, whereas the tu-

ples ([1, 3), a) and ([8, 9), c) are disjoint.

Table 1 summarizes the symbols and notation that

we use in this paper. For the number of partitions, we

Symbol Meaning Example
R relation R,S

r tuple r, s, r1, sj
r.Ai attribute value of a tuple r.Ai, r.T
Ri i-th DIP partition of R R1,R2,Si

H partition heap H
m # outer part. processed in parallel m
n # of tuples of a relation n

c # of DIP partitions of a relation cR, cS , c

b size of partition in # of blocks b
B size of relation in # of blocks B

r.X lead of tuple r (cf. Definition 2) r.X

Table 1: Notation.

use relation names in subscripts to refer to specific re-

lations. For example, cR denotes the number of DIP
partitions of relation R, while cS denotes the number

of DIP partitions of relation S.

3.2 Temporal Operators

Table 2 lists and defines a temporal join, a temporal

anti-join, and a temporal aggregation. As usual, the

semantics of a temporal operator are defined in terms

of snapshot reducibility [26] and change preservation [9,

5]. Briefly, snapshot reducibility ensures that the result

T. Op. Definition

R ./T S
{
<τ, r.A1, . . . , r.Ap, s.B1, . . . , s.Bq> |

r ∈ R ∧ s ∈ S ∧ overlap(r, s) ∧ τ = (r.T ∩ s.T )
}

RBT S
{
<τ, r.A1, . . . , r.Ap> |

r ∈ R ∧ τ.Ts ≥ r.Ts ∧ τ.Te ≤ r.Te ∧
@s ∈ S

(
overlap(s, τ)

)
∧

∃u ∈ S
(
τ.Ts ∈ {r.Ts, u.Te} ∧ τ.Te ∈ {r.Te, u.Ts}

)}
ϑT
f(Ai)

R
{
<τ, f(R′.Ai)> |

r, s ∈ R ∧ len(τ) > 0 ∧
τ.Ts ∈ {r.Ts, r.Te} ∧ τ.Te ∈ {s.Ts, s.Te} ∧
∀u ∈ R

(
overlap(u, τ)↔ (τ − u.T = ∅ ∧ u ∈ R′)

)}
Table 2: Semantics of Temporal Operators (T. Op.).

of a temporal operator at any time point p is equal to

the result of the corresponding non-temporal operator

applied to the input tuples that are valid at p. Thus, the

time points to be associated with output tuples depend

on the semantics of the non-temporal operator. For a

join these are the times during which the outer and

inner tuples are both valid; for an anti-join these are

the times when an outer tuple is valid and no inner

tuple is; for an aggregation these are the times when

a set of tuples is valid. Change preservation ensures

that the result of a temporal operator respects lineage.

Thus, any change in the input tuples is reflected in the

intervals of the output tuples (cf. Section 6.3).

The result of the operators applied to our running

example are shown in Figure 10 for a join, Figure 12

for an anti-join, and Figure 16 for an aggregation, and

will be explained in Section 6.

3.3 Backtracking over Interval Data

This section shows that the number of unproduc-

tive comparisons of sort-merge and sort-aggregate al-

gorithms over relations with overlapping tuples gets

quadratic with just one long-lived tuple.

Let Lx be the longest interval valid in a relation for

time point ti, and L be the set of the longest inter-

vals in a relation for all possible time points. In Fig-

ure 5, for example, the longest interval at time tp is Lb.

L = {La, Lb, Lc} since between time t1 and tj interval

La is the longest, between tj and tk interval Lb is the

longest, and between tk and tz the longest interval is

Lc. We assume that the intervals in L do not overlap

and at least one tuple is valid at each point. This yields

a lower bound for the number of comparisons in sort-

merge computations, which is sufficient for our analy-

ses. If two longest intervals overlap more comparisons

are needed since backtracking must go back further.

Figure 5 illustrates that for an outer tuple r that

overlaps a longest interval Lk, backtracking re-fetches
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Backtrack

S

La

Lb

Lc

∆Tr
t1 tj tp tk tz

Fig. 5: For r ∈ R, on average, half of the tuples within Li are

compared because of backtracking.

all tuples between Lk.Ts and r.Te. The cost of sort-merge

in terms of tuple comparisons is Comp(Merge) + n ×
Comp(Backtrack). Let L̄ be the average length of the

longest intervals and |∆T | the length of the time do-

main. Comp(Merge) = n + n − 1 is the number of

comparisons of the merge procedure since in each step

the algorithm advances either the outer or the inner

relation. Comp(Backtrack) = L̄
|∆T | × n ×

1
2 quantifies

the number of inner tuples rescanned on average for an

outer tuple r: L̄
|∆T | × n is the number of tuples within

Lk, and, since on average r ends in the middle of Lk,

half of them are refetched and compared against r.

Lemma 1 (Cost of backtracking) The number of un-

productive comparisons for a temporal join R ./T S us-

ing backtracking becomes quadratic as soon as just one

long-lived tuple exists.

Proof If S includes one long-lived tuple with an in-

terval Lx that spans the entire time domain, then

|Lx| = |∆T |, L = {Lx}, L̄
|∆T | = |Lx|

|∆T | = |∆T |
|∆T | = 1. The

number of unproductive comparisons are obtained by

subtracting the cardinality of the result from the cost

of the join. In the worst case, each r ∈ R only overlaps

with Lx and no other interval in S, and we get:

Comp(Merge) + n× Comp(Backtrack)− |R ./T S|
= (n+ n− 1) + n(1× n× 1

2 )− n
= O(n2) unproductive comparisons. �

This result is experimentally confirmed in Fig-

ure 6(a), where a temporal join on the fact table of the

Swiss Feed Data Warehouse [29] is computed. We show

that as soon as measurements that are time-invariant,

and therefore valid over the entire time domain ∆T ,

are taken into account (e.g., the Protein Digestibility

value), sort-merge becomes inefficient.

Figure 6(b) illustrates that also sort-aggregate [12],

i.e., temporal aggregation computed using sorting, suf-

fers from a quadratic number of unproductive com-

parisons. For non-temporal data sort-aggregate makes

only one scan to compute the aggregate because, after

the sorting, all tuples of the same group are consec-

utive. When dealing with time intervals, instead, sort-

aggregate must backtrack to fetch tuples that have been

scanned before but are still valid.
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Fig. 6: Sort-merge and sort-aggregate deteriorate to a nested-

loop as soon as a single long-lived tuple exists.

4 Disjoint Interval Partitioning

Definition 1 (DIP partition). Consider a relation R

with schema (T,A1, . . . , Ap). A DIP partition Ri ⊆ R

is a subset of R such that:

∀(r, s) ∈ Ri

(
r 6= s⇒ disjoint(r, s)

)
Thus, aDIP partition Ri is a set of non-overlapping

tuples from R. In Figure 3 we have three outer DIP
partitions (R1,R2,R3) and two inner DIP partitions

(S1,S2). Tuples of different partitions may overlap, but

within a single partition all tuples are disjoint.

4.1 Efficient Merging of DIP Partitions

We use DIP to speed up the merge in sort-merge com-

putations. The advantage of DIP is that a temporal

operator can be computed between two DIP parti-

tions using a merge procedure that does not have to

backtrack, i.e., does one scan of the partitions with se-

quential IOs only.

Lemma 2 (No Backtracking) Consider two DIP par-

titions Ri and Sj. During a sort-merge computation no

backtracking must be done in Sj to find the tuples that

overlap r ∈ Ri.

Proof Let r1, r2 ∈ Ri. Since the partitions are sorted

(e.g., by Ts), we assume without loss of generality that

r1 precedes r2. Tuples r1 and r2 are disjoint since they

are in the same DIP partition. Since all tuples in Sj are

disjoint, at most one tuple sk may exist that overlaps r1

such that sk.Te > r1.Te (cf. Figure 7). Thus, all tuples

that precede sk must end before r2 starts and therefore

cannot overlap r2. Tuple sk is the only tuple that can

overlap both with r1 and with r2. �

Lemma 2 guarantees that, if sk is the last tuple that

overlaps a tuple in Ri, there is no need to rescan any

tuple before sk to find the matches for the next tuple in

Ri. This means that a merge procedure between DIP
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DIP partition Sj

DIP partition Ri
r1 r2

sk−3 sk−2 sk−1 sk sk+1

Fig. 7: Illustration of Lemma 2.

partitions can be computed without backtracking, i.e.,

with just one scan of the input partitions.

Figure 8 illustrates that Lemma 2 also holds when

multiple outer partitions are merged simultaneously

with Sj . The scan of an outer partition (e.g., R1) pro-

ceeds until all tuples overlapping sk have been found.

Since in R1 only the last scanned tuple may overlap

with sk+1, we mark its position in R1, and process R2

(and later R3) to find the other join matches of sk. Af-

ter all join matches have been found, sk+1 is fetched

and the scan of the outer partitions resumes from the

previously marked positions. Of the tuples previously

accessed in R1,R2 and R3, only the marked ones (i.e.,

the bold-faced ones in Figure 8) may overlap with sk+1.

DIP partition R1

DIP partition R2

DIP partition R3

DIP partition Sj sk sk+1

Fig. 8: Efficient merging without backtracking: in each outer
partition, no tuple before the one (shown in bold) scanned
last for sk can overlap sk+1.

5 Efficient Data Partitioning

We use DIP as the essential first step to efficiently

compute temporal operators. Since for such computa-

tions the number of unproductive comparisons is lim-

ited by the number of DIP partitions, we first provide

the CreateDIP algorithm to partition the input rela-

tion into the minimum number of DIP partitions.

5.1 The Partitioning Algorithm CreateDIP

Algorithm CreateDIP(R) sorts the input relation R

by Ts. It then scans the data and places tuples into

partitions where they do not overlap another tuple. In

order to determine if tuple t overlaps with a tuple in

DIP partition Ri, the following Lemma asserts that it

is enough to compare t with only one tuple, namely the

last tuple inserted into Ri.

Lemma 3 (Transitivity) Consider tuples r, s ∈ Ri and

a new tuple t such that r.Ts ≤ s.Ts ≤ t.Ts. Then

disjoint(r, s) ∧ disjoint(s, t) ⇐⇒ disjoint(r, t).

Proof The end point of an interval is always larger than

the start point: s.Te > s.Ts. Since the tuples in a DIP
partition do not overlap, we have r.Te < s.Ts. Since

s.Ts ≤ t.Ts (recall that we process tuples ordered by

Ts), r.Te ≤ t.Ts follows. Thus, r does not overlap t. �

We use Lemma 3 to efficiently determine if a tuple

can be placed in a partition. This is the case if a tu-

ple does not overlap with the last element of a DIP
partition. We store the partitions in a min-heap H [17,

p. 58]. Each partition is represented by a node whose

key is the Te value of the last tuple inserted into the

partition and whose value is a pointer to the partition.

The root points to the partition whose last inserted tu-

ple ends the earliest among all partitions. Thus, a new

tuple r can either be placed in the root partition if it

does not overlap with its last element or we know for

sure that r overlaps with all partitions and a new one

must be created.

Example 3 Consider a relation sorted by Ts whose first

ten tuples have been partitioned as illustrated in Figure

9(a). The next tuple r has r.T = [5, 6). We compare

5 :R1

5 :R2 10 :R3

12 :R4 10 :R5

5 :R2

6 :R1 10 :R3

12 :R4 10 :R5

6 :R1

10 :R5 10 :R3

12 :R4 11 :R2

R1

R2

R3

R4

R5

0 2 3 5

1 2

3 50 2

4 10

1 4 12

0 3

4 10

(a) PartitionHeap

R1

R2

R3

R4

R5

5 60 2 3 5

1 2

3 50 2

4 10

1 4 12

0 3

4 10

(b) Add [5, 6)

R1

R2

R3

R4

R5

5 6

6 11

0 2 3 5

1 2

3 50 2

4 10

1 4 12

0 3

4 10

(c) Add [6, 11)

Fig. 9: Partition Heaps after inserting [5,6) and [6,11).

[5, 6) with the key of the root: since the starting point of

[5, 6) is larger or equal than 5 (i.e., [5, 6) does not over-

lap with [3, 5)) we add [5, 6) to the root partition and

reorganize the heap by swapping the root with its left

child. Figure 9(b) illustrates the result. The next tuple

r has r.T = [6, 11): since its starting point is greater or

equal than 6, r is inserted into the root partition R2.

Figure 9(c) illustrates the result after reorganizing the

heap.
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Algorithm 1 describes the details of our implemen-

tation. Tuple r is the next tuple to process. If r overlaps

with the last tuple in the root partition (line 4), we cre-

ate a new partition at the end of the heap (line 5), put

r in it, and call HeapifyUp to reorganize the heap. If r

does not overlap with the last tuple of the root parti-

tion, we add r to it (line 9) and call HeapifyDown to

reorganize the heap. When all tuples have been pro-

cessed, the algorithm returns the partition heap H.

Algorithm 1: CreateDIP(R)

1 Sort(R) by Ts ;
2 H.root← ∅ ;
3 while (r = fetchtuple(R)) 6= null do
4 if overlap(H.root.last, r) then
5 H.new ← growHeap(H) ;
6 Add r to H.new ;
7 HeapifyUp(H.new) ;

8 else

9 Add r to H.root ;
10 HeapifyDown(H.root) ;

11 return H;

CreateDIP implements the solution to the inter-

val partitioning problem [17, p.116] (aka interval-graph

coloring problem). The algorithm is correct since all in-

tervals are assigned to a partition: if a tuple cannot be

placed into an existing partition without overlapping

another tuple a new partition is created. The set of

partitions is minimal since the number of partitions c

is equivalent to the depth of the set of intervals, i.e., the

maximum number of intervals that overlap a common

time point.

For data with a long history, i.e., data collected

over many years, the number of partitions c is small

compared to the size of the relation. For example, in a

database storing the bookings of a hotel, c is equal to

the number of rooms (e.g., in the worst case all rooms

are occupied on a given day), which is smaller than

all bookings recorded since the beginning. In data col-

lected in a network of sensors, c is the number of sen-

sors (e.g., all sensors record a value at the same time),

which is smaller than the number of observations col-

lected through the sensors over the years.

5.2 Properties of DIP Partitioning

Lemma 4 The runtime complexity for computing

CreateDIP on a relation with n tuples is upper-bounded

by O(n log n).

Proof The cost of our partitioning is given by the sum

of: i) the cost of sorting, i.e., O(n log n), and ii) the

cost of the algorithm itself, i.e., O(n log c) since, for

each tuple, in the worst case each call of HeapifyUp

or HeapifyDown propagates a node from the root to a

leaf or vice versa (with cost log c). Since c ≤ n we get

O(n log n+ n log c) = O(n log n). �

During the second phase of sort-merge computa-

tions the sorted DIP partitions are merged. A prop-

erty of DIP is that the number of comparisons of the

merge step is guaranteed to be independent of the size

of the DIP partitions. Consider a relation with cardi-

nality n that is partitioned into c DIP partitions: our

approach always makes the same number of compar-

isons, independent of how many tuples are placed in

the partitions.

Example 4 Let R = {R1,R2} and S = {S1,S2} be

two relations with 10k tuples each. DIP first joins R1

and R2 with S1 and then with S2. Since partitions are

totally ordered, a join between the partitions can be

done with a scan. Thus, we are guaranteed to have at

most (|R1|+|R2|+2|S1|)+(|R1|+|R2|+2|S2|) = 2|R|+
2|S|= 40k comparisons in total, which is independent

of the size of the partitions.

With current partitioning approaches, instead, the

cost of a join is not known a priori since it does not

only depend on the number of partitions, but also on

the number of tuples stored in each partition. Since

partitions are not totally ordered each join must be im-

plemented with a nested loop. Let R = {R′1,R′2} and

S = {S′1,S′2} be two relations each split into two par-
titions, such that R′1 must be joined with S′1 only, and

R′2 must be joined with S′2 only. Thus, if each relation

has 10k tuples and the partitions have size 5k each, then

the two nested-loops perform |R′1|×|S′1|+ |R′2|×|S′2| =
5k×5k+ 5k×5k = 50M comparisons. If the partitions

have sizes |R′1| = |S′1| = 9k and |R′2| = |S′2| = 1k, then

the nested loop joins perform 9k× 9k+ 1k× 1k = 82M

comparisons.

6 Temporal Operators

Our approach reduces a temporal operator OT over an

entire relation to a sequence of DIP operators ODIPT ,

i.e., temporal operators over DIP partitions. We show

how to compute temporal joins (./T ), anti-joins (BT ),

and aggregations (ϑTF ), by reducing these operators

to, respectively, DIP joins (./DIPT ), DIP anti-joins

(BDIPT ) and DIP full outer joins ( ./ DIPT ).
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6.1 Temporal Join

A temporal join R ./T S returns the pairs (r, s), with

r ∈ R and s ∈ S, whose time interval T overlaps. Fig-

ure 10 illustrates the join result of our example rela-

tions. It computes the price difference between the lux-

ury suites of hotel R and those of hotel S. For example,

the second output row says that suite #1 of hotel R and

suite #2 of hotel S have a price difference of 10$ during

time [1, 2), while the third row says that, at time [3, 4),

they cost the same.

πT,R.#,S.#,R.$−S.$(R ./T S)
T R.# S.# R.$− S.$

[1, 5) 1 6 20
[1, 2) 1 2 10
[3, 4) 1 2 0

.. .. .. ..
[10, 11) 5 3 20
[10, 12) 5 2 -10
[10, 12) 5 1 -10

Fig. 10: Temporal join applied to the running example.

To compute a temporal join using DIP, sets of m

outer partitions (e.g., {R1, . . . ,Rm}) are joined with

each inner partition until all outer partitions have been

processed:

R ./T S ⇐⇒
cR/m⋃
i=1

cS⋃
j=1

(
{Ri∗m−m+1, . . . ,Ri∗m} ./DIPT Sj

) (1)

Thus, to compute a temporal join, we compute
cR×cS
m DIP joins. Each DIP join joins m outer parti-

tions with each inner partition: first {R1, . . . ,Rm} are

joined with S1, then with S2, etc.

Figure 11 illustrates the differences between DIP
and other approaches on our running example. The

thickness of the arrows is proportional to the cost of

each join in terms of number of comparisons. WithDIP
many outer partitions can be processed simultaneously.

Furthermore, even if the total number of merges be-

tween partitions might be higher for DIP, the cost of

each DIP join is small compared to the cost of the

other approaches since it requires only one scan of the

input partitions (it is computed in linear rather than

quadratic time).

Example 5 We use Equation (1) to compute a

temporal join between the relations of our run-

ning example, i.e., R with cR = 3 and S with

cS = 2. Figure 4 illustrates the process for computing(
{R1,R2,R3} ./DIPT S1

)⋃ (
{R1,R2,R3} ./DIPT S2

)
.

Clearly, the join of all DIP partitions is done

with much less unproductive comparisons than the

sort-merge join in Figure 2.

Equation (1) shows that the higher m, the fewer

DIP joins are computed. The value of m is given by

the number of partitions that can be processed simul-

taneously. In typical commercial operating systems this

is about 104 (the number of files a process is allowed to

keep open at a time). We will show that when all tuples

overlap and n partitions are created, m is the factor by

which we reduce the quadratic worst case I/O cost for

computing a temporal join, which is significant.

6.1.1 CPU Cost

We quantify the CPU overhead in terms of unproduc-

tive comparisons, i.e., the number of tuple comparisons

that do not produce an output tuple. We determine

an upper-bound for the number of unproductive com-

parisons. For simplicity, we use c to indicate both the

number of partitions of R and those of S, and n
c to

indicate the number of tuples of a partition.

Lemma 5 Consider relations R and S that have been

partitioned into c DIP partitions each. The number of

unproductive comparisons for computing R ./T S using

DIP is upper-bounded by c× n.

Proof From Equation (1) we get

CPU(R ./T S) =

CPU
(c/m⋃
i=1

c⋃
j=1

({Ri∗m−m+1, . . . ,Ri∗m} ./DIPT Sj)
)

A DIP join ./DIPT is implemented as a merge of DIP
partitions without backtracking, i.e., a procedure that

in each iteration either advances one (outer or inner)

tuple or switches the current outer partition. Thus, the

number of iterations is given by the total size of the m

outer partitions, plus m−1 partition switches per inner

tuple, plus the size of the inner partition. We get:

CPU(R ./T S) =

c/m∑
i=1

c∑
j=1

(nc ∗m+ (m− 1)nc + n
c )

=

c/m∑
i=1

(n ∗m+ n ∗m)

≈ c ∗ n

The number of unproductive comparisons is

CPU(R ./T S)−|R ./T S|, i.e., the number of compar-

isons minus the number of result tuples. In the worst

case we have 0 result tuples, and we get c∗n unproduc-

tive comparisons. �
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S1

S2

R1

R2

R3

+

+

(a) DIP

R’1

R’2

S’1

S’2

S’3

×

×

×

(b) OIP

R S

[+,×]

(c) SM

Fig. 11 DIP joins with linear cost (indicated by a + sign) many outer partitions with each inner partition. OIP joins with
quadratic cost (indicated by a × sign) each outer partition with few inner partitions. Sort-merge backtracks without any
guarantee about the complexity (i.e., ranges from linear to quadratic).

6.1.2 I/O Cost

This section quantifies the number of block I/Os for

computing a temporal join using DIP. We assume that

all DIP partitions are equally sized, and each of them

has b = B
c blocks.

Lemma 6 Consider relations R and S partitioned into

c DIP partitions each. The number of I/Os for com-

puting R ./T S using DIP is min(c, nm )×B.

Proof From Equation (1) we get:

IO(R ./T S) =

IO
(c/m⋃
i=1

c⋃
j=1

({Ri∗m−m+1, . . . ,Ri∗m} ./DIPT Sj)
)

With equally sized partitions we obtain:

= c
m × c× IO({Ri∗m−m+1, . . . ,Ri∗m} ./DIPT Sj)

Equation (1) shows that for cS subsequent calls of DIP
join only the inner partition changes. Since the outer
partitions {Ri∗m−m+1, . . . ,Ri∗m} are reused, we cache

the first M blocks of each Ri, and obtain:

= c
m × c×

(
(b−M) ∗m+ b

)
= c2 × (b−M) + c2

m × b (2)

When dealing with data histories, tuples are valid at

different points in time and partitions get large since

old tuples do not overlap with recent ones. This means

b�M , and from (2) we get:

IOGeneral(R ./T S) = c2 × b+ c2

m × b
≈ c×B (2a)

where B = c× b are the blocks of an input relation. In

other words, in the general case, our approach is linear

in the number of partitions: independent of m it fetches

each block c times.

The worst case for our approach is when c ≈ n,

i.e., many partitions exist (e.g., most tuples overlap). In

such a case the partitions are small since only few non-

overlapping tuples can be stored in a partition. With

small partitions we have c ≈ n ⇐⇒ b ≤ M , and from

(2) we get:

IOWorst = c2 × 0 + c2

m × b = c
m ×B

≈ n
m ×B (2b)

Summarizing:

IO(R ./T S) = min(IOGeneral, IOWorst)

= min(c, nm )×B �

Thus, while in the general case DIP fetches each

block c times, m helps to speed up our worst-case sce-

nario: if m outer partitions are processed simultane-

ously, we reduce the number of I/Os to perform by a

factor of m. This is effective already for small values of

m: for example if m = 10 we make an order of magni-

tude less I/Os. In our experiments we will show that,

if m is just 0.1% the number of partitions, i.e., 0.1%

of the partitions are processed simultaneously, our ap-

proach reaches the same performances as state of the

art solutions that put overlapping tuples in the same

partition [10].

6.2 Temporal Anti-Join

A temporal anti-join R BT S returns, for each r ∈ R,

its maximal sub-intervals (if any) during which no tuple

in S exists. Figure 12 illustrates the result of a temporal

anti-join R BT S on our example relations. The anti-

join returns the price of the luxury suites of hotel R

when no suite has been booked in hotel S. The result

includes one tuple since [12, 13) is the only time interval

during which a tuple in R is valid and no tuple in S

exists.

In order to take advantage of Lemma 2, and com-

pute the anti-join without backtracking, we transform

the anti-join problem into a problem of finding over-

lapping intervals. To do so, we do not compare r ∈ Ri

with the time interval of s ∈ S, but with its lead.
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RBT S

T # $
[12, 13) 5 80

Fig. 12: Temporal anti-join applied to the main example

Definition 2 (Lead). Let s be a tuple of a relation S;

the lead of s, indicated by s.X = [Xs, Xe), is the largest

interval (if any) not overlapping any S tuple and such

that s.Xe = s.Ts.

Example 6 In relation Z of Figure 13, we have z1.X =

[−∞, 0), z2.X = [1, 3), and z4.X = [10, 11). Tuple z3

does not have a lead.

Z z1 z2

z3

z4
−∞ 0 1 3 10 11

Fig. 13: Leads of example tuples.

The lead of s ∈ S is the maximal interval preceding

s.T during which no tuple in S exists. If a tuple r ∈ R

overlaps with s.X, then r.T ∩ s.X is the time during

which r must be returned as a result tuple for RBTS.

A lead has always length larger than 0. If there does

not exist such an interval for s, then s does not have

a lead. In a relation, e.g., S, there cannot exist two

leads that overlap with each other: this guarantees that

no backtracking is needed for computing Ri BT S (cf.

Example 7).

The lead of a tuple sj ∈ S can be computed on the

fly. Since S is sorted by Ts, the lead is computed as

sj .X = [sj−a.Te, sj .Ts), with a > 0, where sj−a is the

tuple preceding sj with the largest Te value. If sj .X has

a duration larger than 0, then sj has a lead; otherwise

it doesn’t. For example, in Figure 15, s1.X and s7.X

are the only leads.

To compute a temporal anti-join, the first m DIP
partitions {R1, . . . ,Rm} are anti-joined with the entire

relation S; the same is done for {Rm+1, . . . ,Rm∗2}, and

so on:

R BT S ⇐⇒
cR/m⋃
i=1

({Ri∗m−m+1, . . . ,Ri∗m}BDIPT S)
(3)

Figure 14 illustrates that the cost for a DIP anti-

join is linear in the size of {R1, . . . ,Rm} and S.

Example 7 We use Equation 3 to compute a temporal

anti-join on relations R and S of our running example

R1

R2

R3

S+

Fig. 14: A temporal anti-join between R and S is computed
by joining m outer partitions with S. No backtracking is done.

(cf. Figure 15). Only R is partitioned, and a DIP anti-

join {R1,R2,R3}BDIPT S is computed. Tuples r1 and

s1 are the first to be fetched, and s1.X = [−∞, s1.Ts) =

[−∞, 0). Tuple r1 does not overlap with s1.X. Since

s1.X ends before r1, we switch to R2 and r3 is fetched.

Tuple r3 does not overlap with s1.X, and, r4 is fetched

from R3. We can conclude that s1.X does not overlap

with any outer tuple, therefore a new tuple is fetched

from S, i.e., s2. Since the length of s2.X = [8, 1) is not

larger than 0 (i.e., s2 does not have a lead), no output

is produced for r1, nor for r3, nor for r4. Eventually s7

is fetched, whose lead is larger than 0. Since r6 overlaps

with s7.X, a result tuple for r6 with time r6.T ∩s7.X =

[12, 13) is produced.

S .. T X

s1 .. [0, 8) [−∞, 0)

s2 .. [1, 2) [8, 1)

s3 .. [3, 4) [8, 3)

s4 .. [5, 11) [8, 5)

s5 .. [9, 12) [11, 9)

s6 .. [11, 12) [12, 11)

s7 [12,∞)

r6r2

R1

r1

s1

S

s2

s3

s4

s5

s6

s7

r3 r5

R2

2

5

8

12

16 17

20

r4

R3

3

6

9

13

18

21

1

4

7

10 11

14 15

19

22

Fig. 15: Anti-join computed using DIP: for each Ri tuple,
its timestamp is compared with the lead s.X during which no
tuple exists in S; no backtracking is needed.

6.2.1 CPU Cost

We determine the CPU cost as the upper-bound for

the number of unproductive comparisons for a temporal

anti-join. Again, we use c to indicate the number of

partitions.

Lemma 7 Consider relations R and S, and let c be

the number of DIP partitions of R. The number of

unproductive comparisons for computing RBT S using

DIP is upper-bounded by c× n.
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Proof From Equation (3) we get

CPU(R BT S) =

CPU
(c/m⋃
i=1

({Ri∗m−m+1, . . . ,Ri∗m}BDIPT S)
)
.

Remember that for BDIPT no backtracking is needed.

Since S is not partitioned, the number of iterations is

at most m∗ nc +(m−1)∗n+n, i.e., the cost for scanning

{Ri∗m−m+1, . . . ,Ri∗m}, plus m − 1 partition switches

for each inner tuple, plus the cost for scanning S. Thus,

the number of tuple comparisons in the worst case is:

CPU(R BT S) =

c/m∑
1

(m ∗ nc + (m− 1) ∗ n+ n)

= n+ c ∗ n
≈ c ∗ n

In terms of unproductive comparisons we have 0 re-

sult tuples in the worst case and get: CPU(R BT S)−
|R BT S| = c ∗ n unproductive comparisons. �

Lemma 7 asserts that for computing a temporal

anti-join DIP limits the number of comparisons per

tuple to the number of partitions. State-of-the-art tech-

niques [9], instead, make a nested-loop for comput-

ing the intervals of the output tuples. This yields a

quadratic number of comparisons.

6.2.2 I/O Cost

This section quantifies the number of block I/Os for

computing a temporal anti-join using DIP. Again, we

assume that the DIP partitions are equally sized, i.e.,

b = B
c .

Lemma 8 Consider relation R partitioned into c DIP
partitions, and relation S. The number of I/Os for com-

puting RBT S using DIP is c
m ×B.

Proof From Equation 3, we get

IO(RBTS) =

IO
(c/m⋃
i=1

({Ri∗m−m+1, . . . ,Ri∗m}BDIPT S)
)

With equally sized partitions, we get:

= c
m × IO({Ri∗m−m+1, . . . ,Ri∗m}BDIPT S)

= c
m ×

(
b ∗m+B

)
= B + c

m ×B
≈ c

m ×B (4)

�

When computing R BT S with DIP, independent

of the number of partitions, the tuples of R are scanned

only once, while those of S are scanned c
m times. Over-

all, the cost of our approach is linear with the number of

partitions c. In addition, processing m outer partitions

simultaneously further reduces the number of I/Os by

a factor of m.

6.3 Temporal Aggregation

A temporal aggregation ϑTF (R) returns, for each maxi-

mal interval during which a set of R tuples is valid, the

result of an aggregation function F . For example, in

ϑT
avg($)

(R)

T avg($)
[1, 5) 80
[6, 7) 60
[7, 8) 71.6
[8, 10) 75
[10, 11) 75
[11, 13) 80

Fig. 16: Temporal aggregation avg applied to relation R

Figure 16 the average price of the luxury suites booked

in hotel R is computed. The first output row says that,

between time 1 and 5, the average price is 80$. Note

that, due to change preservation [9], two different tu-

ples are returned for [8, 10), and [10, 11) because, even

if their aggregation value is the same, their lineage is

different.

A temporal aggregation ϑTF (R) on a table can be

decomposed into a sequence of full outer joins between

its DIP partitions:

ϑTF (R) ⇐⇒
πT,F ′(R1 ./ DIPT R2 ./ DIPT · · · ./ DIPT Rc)

(5)

The proof of this equivalence is given in Appendix A.

As shown in Figure 17, the first partition is full outer

joined with the second partition. Afterwards, the inter-

mediate result is full outer joined with the third par-

tition, etc. In other words, c − 1 DIP full outer joins

are computed. Finally, for each result tuple, the pro-

jection uses function F ′ to aggregate the c values in a

tuple using the same aggregation as the one in F (e.g.,

AVG).

Example 8 We use Equation (5) to transform the tem-

poral aggregation ϑTavg($)(R) of our running example

to πT,AVG(R1.$,R2.$,R3.$)(R1 ./ DIPT R2 ./ DIPT R3).
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R1 R2 R3

+ +

Fig. 17: A temporal aggregation is computed by (full-outer)
joining at linear cost the DIP partitions.

Without loss of generality, we consider only the at-

tributes needed to compute the aggregation, i.e., T

and $. The first full outer join yields R1 ./ DIPT

R2 = {([1, 5), 80, null), ([6, 7), 60, null), ([7, 8), 60, 80),

([10, 11), 80, 70), ([11, 13), 80, null)}. Those tuples are

further joined to R3 producing the result shown in Fig-

ure 18. The projection πT,AVG(R1.$,R2.$,R3.$) outputs,

R1 ./ DIPT R2 ./ DIPT R3

T R1.$ R2.$ R3.$
[1, 5) 80 null null
[6, 7) 60 null null
[7, 8) 60 80 75
[8, 10) null null 75
[10, 11) 80 70 null
[11, 13) 80 null null

Fig. 18: Full outer join between the DIP partitions of R.

for each time interval in the result, the average of the

three prices, which corresponds to the result in Fig-

ure 16.

A temporal full outer join between Ri and Ri+1

returns all join matches (Ri ./
DIP
T Ri+1) plus all anti-

join matches of Ri BDIPT Ri+1 and of Ri+1 BDIPT Ri.

Each full outer join of the sequence, and not just the

first, can be computed without backtracking. This is so

because the result of a full outer join between two DIP
partitions is also a DIP partition: it does not generate

tuples with overlapping timestamps.

6.3.1 CPU Cost

Lemma 9 The number of unproductive comparisons

for a temporal aggregation on relation R is upper

bounded by c× n.

Proof Consider Equation (5). Since the projection π
can be computed on the fly while writing the result

tuples (without doing additional comparisons) we get:

CPU(ϑTF (R)) =

CPU(R1 ./ DIPT R2 ./ DIPT . . . ./ DIPT Rc)

When computing a temporal aggregation using full

outer joins, a comparison between r and s is unpro-

ductive if the tuples do not overlap, since such a com-

parison only adds NULL values to the result (which do

not change the aggregate result). Remember that c− 1

full outer joins are computed. Since the highest cardi-

nality of a temporal aggregation is 2n− 1 [18] (i.e., the

number of different Ts and Te values - 1), in the worst

case most of those 2n − 1 intervals are produced by

the first full outer join, and the remaining c − 2 joins

perform about 2n − 1 unproductive comparisons each.

Thus, we get (c − 2) × (2n − 1) ≈ c × n unproductive

comparisons. �

Figure 19 illustrates such a worst case scenario for

computing a temporal aggregation using DIP, with

n = 8 tuples and c = 3 partitions (note that the last

partition stores only one tuple).

R1

R2
r2 r4 r6

r1 r3 r5 r8

Z2

R3
r7

Z3

Fig. 19: Highest cardinality for a full outer join Z2 =

R1 ./ DIPT R2. For the full outer join Z3 = Z2 ./ DIPT R3

all comparisons except one are unproductive since they do

not change any aggregate value.

The first full outer join produces 13 ≈ 2n − 1 in-

tervals, and the second does 13 ≈ 2n− 1 unproductive

comparisons (including the one with the last lead) since

only one overlapping tuple exists in R3.

6.3.2 I/O Cost

Lemma 10 The number of I/Os for computing a tem-

poral aggregation ϑTF (R) using DIP is upper-bounded

by c×B.

Proof Consider Equation (5). Since the projection π
can be computed on the fly while writing the result

tuples (without additional I/Os) we get:

IO(ϑTF (R)) =

IO(R1 ./ DIPT R2 ./ DIPT . . . ./ DIPT Rc).

For the first full outer join, b blocks are read for the

outer input, and b blocks for the inner one. In the worst

case, 2(|R1|+|R2|) = 2(nc+n
c ) = 4nc tuples are returned

and 4×b blocks are needed for storing this intermediate

result. For the second join, 4 × b blocks are read for

the outer input and b for the inner. In the worst case,

6 × b blocks are needed for storing the intermediate

result. Generalizing, for the (c − 1)-th full outer join,

i.e., the last one to compute, we read in the worst case
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Temporal Join R ./T S
1 R1, . . . ,RcR

← CreateDIP(R)

2 S1, . . . ,ScS
← CreateDIP(S)

3 Z = ∅
4 for i = 1 to cR do
5 k = min(i+m− 1, cR)
6 for j = 1 to cS do
7 T = DIPMerge({Ri, . . . ,Rk},Sj , ./)
8 Z = Z ∪ T

9 i = k

10 return Z

Temporal Anti-join RBT S
1 R1, . . . ,Rc ← CreateDIP(R)
2 Z = ∅
3 for i = 1 to c do
4 k = min(i+m− 1, c)
5 T = DIPMerge({Ri, . . . ,Rk},S,B)
6 Z = Z ∪ T
7 i = k

8 return Z

Temporal Aggregation ϑTF (R)

1 R1, . . . ,Rc ← CreateDIP(R)
2 Z ← R1

3 for i = 2 to c do
4 Z = DIPMerge({Z},Ri, ./ )
5 Z = πT,F ′ (Z)

6 return Z

Fig. 20 Each temporal operator is computed calling multiple times DIPMerge.

2 × (c − 1) × b blocks for the outer input and b for

the inner, and we write 2 × c × b blocks for the result.

Summing up the I/Os of all c−1 full outer joins we get:

IO(ϑTF (R)) =

c−1∑
1

(2× i× b+ b+ 2× (i+ 1)× b)

=2× b
c−1∑

1

i+

c−1∑
1

b+ 2× b
c−1∑

1

(i+ 1)

Since
∑c−1

1 i = (c−1)c
2 and

∑c−1
1 (i+ 1) = c(c+1)−2

2 , we

obtain

2
(c− 1)c

2
× b+ (c− 1)b+ 2

c(c+ 1)− 2

2
× b =

2× c2b+ (c− 3)b = 2c×B +B − 3b ' c×B �

The I/O cost for computing a temporal aggregation

is linear in the number of the partitions. Furthermore,

opposite to the state of the art approaches, such as the

Aggregation Tree [18], the Balanced Tree [23], and the

SB-Tree [31], our approach is not limited to distribu-

tive aggregates: standard deviation, for example, is also

computable using DIP.

7 Implementation

In this section we discuss our implementation. First we

describe how to implement each temporal operator in

the executor of the DBMS using a sequence of merges.

This is done with a general DIPMerge function that

merges DIP partitions for either a temporal join, a

temporal anti-join or a temporal aggregation. Next, we

propose an efficient implementation of DIPMerge, i.e.,

the algorithm that computes temporal joins, anti-joins,

and full outer joins without backtracking.

7.1 Implementing the Temporal Operators

Equations (1), (3), and (5) directly lead to the algo-

rithms in Figure 20. In the executor of the DBMS, each

temporal operator is computed by first creating the par-

titions (i.e., calling CreateDIP), and then calling iter-

atively DIPMerge as follows:

For R ./T S, first R and S are partitioned

by CreateDIP. Then m outer DIP partitions are

DIPMerged with each inner partition, and the result

tuples are collected in Z.

For R BT S, only R is partitioned. Then m outer

partitions are DIPMerged with the entire S relation,

and the result tuples are collected in Z.

For ϑTf(A)(R), the first DIP partition is DIPMerged

with the second, and the result tuples are collected in Z;

Z is iteratively DIPMerged with the subsequent DIP
partitions1. Finally, a projection on Z computes the

aggregation function F ′ on the values R1.A, . . . ,Rc.A.

7.2 Implementation of DIPMerge

Algorithm 2 shows the implementation of DIPMerge.

The first argument is a set of DIP partitions

{R1, . . . ,Rm} each with schema (T,A1, . . . , Ap). The

second argument S is an inner DIP partition (or the

entire relation) with schema (T,B1, . . . , Bq). Finally,

Op is the operator to compute, i.e., a temporal join,

anti-join, or full outer join. The algorithm computes

Op with a single scan of {R1, . . . ,Rm} and S, without

backtracking.

At the beginning, the lead X of the current tuple in

the i-th outer partition r[i] is initialized as the interval

between −∞ and the starting point of the first tuple.

We do the same for the current tuple s in S. Initially

i = 1. During each iteration, the algorithm fetches a

new tuple from Ri (line 19). When all tuples in Ri that

overlap s have been found, the algorithm switches to

partition Ri+1 (line 27). Once all outer partitions have

been checked against s, the algorithm fetches a new S

tuple (line 31) and restarts processing Ri from its last

1 Our implementation applies standard DBMS optimiza-
tion techniques, such as projecting on the attributes required
for the aggregation (i.e., T and A), so that the full outer join
result includes only the needed attributes.
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Algorithm 2: DIPMerge({R1, . . . ,Rm},S, Op)
Input : Ri(T,A1, ..., Ap),S(T,B1, ..., Bq), Op ∈ {./,C, ./ }
Output: Z(T,A1, . . . , Ap, B1, . . . , Bq)

1 for i = 1 to m do

2 r[i]← fetchRow(Ri)

3 r[i].X = [−∞, r[i].Ts) // lead of r[i]

4 i = 1

5 s← fetchRow(S)

6 s.X = [−∞, s.Ts) // lead of s

7 while !null(r[i].T )∨ !null(s.T ) do

8 if Operator = ./ then

9 if len(r[i].X) > 0 ∧ overlap(r[i].X, s.T ) then

10 Z = Z ∪ <(r[i].X ∩ s.T ), nullp, s.B1, . . . , s.Bq>

11 if Operator ∈ {B, ./ } then

12 if len(s.X) > 0 ∧ overlap(r[i].T, s.X) then

13 Z = Z ∪ <(r[i].T ∩ s.X), r.A1, . . . , r.Ap, nullq >

14 if Operator ∈ {./, ./ } then

15 if overlap(r[i].T, s.T ) then

16 Z = Z ∪ <
(r[i].T ∩ s.T ), r[i].A1, ..., r[i].Ap, s.B1, ..., s.Bq>

17 if !null(r[i].T ) ∧ (null(s.T ) ∨ r[i].Te ≤ s.Te) then

18 if r[i].Te > r[i].Xs then longestR[i] = r[i].Te
19 r[i]← FetchRow(Ri)

20 if !null(r[i]) then

21 r[i].X = [longestR[i], r[i].Ts)

22 else

23 r[i].T = null

24 r[i].X = [longestR[i],∞)

25 else

26 if i < m then

27 i = i+ 1

28 else

29 i = 1

30 if s.Te > s.Xs then longestS = s.Te

31 s← FetchRow(S)

32 if !null(s) then

33 s.X = [longestS, s.Ts)

34 else

35 s.T = null

36 s.X = [longestS,∞)

37 return Z

scanned tuple. The result tuples change depending on

the Op to be computed (lines 8-16):

– Join: For the join matches, we directly use Lemma 2

since r[i] and s only join iff they overlap: if tuple r[i]

is the last join match of s, then no tuple before r[i]

can match with the successor of s. Line 16 outputs

the join matches by concatenating the attributes of

r[i] and s.

– Anti-Join: For the anti-join matches, the lead s.X

must be considered. Lemma 2 holds between r[i].T

and s.X. Line 13 outputs the anti-join matches.

Since no S tuple exists for an anti-join result tu-

ple, i.e., during (r[i].T ∩ s.X), for each attribute

B1, . . . , Bq of the inner input a NULL value is re-

turned.

– Full Outer Join: To make sure that the full outer

join returns a DIP partition with sorted elements

(so that the next full outer join of the sequence does

not require any additional sorting), the anti-join

matches must be written before the join matches.

Since the lead s.X (or r[i].X) is the interval between

s (or r[i]) and its predecessor, s.X comes always be-

fore s.T (as well as r[i].X comes before r[i].T ), and

an interval overlapping with s.X is written before

an interval overlapping with s.T .

The algorithm ends when all input tuples have been

processed (i.e., when r[i].T and s.T are both null). Note

that in case only one input (e.g., S) has been scanned

entirely, the algorithm goes on to return the anti-join

matches of all remaining outer tuples.

8 Experiments

For the experiments on disk, we used an Intel Core i7-

3820QM Processor @ 2.7 GHz machine with 4GB main

memory and a Samsung 840 EVO 500 GB Solid State

Drive (Sequential Read Speed 540 MB/s, and Sequen-

tial Write Speed 520 MB/s), running OS X 10.11.6.

(L1 chace: 32KB, L2 cache: 256 KB, L3 cache: 8 MB).

For the experiments in main memory, we used a 2 x In-

tel(R) Xeon(R) CPU E5-2440 (6 cores each) @ 2.40GHz

with 64GB main memory, and running CentOS 6.4 (L1

cache: 192 KB, L2 cache: 1536 KB, L3 cache: 15 MB).

For the main memory experiments, all indices and all

data are kept in memory and no disk I/O for reading

or sorting is done.

We compute the performances of Temporal Align-

ment (Align, [9]), the TimeLine Index (TimeLine,

[16]), Overlap Interval Partitioning (OIP, [10]), Sort-

Merge (SM, [14]), the Sweepline algorithm (Sweep, [3]),

the Aggregation Tree (AggTree, [18]) Sort-Aggregate

(SortAgg, [12]) and DIP. All approaches have been

implemented by the authors using C. Real world data

as well as synthetic data is used. We use the Swiss

Feed Data [29], and the Time Interval (TI) [1], IN-

FECTIOUS [15], and GREEND [22] datasets as real

world datasets. For each dataset, we also include the

cost of a sequential scan. When comparing with a se-

quential scan we exclude the cost for sorting, indexing,

partitioning, etc. In all other experiments the costs for

sorting, indexing and partitioning are included.
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8.1 Real World Data

In this subsection we compare the runtimes of the ap-

proaches for computing temporal joins, anti-joins, and

aggregations. We use the Swiss Feed Data Warehouse

[29] and fix the ratio between the length of the history

and the number of tuples to 1:1, e.g., a history of 100k

granules stores 100k tuples, and we then increase the

history length. Intervals have length varying from 1 to

10k granules: 90% of the intervals have length smaller

than 10 granules (they represent lab-measurements that

change over time, and must be repeated frequently);

9.5% of the remaining intervals have length up to 1000

granules; 0.5% up to 10000 granules (they represent lab-

measurements of values that remain constant, and are

repeated seldomly). We vary those parameters in the

experiments in Subsection 8.2.

8.1.1 Temporal Joins

First, we compute a temporal join that joins the values

of two different nutritive values (Protein and Fat). The

runtime is measured for disk-based computations and

for in-memory computations.

Execution on disk. Figure 21(a) shows that Align

performs badly when the data history grows, since it

checks |R|× |S| comparisons. The TimeLine index per-

forms better since it avoids unproductive comparisons,

however each result tuple (r, s) is produced by making

one index look-up in R and one in S. This is expensive

for disk-resident data since each index look-up fetches

a block. Finally, long-lived tuples, (e.g., 10k granules

long) are fetched multiple times with one index look-up

for each tuple they match. Sweepline does not perform

well on disk since the active tuples have to be updated

when the sweepline advances. This is expensive for disk-

resident data.
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Fig. 21: Temporal join on disk

In Figure 21(b) we show approaches that scale bet-

ter on disk, and can handle more data. OIP performs

worse than DIP and SM because of the many short in-

tervals present in the dataset. Those tuples are a bottle-

neck for OIP since they make the nested-loop between

the partitions very expensive in terms of unproductive

comparisons: with 8M tuples, 6.5 × 1010 combinations

are checked by OIP, 4 × 109 by SM, and only 6 × 107

by DIP.

Execution in main memory. Figure 22 shows that

all approaches benefit from an in-memory execution as

expected.
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Fig. 22: Temporal join in main memory

Figure 22(b) shows that the runtime of OIP, SM,

and DIP is proportional to the amount of unproduc-

tive comparisons: with 30M tuples, 2× 1015 unproduc-

tive comparisons are done by OIP, 2.1 × 1011 by SM,

and 2.1×109 by DIP. In Figure 22(c), we show that for

a history of 300M tuples, DIP is more than four min-

utes faster than Sweepline. This is so because, although

Sweepline does at most one unproductive comparison

per tuple, the list of active tuples is allocated and deal-

located at run time yielding a poor memory locality.

Computing a random memory access per active tuple

makes the join computation expensive for Sweepline.

Figure 22(d) shows that, if the sorting (for Sweepline)

and the partitioning (for DIP) are computed offline,

DIP computes the join one order of magnitude faster

than Sweepline. Our results confirm the experimental

evaluation by Stroustrup [28], which shows that ac-

cessing memory sequentially is one order of magnitude

faster than accessing it randomly. The cost for a join on

DIP partitions has only a slightly higher linear factor

than a sequential scan.
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8.1.2 Temporal Anti-Joins

In this experiment we compute a temporal anti-join to

find all intervals for which a protein measurement but

no fat measurement exists. To the best of our knowl-

edge, only Dignös et al. [9] provide a solution for com-

puting temporal anti-joins. The nested-loop with which

the alignment operator is computed is however expen-

sive, since query optimizers are not able to use interval

T to optimize the query plan. Figure 23 shows that

the runtime of alignment on disk is similar to the run-

time in main memory because a small dataset, once it

has been fetched from disk, is cached in main memory.

However, checking n2 combinations is expensive even

in main memory. DIP provides the first non-quadratic

solution for computing temporal anti-joins.
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Fig. 23: Temporal anti-join.

8.1.3 Temporal Aggregation

This experiment reports the runtime for the computa-

tion of a temporal aggregation, i.e., we compute the

average value for the measurements stored in the Swiss

Feed Data Warehouse. The Aggregation Tree is not ef-

ficient (Figure 24.a) and does not scale even with high

memory availability (Figure 25.a). The TimeLine Index

performs very badly on disk, but is robust in memory

until 150M tuples. Afterwards it deteriorates since the

index gets large (remember that for each tuple two en-

tries are stored) and, at the same time, the number of

look-ups increases. DIP does not require an index and

stays stable. Sort-aggregate requires backtracking and

performs slower than DIP (Figure 24.a). In main mem-

ory, our approach grows linearly with the length of the

data history (Figure 25.b).

8.1.4 TI Dataset

The TI dataset [1] is public and stores the Univer-

sal Resource Identifiers (URIs) for the time intervals

commonly used by the UK Government. Tuples are
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Fig. 24: Temporal aggregation on disk.
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Fig. 25: Temporal aggregation in main memory.

stored as < Ts, Te,URI > pairs. The time granular-

ity is expressed in number of days. The intervals have

length 1 (i.e., one day), {28,29,30,31} (i.e., one month),

{365,366} (i.e., one year), {547,548} (i.e., one and a half

years), and {730,731} (i.e., two years). The history is

60 years long.

Figure 26 shows the runtime for computing a self-

join on disk and in main-memory using the TI dataset.

In memory, DIP is four times faster than Sweepline,

and over an order of magnitude faster than the other

approaches. On disk, DIP is two order of magnitude

faster than other approaches; Sweepline deteriorates

since for each tuple the file storing the active tuples

must be rewritten entirely (the URIs have different

length). DIP is the only approach that is robust both

if the dataset is memory- and if it is disk-resident. It

accesses the tuples sequentially and, at the same time,

keeps the number of unproductive comparisons low.

8.1.5 GREEND Dataset

In this experiment we use a long data history with

many short intervals and a few long intervals. The

GREEND dataset [22] is public and contains detailed

power usage information obtained through a measure-

ment campaign in households in Austria and Italy from

January 2010 to October 2014. Tuples are stored as

< Ts, Te, Device1, . . . , Devicem > where Ts is the time

when the current measurement has been taken, Te is

the time when the next measurement has been taken,
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SeqScan DIP Sweep SM OIP Timeline
Disk 1.0 5.8 14000 156 180 32000

Memory 0.15 1.90 7.42 34 37 10.5
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Fig. 26: Temporal join for the TI dataset in milliseconds.

and Devicei stores the amount of energy consumption

of a given device. Intervals have on average 1.7 seconds

length.

SeqScan DIP Sweep SM OIP Timeline
Disk 15 212 > 1 day > 1 day 1 day > 1 day
Mem 2 58 72 > 1 day 23300 423
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Fig. 27: Temporal join for the GREEND dataset in seconds.

Figure 27 reports the runtime for computing a self-

join on the GREEND dataset. DIP performs best.

On disk it is the only approach that does not dete-

riorate. Although the average interval length is small,

sort-merge performs poorly since eight long-lived tu-

ples are present in the dataset and backtracking makes

it akin to a nested loop. In memory Timeline performs

an order of magnitude slower than DIP since the 8

long-lived tuples are refetched for each join match by a

new index look-up. OIP performs badly because of the

nested loop with which the partitions are joined.

8.1.6 INFECTIOUS Dataset

This experiment is a best case scenario for existing ap-

proaches since there are no long-lived tuples, the his-

tory is short, and the number of overlapping intervals

is small. The INFECTIOUS dataset [15] is public and

stores the timpestamp at which a contact between visi-

tors occurred during the artscience exhibition “INFEC-

TIOUS: Stay Away!” which took place at the Science

Gallery in Dublin, Ireland, from May to July 2009.

The history is two months long. Tuples are stored as

< Ts, Ts + 20, V isitor1, V isitor2 >. The time granular-

ity is expressed in seconds, and the intervals have all

length 20 seconds. During the art exhibition, contacts

between different visitors happen at the same time (in-

tervals are either equal or disjoint), with a peak of 51

contacts in the same 20 seconds slot: 51 DIP partitions

are produced.

SeqScan SM DIP Sweep OIP Timeline
Disk .034 0.5 0.96 510 10 1050
Mem .008 0.11 0.47 0.20 1.50 0.11
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Fig. 28: Temporal join for the INFECTIOUS dataset in sec-

onds.

Figure 28 shows the runtime for computing a self-

join on disk and in main-memory using the INFEC-

TIOUS dataset. The results in Figure 28(a) show that

DIP stays competitive even if few tuples overlap.

Clearly sort-merge performs better since all intervals

have 20 seconds length and no long-lived tuple exists:

backtracking refetches only few tuples. In main mem-

ory also Timeline and Sweepline perform well: the first

since, with short intervals only, few join matches have

to be retrieved through the index; the second because

at a given time point all active tuples are recent, and

thus allocated close to each other.

8.2 Synthetic data

In this subsection we use synthetic data, and evalu-

ate the approaches by varying the characteristics of the

data history. We first increase the number of partitions

by increasing the number of tuples valid as time passes

by. Then, we show the effect of processing m partitions

simultaneously for the average and worst case scenario.

8.2.1 Size of Dataset

This experiment shows how the approaches behave

when the number of tuples valid as the time passes by

increases, i.e., when recently more data are collected

compared to the past. For each 100k time granules in
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the history, 100k more tuples exist compared to the pre-

vious 100k time granules (e.g., from the 0-th to 100k-th

time granule of the history we have 100k tuples; from

the 100k-th to 200k-th granule we have 200k tuples;

from the 200k-th to 300k-th granule we have 300k tu-

ples; etc.).
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Fig. 29: Increase of the number of tuples collected throughout

of the data history

In Figure 29(a), we can see that DIP is the only ap-

proach that stays robust for disk-resident data. This is

so because DIP is not affected by the size of the parti-

tions: for c DIP partitions the amount of unproductive

comparisons of DIP does not change if the partitions

are equally sized or if they are unbalanced. For OIP, if

the partitions are unbalanced, the unproductive com-

parisons increase. Sweepline and Timeline perform well

for an in-memory execution since the history length is

just 1.4M granules: for Timeline the number of look-

ups is small; for Sweepline few insertions and deletions

are done in the list of active tuples. For a longer data

history (cf. Figure 22) both approaches do not scale.

8.2.2 Varying m in the Average Case for DIP

In this experiment, we show how DIP behaves in the

average case for different values of m. Partitions are

stored on disk. In Figure 30, we show that the per-

 0

 40

 80

 120

 160

 200

 0  10  20  30  40  50

R
u

n
ti
m

e
 [

s
]

m [%]

Join
AntiJoin

Fig. 30: Increase of m for a join and an anti-join.

formances of a join increases only by an order of two

when m grows since, as shown in Equation (2a), rela-

tion R, independent of the value of m, must be scanned

c times. The number of scans of S, instead, is reduced

by a factor of m. For an anti-join, instead, R is scanned

only once, therefore when the number m of outer par-

titions processed simultaneously increases, the number

of times S is scanned decreases (Equation 4). Figure 30

shows an improvement of the performances of an order

of magnitude.

8.2.3 Varying m in the Worst Case for DIP

In this experiment, we show the worst case for com-

puting a join using DIP. This happens if all tuples

overlap, and each tuple is placed in a different parti-

tion. Note that this means there is a time point where

all data is valid, which is not usually the case for tem-

poral databases. Since the partitions are small, they are

kept in memory. In this experiment each R tuple over-

laps with all S tuples, and all approaches are quadratic.

The data is partitioned into 10k DIP partitions.
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Fig. 31: High number of DIP partitions.

In Figure 31 we show that, already with a small

amount of cache and parallel processing, our approach

becomes competitive in a worst case scenario. The

graph shows that as soon as 0.1% of the outer partitions

are processed in parallel, DIP reaches the performance

of the Sweepline approach. This is so for two reasons

(cf. Equation 2): i) small outer partitions are entirely

cached and can be reused for the next DIPMerge; ii)

when m grows, the number of scans of S decreases by

a factor of m. OIP and SM are slightly faster in a worst

case scenario since the tuples of a relation (for SM)

and of a partition (for OIP) are accessed sequentially,

while for DIP and for Sweepline tuples are accessed

randomly since each tuple is in a different partition (for

DIP) and each active tuple in a different memory block

(for Sweepline).

9 Conclusions and Future Work

In this paper we have proposed Disjoint Interval Par-

titioning (DIP). DIP partitions a temporal relation
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into the minimum number c of partitions storing non-

overlapping tuples. DIP is a new and general approach

that makes sort-based operator efficient in the pres-

ence of interval data. We have proved that temporal

joins, anti-joins, and aggregation are computed with at

most c unproductive comparisons per tuple, indepen-

dently of the size of the partitions. We have empirically

shown that DIP outperforms the state-of-the-art solu-

tions when computing temporal operators over histori-

cal data.

Interesting directions for future work are to: i) incre-

mentally update the DIP partitions: if a new tuple r is

stored in the database and its timestamp is in the past,

then checking only the last tuple of the partitions does

not ensure that r is disjoint from all other tuples; ii)

efficiently incorporating conditions over non-temporal

attributes: while for a temporal equijoin they can be

trivially computed on the fly, for anti-joins it becomes

complex to generate the leads since their starting point

depends on the previously scanned tuple that has the

same non-temporal values; iii) investigate the potential

of DIP in column stores; iv) consider techniques that

support block suballocation for cases where the parti-

tions are much smaller than a block.
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5. M. H. Böhlen, C. S. Jensen, and R. T. Snod-

grass. Temporal statement modifiers. ACM Trans.

Database Syst., 25(4):407–456, Dec. 2000.
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A Proof of Equivalence Rule

Now we prove that ϑTF (R) gives the same result as Equation
(3).

Lemma 11 A Temporal Aggregation on an input relation R can
be decomposed as the full outer join between its DIP partitions:

ϑTF (R) =πT,F ′(R1 ./ DIPT R2 ./ DIPT ... ./ DIPT Rc) (6)

where F ′ is an aggregation function that has the same semantic
as F but applies to columns rather than to rows.

Proof Proof by induction. We rewrite the sequence of full
outer joins in the equivalence rule as:

Zn =

{
R1, if n = 1

Zn−1 ./ DIPT Rn, if 2 ≤ n ≤ p
.

We check that each conjunction of the definition of ϑTF (R)
in Table 2 is satisfied by Zn, with the hypothesis that Zn−1

satisfies it:

1. for each w ∈ Zn, w.Ts and w.Te correspond to the

starting or ending point of two tuples r, s ∈ R, i.e.,
w.ts = (r.Ts ∨ r.Te) ∧ w.te = (s.Ts ∨ s.Te)

n = 1 Since R1 = R then ∀w ∈ Z1 ⇒ (∃r ∈ R : w.Ts =
r.Ts∧w.Te = r.Te),which satisfies condition 1 for r = s.

n > 1 Remember that Zn−1 ./ T Rn corresponds to the
union of the Join and of the anti-joins between Zn−1

and Rn, and viceversa. We now show that condition 1
holds for each of those three joins. For Zn−1 ./T Rn,
given an overlapping pair (z, r), a result interval is
w.T = [max(z.Ts, r.Ts),min(z.Te, r.Te)): z.Ts and z.Te
by hypothesis satisfy condition 1; since Rn is a par-
tition (i.e., a selection) of R, then r.Ts and r.Te also
satisfy condition 1 (for r = s). For Zn−1 BT Rn, a re-
sult interval is w.T = [z.Ts, z.Te) if no overlapping tu-
ple in Rn exists (which by hypothesis hold condition
1); if a tuple rj ∈ Rn exists such that overlap(z, rj),
then a result interval can be i) w.T = [z.Ts, rj .Ts),
ii) w.T = [rj .Te, z.Te), iii) w.T = [rj .Te, rj+1.Ts).
All these intervals satisfy condition 1. Analogous for
Rn BT Zn−1.

2. for each w ∈ Zn, there must not exist in R

a tuple that starts or ends within w.T , i.e.,
∀u ∈ R

(
overlap(u,w)↔ (w.T − u.T = ∅)

)
.

n = 1 By definition a DIP partition does not store over-
lapping tuples: given w ∈ R̄1, a tuple u ∈ R1 with
w.Ts ≤ u.Ts ≤ w.Te or w.Ts ≤ u.Te ≤ w.Te cannot exist.

n > 1 For Zn−1 ./T Rn and Zn−1 BT Rn condition 2 holds
since the timestamp of each result tuple w is a sub-
interval of a tuple z ∈ Zn−1 (which, by hypothesis,
satisfies condition 2). For RnBT Zn−1, the timestamp
of each result tuple w is the sub-interval of r ∈ Rn

during which no tuple in Zn−1 exists. This means
that in all previous DIP-partitions no tuple existed
during w.T . Since the union of all the DIP partitions
gives R, then no tuple u exists in R overlapping w
other than itself.

3. for each w ∈ Zn, the set R’ of all tuples valid

over w.T must be returned in the join result, i.e.,
∀u ∈ R

(
overlap(u,w)↔ u ∈ R′

)
n = 1 By definition r.T stores the interval of validity of r.
n > 1 The full outer join returns, by definition, the tuple

of Rn overlapping w.T . If no tuple overlapping w.T

exists in Rn, it returns a null value.


