
https://lms.uzh.ch/url/RepositoryEntry/17185308706

Efficient Algorithms for Frequently Asked Questions

2. Semirings

Prof. Dan Olteanu

February 28, 2022

https://lms.uzh.ch/url/RepositoryEntry/17185308706

Common Operations Needed by Computational Problems

Key observation: Computational problems commonly use

• sequences of two binary operations

• applied on a finite set of values from a given domain (e.g., numbers).

Typical operations: sum-product, or-and, min-product, min-sum, max-product.

• In general, we will denote them by ⊕ (o-plus) and ⊗ (o-times)

Natural questions:

• How do these two operations interact?

• What laws must these operations obey?

The answers lie with the mathematical notion of (semi)ring.

Common Operations Needed by Computational Problems

Key observation: Computational problems commonly use

• sequences of two binary operations

• applied on a finite set of values from a given domain (e.g., numbers).

Typical operations: sum-product, or-and, min-product, min-sum, max-product.

• In general, we will denote them by ⊕ (o-plus) and ⊗ (o-times)

Natural questions:

• How do these two operations interact?

• What laws must these operations obey?

The answers lie with the mathematical notion of (semi)ring.

Common Operations Needed by Computational Problems

Key observation: Computational problems commonly use

• sequences of two binary operations

• applied on a finite set of values from a given domain (e.g., numbers).

Typical operations: sum-product, or-and, min-product, min-sum, max-product.

• In general, we will denote them by ⊕ (o-plus) and ⊗ (o-times)

Natural questions:

• How do these two operations interact?

• What laws must these operations obey?

The answers lie with the mathematical notion of (semi)ring.

Commutative Semiring and Ring

A commutative semiring (D,⊕,⊗, 0, 1) is a set D together with two binary
operations ⊕ and ⊗, which satisfy the following axioms:

• (D,⊕, 0) is a commutative monoid with identity element 0:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)

• ⊕ is commutative: a⊕ b = b ⊕ a

• 0 is the additive identity element: 0⊕ a = a⊕ 0 = a

• (D,⊗, 1) is a commutative monoid with identity element 1:

• ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b ⊗ c)

• ⊗ is commutative: a⊗ b = b ⊗ a

• 1 is the multiplicative identity element: 1⊗ a = a⊗ 1 = a

• The distributive law holds: (a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

• Multiplication by 0 annihilates D: 0⊗ a = a⊗ 0 = 0

Additional condition for ring: (D,⊕, 0) is a group, i.e.,

each element a has an additive inverse −a: a⊕−a = 0

Commutative Semiring and Ring

A commutative semiring (D,⊕,⊗, 0, 1) is a set D together with two binary
operations ⊕ and ⊗, which satisfy the following axioms:

• (D,⊕, 0) is a commutative monoid with identity element 0:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)

• ⊕ is commutative: a⊕ b = b ⊕ a

• 0 is the additive identity element: 0⊕ a = a⊕ 0 = a

• (D,⊗, 1) is a commutative monoid with identity element 1:

• ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b ⊗ c)

• ⊗ is commutative: a⊗ b = b ⊗ a

• 1 is the multiplicative identity element: 1⊗ a = a⊗ 1 = a

• The distributive law holds: (a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

• Multiplication by 0 annihilates D: 0⊗ a = a⊗ 0 = 0

Additional condition for ring: (D,⊕, 0) is a group, i.e.,

each element a has an additive inverse −a: a⊕−a = 0

Commutative Semiring and Ring

A commutative semiring (D,⊕,⊗, 0, 1) is a set D together with two binary
operations ⊕ and ⊗, which satisfy the following axioms:

• (D,⊕, 0) is a commutative monoid with identity element 0:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)

• ⊕ is commutative: a⊕ b = b ⊕ a

• 0 is the additive identity element: 0⊕ a = a⊕ 0 = a

• (D,⊗, 1) is a commutative monoid with identity element 1:

• ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b ⊗ c)

• ⊗ is commutative: a⊗ b = b ⊗ a

• 1 is the multiplicative identity element: 1⊗ a = a⊗ 1 = a

• The distributive law holds: (a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

• Multiplication by 0 annihilates D: 0⊗ a = a⊗ 0 = 0

Additional condition for ring: (D,⊕, 0) is a group, i.e.,

each element a has an additive inverse −a: a⊕−a = 0

Commutative Semiring and Ring

A commutative semiring (D,⊕,⊗, 0, 1) is a set D together with two binary
operations ⊕ and ⊗, which satisfy the following axioms:

• (D,⊕, 0) is a commutative monoid with identity element 0:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)

• ⊕ is commutative: a⊕ b = b ⊕ a

• 0 is the additive identity element: 0⊕ a = a⊕ 0 = a

• (D,⊗, 1) is a commutative monoid with identity element 1:

• ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b ⊗ c)

• ⊗ is commutative: a⊗ b = b ⊗ a

• 1 is the multiplicative identity element: 1⊗ a = a⊗ 1 = a

• The distributive law holds: (a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

• Multiplication by 0 annihilates D: 0⊗ a = a⊗ 0 = 0

Additional condition for ring: (D,⊕, 0) is a group, i.e.,

each element a has an additive inverse −a: a⊕−a = 0

Commutative Semiring and Ring

A commutative semiring (D,⊕,⊗, 0, 1) is a set D together with two binary
operations ⊕ and ⊗, which satisfy the following axioms:

• (D,⊕, 0) is a commutative monoid with identity element 0:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)

• ⊕ is commutative: a⊕ b = b ⊕ a

• 0 is the additive identity element: 0⊕ a = a⊕ 0 = a

• (D,⊗, 1) is a commutative monoid with identity element 1:

• ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b ⊗ c)

• ⊗ is commutative: a⊗ b = b ⊗ a

• 1 is the multiplicative identity element: 1⊗ a = a⊗ 1 = a

• The distributive law holds: (a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

• Multiplication by 0 annihilates D: 0⊗ a = a⊗ 0 = 0

Additional condition for ring: (D,⊕, 0) is a group, i.e.,

each element a has an additive inverse −a: a⊕−a = 0

Commutative Semiring and Ring

A commutative semiring (D,⊕,⊗, 0, 1) is a set D together with two binary
operations ⊕ and ⊗, which satisfy the following axioms:

• (D,⊕, 0) is a commutative monoid with identity element 0:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)

• ⊕ is commutative: a⊕ b = b ⊕ a

• 0 is the additive identity element: 0⊕ a = a⊕ 0 = a

• (D,⊗, 1) is a commutative monoid with identity element 1:

• ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b ⊗ c)

• ⊗ is commutative: a⊗ b = b ⊗ a

• 1 is the multiplicative identity element: 1⊗ a = a⊗ 1 = a

• The distributive law holds: (a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

• Multiplication by 0 annihilates D: 0⊗ a = a⊗ 0 = 0

Additional condition for ring: (D,⊕, 0) is a group, i.e.,

each element a has an additive inverse −a: a⊕−a = 0

Examples of Semirings

D ⊕ ⊗ 0 1 Name

{true, false} ∨ ∧ false true Boolean

N + ∗ 0 1 natural sum-product

Z + ∗ 0 1 integer sum-product

(0,∞] min ∗ ∞ 1 min-product

[0,∞) max ∗ 0 1 max-product

(−∞,∞] min + ∞ 0 min-sum

[−∞,∞) max + −∞ 0 max-sum

[−∞,∞] max min −∞ ∞ max-min

N[X] + ∗ 0 1 polynomials over X

(Rm×n,Rn×n) +i ∗i (00×n, 0n×n) (0m×n, 0n×n) inner-product

(Rm×n,Rm×m) +o ∗o (00×n, 00×0) (0m×n, 0m×m) outer-product

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)

distributive
= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)

distributive
= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)
distributive

= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)
distributive

= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)
distributive

= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)
distributive

= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Boolean Semiring

({true, false},∨,∧, false, true) is the Boolean semiring

• Two elements: true and false; ∨ is the logical OR, ∧ is the logical AND

• No ring since 1 (true) has no additive inverse: 6 ∃x : true ∨ x = false

Example (other derivations possible to obtain the result):

true ∧ (false ∨ true)
distributive

= (true ∧ false) ∨ (true ∧ true)

mult identity
= (true ∧ false) ∨ true

mult by 0
= false ∨ true

add identity
= true

Where is it used?

• Constraint satisfaction problems
• Boolean conjunctive queries
• SAT

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)

distributive
= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)

distributive
= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)
distributive

= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)
distributive

= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)
distributive

= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)
distributive

= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Natural Sum-Product Semiring

(N,+, ∗, 0, 1) is the natural sum-product semiring

• Domain: natural numbers including 0

• + is arithmetic addition, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse:
e.g., 1 has no inverse: 6 ∃x ∈ N : 1 + x = 0

Example (other derivations possible to obtain the result):

3 ∗ (2 + 1)
distributive

= (3 ∗ 2) + (3 ∗ 1)

mult identity
= (3 ∗ 2) + 3

mult
= 6 + 3

add
= 9

Where is it used?

• Counting the number of tuples in answers to queries over relational data

Variations of the Sum-Product Semiring

Integer sum-product semiring (Z,+, ∗, 0, 1)

• Domain: integers; + is arithmetic addition, ∗ is arithmetic multiplication

• Ring since each element has an additive inverse: ∀x ∈ Z : x + (−x) = 0

• Where is it used?
• Incremental maintenance under updates (inserts and deletes)

Real sum-product semiring (R,+, ∗, 0, 1)

• Domain: reals

• + is arithmetic addition, ∗ is arithmetic multiplication

• Ring since each element has an additive inverse

• Where is it used?

• Inference in probabilistic graphical models

• Matrix operations: Matrix chain multiplication, Permanent, DFT

Variations of the Sum-Product Semiring

Integer sum-product semiring (Z,+, ∗, 0, 1)

• Domain: integers; + is arithmetic addition, ∗ is arithmetic multiplication

• Ring since each element has an additive inverse: ∀x ∈ Z : x + (−x) = 0

• Where is it used?
• Incremental maintenance under updates (inserts and deletes)

Real sum-product semiring (R,+, ∗, 0, 1)

• Domain: reals

• + is arithmetic addition, ∗ is arithmetic multiplication

• Ring since each element has an additive inverse

• Where is it used?

• Inference in probabilistic graphical models

• Matrix operations: Matrix chain multiplication, Permanent, DFT

Max-Product Semiring

Max-product semiring ([0,∞),max, ∗, 0, 1)

• Domain: nonnegative reals

• max returns the maximum of two inputs, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse: e.g.,
6 ∃x ∈ [0,∞) : max{1, x} = 0

Example (other derivations possible to obtain the result):

3 ∗max{2, 1}

distributive
= max{3 ∗ 2, 3 ∗ 1}

mult
= max{6, 3}

max
= 6

Where is it used?

• Maximum a-posteriori in probabilistic state machines and graphical models
• Maximum likelihood decoder for linear codes

Max-Product Semiring

Max-product semiring ([0,∞),max, ∗, 0, 1)

• Domain: nonnegative reals

• max returns the maximum of two inputs, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse: e.g.,
6 ∃x ∈ [0,∞) : max{1, x} = 0

Example (other derivations possible to obtain the result):

3 ∗max{2, 1}

distributive
= max{3 ∗ 2, 3 ∗ 1}

mult
= max{6, 3}

max
= 6

Where is it used?

• Maximum a-posteriori in probabilistic state machines and graphical models
• Maximum likelihood decoder for linear codes

Max-Product Semiring

Max-product semiring ([0,∞),max, ∗, 0, 1)

• Domain: nonnegative reals

• max returns the maximum of two inputs, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse: e.g.,
6 ∃x ∈ [0,∞) : max{1, x} = 0

Example (other derivations possible to obtain the result):

3 ∗max{2, 1} distributive
= max{3 ∗ 2, 3 ∗ 1}

mult
= max{6, 3}

max
= 6

Where is it used?

• Maximum a-posteriori in probabilistic state machines and graphical models
• Maximum likelihood decoder for linear codes

Max-Product Semiring

Max-product semiring ([0,∞),max, ∗, 0, 1)

• Domain: nonnegative reals

• max returns the maximum of two inputs, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse: e.g.,
6 ∃x ∈ [0,∞) : max{1, x} = 0

Example (other derivations possible to obtain the result):

3 ∗max{2, 1} distributive
= max{3 ∗ 2, 3 ∗ 1}

mult
= max{6, 3}

max
= 6

Where is it used?

• Maximum a-posteriori in probabilistic state machines and graphical models
• Maximum likelihood decoder for linear codes

Max-Product Semiring

Max-product semiring ([0,∞),max, ∗, 0, 1)

• Domain: nonnegative reals

• max returns the maximum of two inputs, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse: e.g.,
6 ∃x ∈ [0,∞) : max{1, x} = 0

Example (other derivations possible to obtain the result):

3 ∗max{2, 1} distributive
= max{3 ∗ 2, 3 ∗ 1}

mult
= max{6, 3}

max
= 6

Where is it used?

• Maximum a-posteriori in probabilistic state machines and graphical models
• Maximum likelihood decoder for linear codes

Max-Product Semiring

Max-product semiring ([0,∞),max, ∗, 0, 1)

• Domain: nonnegative reals

• max returns the maximum of two inputs, ∗ is arithmetic multiplication

• No ring since no element besides 0 has an additive inverse: e.g.,
6 ∃x ∈ [0,∞) : max{1, x} = 0

Example (other derivations possible to obtain the result):

3 ∗max{2, 1} distributive
= max{3 ∗ 2, 3 ∗ 1}

mult
= max{6, 3}

max
= 6

Where is it used?

• Maximum a-posteriori in probabilistic state machines and graphical models
• Maximum likelihood decoder for linear codes

Polynomial Semiring

(N[X],+, ∗, 0, 1) is the semiring of polynomials

• N[X] is the set of polynomials over variables in X and coefficients in N

• + is addition of polynomials, ∗ is multiplication of polynomials

Example with polynomials a = 2x + 3y and b = x + 2z:

a + b = 2x + 3y + x + 2z = 3x + 3y + 2z

a ∗ b = (2x + 3y) ∗ (x + 2z)
distributivity

= 2x ∗ x + 2x ∗ 2z + 3y ∗ x + 3y ∗ 2z

= 2x2 + 4xz + 3yx + 6yz

Where is it used?

• Provenance information, where variables are identifiers of tuples in relations

• If variables are random: Probabilistic databases

• If variables are multiplicities: Bag semantics for relations

Polynomial Semiring

(N[X],+, ∗, 0, 1) is the semiring of polynomials

• N[X] is the set of polynomials over variables in X and coefficients in N

• + is addition of polynomials, ∗ is multiplication of polynomials

Example with polynomials a = 2x + 3y and b = x + 2z:

a + b = 2x + 3y + x + 2z = 3x + 3y + 2z

a ∗ b = (2x + 3y) ∗ (x + 2z)
distributivity

= 2x ∗ x + 2x ∗ 2z + 3y ∗ x + 3y ∗ 2z

= 2x2 + 4xz + 3yx + 6yz

Where is it used?

• Provenance information, where variables are identifiers of tuples in relations

• If variables are random: Probabilistic databases

• If variables are multiplicities: Bag semantics for relations

Problem 1: Algebraic Path Problem

The Algebraic Path Problem by Examples

Consider the following directed graph with two distinguished nodes A and F

A

B

C

D

E

F

Next: Several graph path problems

• each solved by the same algorithm

• yet using a different semiring

Shortest Distance

A

B

C

D

E

F

1

4

12

3

5

2

1

Compute the overall distance of each path from A to F

1 + 12 + 1 = 14

1 + 3 + 5 + 2 + 1 = 12

4 + 5 + 2 + 1 = 12

Then take the minimum distance of all these paths

min{14, 12, 12} = 12

The above computation uses the min-sum semiring

Shortest Distance

A

B

C

D

E

F

1

4

12

3

5

2

1

Compute the overall distance of each path from A to F

1 + 12 + 1 = 14

1 + 3 + 5 + 2 + 1 = 12

4 + 5 + 2 + 1 = 12

Then take the minimum distance of all these paths

min{14, 12, 12} = 12

The above computation uses the min-sum semiring

Shortest Distance

A

B

C

D

E

F

1

4

12

3

5

2

1

Compute the overall distance of each path from A to F

1 + 12 + 1 = 14

1 + 3 + 5 + 2 + 1 = 12

4 + 5 + 2 + 1 = 12

Then take the minimum distance of all these paths

min{14, 12, 12} = 12

The above computation uses the min-sum semiring

Connectivity

A

B

C

D

E

F

1

0

1

1

0

0

1

Compute whether each path connects A to F (0-edge means no connectivity)

min{1, 1, 1} = 1

min{1, 1, 0, 0, 1} = 0

min{0, 0, 0, 1} = 0

Then compute whether there is at least a path connecting A to F only via 1-edges

max{1, 0, 0} = 1

The above computation uses the max-min semiring

Connectivity

A

B

C

D

E

F

1

0

1

1

0

0

1

Compute whether each path connects A to F (0-edge means no connectivity)

min{1, 1, 1} = 1

min{1, 1, 0, 0, 1} = 0

min{0, 0, 0, 1} = 0

Then compute whether there is at least a path connecting A to F only via 1-edges

max{1, 0, 0} = 1

The above computation uses the max-min semiring

Connectivity

A

B

C

D

E

F

1

0

1

1

0

0

1

Compute whether each path connects A to F (0-edge means no connectivity)

min{1, 1, 1} = 1

min{1, 1, 0, 0, 1} = 0

min{0, 0, 0, 1} = 0

Then compute whether there is at least a path connecting A to F only via 1-edges

max{1, 0, 0} = 1

The above computation uses the max-min semiring

Largest Capacity

A

B

C

D

E

F

1.5

2.6

3.4

2.1

0.5

3.1

0.6

Compute the capacity along each path from A to F

min{1.5, 3.4, 0.6} = 0.6

min{1.5, 2.1, 0.5, 3.1, 0.6} = 0.5

min{2.6, 0.5, 3.1, 0.6} = 0.5

Then compute the largest possible capacity of any path from A to F

max{0.6, 0.5, 0.5} = 0.6

The above computation uses the max-min semiring

Largest Capacity

A

B

C

D

E

F

1.5

2.6

3.4

2.1

0.5

3.1

0.6

Compute the capacity along each path from A to F

min{1.5, 3.4, 0.6} = 0.6

min{1.5, 2.1, 0.5, 3.1, 0.6} = 0.5

min{2.6, 0.5, 3.1, 0.6} = 0.5

Then compute the largest possible capacity of any path from A to F

max{0.6, 0.5, 0.5} = 0.6

The above computation uses the max-min semiring

Largest Capacity

A

B

C

D

E

F

1.5

2.6

3.4

2.1

0.5

3.1

0.6

Compute the capacity along each path from A to F

min{1.5, 3.4, 0.6} = 0.6

min{1.5, 2.1, 0.5, 3.1, 0.6} = 0.5

min{2.6, 0.5, 3.1, 0.6} = 0.5

Then compute the largest possible capacity of any path from A to F

max{0.6, 0.5, 0.5} = 0.6

The above computation uses the max-min semiring

Maximum Reliability

A

B

C

D

E

F

0.2

0.3

0.1

0.6

0.8

0.9

0.7

Compute the reliability along each path from A to F

0.2 · 0.1 · 0.7 = 0.014

0.2 · 0.6 · 0.8 · 0.9 · 0.7 = 0.06048

0.3 · 0.8 · 0.9 · 0.7 = 0.1512

Then compute the maximum reliability from A to F

max{0.014, 0.06048, 0.1512} = 0.1512

The above computation uses the max-product semiring

Maximum Reliability

A

B

C

D

E

F

0.2

0.3

0.1

0.6

0.8

0.9

0.7

Compute the reliability along each path from A to F

0.2 · 0.1 · 0.7 = 0.014

0.2 · 0.6 · 0.8 · 0.9 · 0.7 = 0.06048

0.3 · 0.8 · 0.9 · 0.7 = 0.1512

Then compute the maximum reliability from A to F

max{0.014, 0.06048, 0.1512} = 0.1512

The above computation uses the max-product semiring

Language Accepted by Automaton

A

B

C

D

E

F

{a}

{b}

{c}

{c}

{d}

{e}

{a}

Compute the string from start state A to final state F

{a} ◦ {c} ◦ {a} = {aca}

{a} ◦ {c} ◦ {d} ◦ {e} ◦ {a} = {acdea}

{b} ◦ {d} ◦ {e} ◦ {a} = {bdea}

Then compute the set of all such possible strings⋃
{{aca}, {acdea}, {bdea}} = {aca, acdea, bdea}

The above computation uses the ∪-◦ semiring

Language Accepted by Automaton

A

B

C

D

E

F

{a}

{b}

{c}

{c}

{d}

{e}

{a}

Compute the string from start state A to final state F

{a} ◦ {c} ◦ {a} = {aca}

{a} ◦ {c} ◦ {d} ◦ {e} ◦ {a} = {acdea}

{b} ◦ {d} ◦ {e} ◦ {a} = {bdea}

Then compute the set of all such possible strings⋃
{{aca}, {acdea}, {bdea}} = {aca, acdea, bdea}

The above computation uses the ∪-◦ semiring

Language Accepted by Automaton

A

B

C

D

E

F

{a}

{b}

{c}

{c}

{d}

{e}

{a}

Compute the string from start state A to final state F

{a} ◦ {c} ◦ {a} = {aca}

{a} ◦ {c} ◦ {d} ◦ {e} ◦ {a} = {acdea}

{b} ◦ {d} ◦ {e} ◦ {a} = {bdea}

Then compute the set of all such possible strings⋃
{{aca}, {acdea}, {bdea}} = {aca, acdea, bdea}

The above computation uses the ∪-◦ semiring

Summing Up: The Algebraic Path Problem

• Previous slides: Path problems over different semirings

• Let X = matrix of edge weights

• Such path problems require computing

P =
⊕
r≥0

Xr = I⊕ X⊕ (X⊗ X)⊕ . . .︸ ︷︷ ︸
possibly infinite series of semiring matrices

admits solution when series converges

If the limit P exists, then it is to the least solution to the fixpoint equation

Y = X Y + I

• Path problems solved by one algorithm for a semiring fixpoint equation

Summing Up: The Algebraic Path Problem

• Previous slides: Path problems over different semirings

• Let X = matrix of edge weights

• Such path problems require computing

P =
⊕
r≥0

Xr = I⊕ X⊕ (X⊗ X)⊕ . . .︸ ︷︷ ︸
possibly infinite series of semiring matrices

admits solution when series converges

If the limit P exists, then it is to the least solution to the fixpoint equation

Y = X Y + I

• Path problems solved by one algorithm for a semiring fixpoint equation

Problem 2: Satisfiability

Problem 1: Satisfiability 1/2

• Map colouring: Europe’s
countries can be coloured using
four colours such that no
neighbouring two countries have
the same colour.

• The four colour map theorem
says that this can be done for
any map (without exclaves).

Question: Can we colour Europe’s countries using only three colours?

This question can be answered by modelling this 3-colorability problem by a
propositional formula and checking its satisfiability.

This problem can be phrased in the Boolean semiring over Boolean variables

Problem 1: Satisfiability 1/2

• Map colouring: Europe’s
countries can be coloured using
four colours such that no
neighbouring two countries have
the same colour.

• The four colour map theorem
says that this can be done for
any map (without exclaves).

Question: Can we colour Europe’s countries using only three colours?

This question can be answered by modelling this 3-colorability problem by a
propositional formula and checking its satisfiability.

This problem can be phrased in the Boolean semiring over Boolean variables

Problem 1: Satisfiability 1/2

• Map colouring: Europe’s
countries can be coloured using
four colours such that no
neighbouring two countries have
the same colour.

• The four colour map theorem
says that this can be done for
any map (without exclaves).

Question: Can we colour Europe’s countries using only three colours?

This question can be answered by modelling this 3-colorability problem by a
propositional formula and checking its satisfiability.

This problem can be phrased in the Boolean semiring over Boolean variables

Problem 1: Satisfiability 2/2

• Say we use the colours red, green, and blue.

• For each country (e.g., Switzerland) and each colour (e.g., red), we use a
variable (e.g., RCH) expressing that the country is coloured in that colour.

Then, we can construct a formula Φ that is satisfiable if and only if Europe’s map
is 3-colourable:

(RCH ∨ GCH ∨ BCH) “Switzerland has at least one colour.”∧
(¬RCH ∨ ¬GCH) ∧ (¬RCH ∨ ¬BCH) ∧
(¬GCH ∨ ¬BCH)

“Switzerland has at most one colour.”∧
(¬RCH ∨ ¬RDE) ∧ (¬GCH ∨ ¬GDE) ∧
(¬BCH ∨ ¬BDE)

“Switzerland and Germany have dif-
ferent colours.”∧

.

Problem 1: Satisfiability 2/2

• Say we use the colours red, green, and blue.

• For each country (e.g., Switzerland) and each colour (e.g., red), we use a
variable (e.g., RCH) expressing that the country is coloured in that colour.

Then, we can construct a formula Φ that is satisfiable if and only if Europe’s map
is 3-colourable:

(RCH ∨ GCH ∨ BCH) “Switzerland has at least one colour.”

∧
(¬RCH ∨ ¬GCH) ∧ (¬RCH ∨ ¬BCH) ∧
(¬GCH ∨ ¬BCH)

“Switzerland has at most one colour.”∧
(¬RCH ∨ ¬RDE) ∧ (¬GCH ∨ ¬GDE) ∧
(¬BCH ∨ ¬BDE)

“Switzerland and Germany have dif-
ferent colours.”∧

.

Problem 1: Satisfiability 2/2

• Say we use the colours red, green, and blue.

• For each country (e.g., Switzerland) and each colour (e.g., red), we use a
variable (e.g., RCH) expressing that the country is coloured in that colour.

Then, we can construct a formula Φ that is satisfiable if and only if Europe’s map
is 3-colourable:

(RCH ∨ GCH ∨ BCH) “Switzerland has at least one colour.”∧
(¬RCH ∨ ¬GCH) ∧ (¬RCH ∨ ¬BCH) ∧
(¬GCH ∨ ¬BCH)

“Switzerland has at most one colour.”

∧
(¬RCH ∨ ¬RDE) ∧ (¬GCH ∨ ¬GDE) ∧
(¬BCH ∨ ¬BDE)

“Switzerland and Germany have dif-
ferent colours.”∧

.

Problem 1: Satisfiability 2/2

• Say we use the colours red, green, and blue.

• For each country (e.g., Switzerland) and each colour (e.g., red), we use a
variable (e.g., RCH) expressing that the country is coloured in that colour.

Then, we can construct a formula Φ that is satisfiable if and only if Europe’s map
is 3-colourable:

(RCH ∨ GCH ∨ BCH) “Switzerland has at least one colour.”∧
(¬RCH ∨ ¬GCH) ∧ (¬RCH ∨ ¬BCH) ∧
(¬GCH ∨ ¬BCH)

“Switzerland has at most one colour.”∧
(¬RCH ∨ ¬RDE) ∧ (¬GCH ∨ ¬GDE) ∧
(¬BCH ∨ ¬BDE)

“Switzerland and Germany have dif-
ferent colours.”∧

.

Problem 3: Database Queries

A Burgers & Hotdogs Use Case

Orders (O for short)

customer day dish

Elise Monday burger
Elise Friday burger

Steve Friday hotdog
Joe Friday hotdog

Dish (D for short)

dish item

burger patty
burger onion
burger bun
hotdog bun
hotdog onion
hotdog sausage

Items (I for short)

item price

patty 6
onion 2

bun 2
sausage 4

Consider the natural join of the above relations:

O(customer, day, dish) on D(dish, item) on I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2
Elise Friday burger bun 2
.

A Burgers & Hotdogs Use Case

Orders (O for short)

customer day dish

Elise Monday burger
Elise Friday burger

Steve Friday hotdog
Joe Friday hotdog

Dish (D for short)

dish item

burger patty
burger onion
burger bun
hotdog bun
hotdog onion
hotdog sausage

Items (I for short)

item price

patty 6
onion 2

bun 2
sausage 4

Consider the natural join of the above relations:

O(customer, day, dish) on D(dish, item) on I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2
Elise Friday burger bun 2
.

Burgers & Hotdogs in Relational Algebra

O(customer, day, dish) on D(dish, item) on I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2
Elise Friday burger bun 2
.

An algebraic encoding in the ∪-× semiring:

Elise × Monday × burger × patty × 6 ∪
Elise × Monday × burger × onion × 2 ∪
Elise × Monday × burger × bun × 2 ∪
Elise × Friday × burger × patty × 6 ∪
Elise × Friday × burger × onion × 2 ∪
Elise × Friday × burger × bun × 2 ∪ . . .

The Union-Product Semiring Allows for Factorised Join Representation

∪

burger hotdog

× ×

∪

bun onion sausage

× × ×

∪ ∪ ∪

2 2 4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

Variable order Instantiation of the variable order over the input database

There are several algebraically equivalent factorised joins defined by distributivity
of Cartesian product × over union ∪ and their commutativity.

Factorised Aggregate Computation by Changing the Semiring

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

COUNT-ing the join size done in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +, × 7→ ∗.

Effectively, we changed to the sum-product semiring

Factorised Aggregate Computation

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

12

66

2 3

1 1 1

1 1

3 2

1 2

COUNT-ing the join size done in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +, × 7→ ∗.

Effectively, we changed to the sum-product semiring

Problem 4: Medical Diagnosis with Probabilistic Models

Medical Diagnosis with Probabilistic Models

Patient, who recently returned from Asia, complains about shortness breath
(Dyspnea). What is the probability that she suffers from Bronchitis?

Medical diagnosis using the joint probability distribution of random variables:

• Patient information: Visit to Asia (A), Smoking (S)

• Diseases: Tuberculosis (T), Lung Cancer (L), Bronchitis (B)

• Diagnostic Tests: X-Ray Result (X), Dyspnea (D)

Key AI challenge: Learn such distributions, allow efficient inference over them

Much development on Bayesian Networks and Probabilistic Graphical Models

Bayesian Network for Our Medical Diagnosis

3

Why are Bayesian Networks interesting
nowadays?

• Development of propagation algorithms followed
by availability of easy to use commercial software

• Growing number of creative applications: dementia
diagnosis, cancer care symptom modelling, likelihood of
car purchase

• How are they different from other:
– Knowledge-based systems tools: uncertainty is

handled in mathematically rigorous yet efficient and
simple way

– Probabilistic analysis tools: network representation of
problems, use of Bayesian statistics, and the synergy
between these

5

Example from medical diagnostics

Network represents a knowledge structure that models the relationship between diseases,
their causes and effects, patient information and diagnostic tests

6

Visit to Asia

Tuberculosis

Tuberculosis
or Cancer

XRay Result Dyspnea

Bronchitis Lung Cancer

Smoking

Patient Information

Diseases

Diagnostic Tests

A P(A)
T .01
F .99

S P(S)
T .4
F .6

A T P(T |A)
T T .05
T F .95
F T .01
F F .99

S B P(B|S)
T T .6
T F .4
F T .3
F F .7

S L P(L|S)
T T .1
T F .9
F T .01
F F .99

T L O P(O|T , L)
T T T 1
T T F 0
T F T 1
T F F 0
F T T 1
F T F 0
F F T 0
F F F 1

O B D P(D|O, B)
T T T .9
T T F .1
T F T .7
T F F .3
F T T .8
F T F .2
F F T .1
F F F .9

O X P(X |O)

T T .98
T F .02
F T .05
F F .95

Variable O:
Tuberculosis or Cancer

Bayesian Network for Our Medical Diagnosis

3

Why are Bayesian Networks interesting
nowadays?

• Development of propagation algorithms followed
by availability of easy to use commercial software

• Growing number of creative applications: dementia
diagnosis, cancer care symptom modelling, likelihood of
car purchase

• How are they different from other:
– Knowledge-based systems tools: uncertainty is

handled in mathematically rigorous yet efficient and
simple way

– Probabilistic analysis tools: network representation of
problems, use of Bayesian statistics, and the synergy
between these

5

Example from medical diagnostics

Network represents a knowledge structure that models the relationship between diseases,
their causes and effects, patient information and diagnostic tests

6

Visit to Asia

Tuberculosis

Tuberculosis
or Cancer

XRay Result Dyspnea

Bronchitis Lung Cancer

Smoking

Patient Information

Diseases

Diagnostic Tests

The Bayesian Network structures the joint probability distribution using
conditional independence:

P(A, T ,S, L,B,O,X ,D) = P(A)·P(T |A)·P(S)·P(L|S)·P(B|S)·P(O|T , L)·P(X |O)·P(D|O,B)

Inference query: Probability that she suffers from Bronchitis given that she
returned from Asia and complains about Dyspnea: P(B|A,D) = P(A,B,D)

P(A,D)

Bayesian Network for Our Medical Diagnosis

3

Why are Bayesian Networks interesting
nowadays?

• Development of propagation algorithms followed
by availability of easy to use commercial software

• Growing number of creative applications: dementia
diagnosis, cancer care symptom modelling, likelihood of
car purchase

• How are they different from other:
– Knowledge-based systems tools: uncertainty is

handled in mathematically rigorous yet efficient and
simple way

– Probabilistic analysis tools: network representation of
problems, use of Bayesian statistics, and the synergy
between these

5

Example from medical diagnostics

Network represents a knowledge structure that models the relationship between diseases,
their causes and effects, patient information and diagnostic tests

6

Visit to Asia

Tuberculosis

Tuberculosis
or Cancer

XRay Result Dyspnea

Bronchitis Lung Cancer

Smoking

Patient Information

Diseases

Diagnostic Tests

The Bayesian Network structures the joint probability distribution using
conditional independence:

P(A, T ,S, L,B,O,X ,D) = P(A)·P(T |A)·P(S)·P(L|S)·P(B|S)·P(O|T , L)·P(X |O)·P(D|O,B)

Inference query: Probability that she suffers from Bronchitis given that she
returned from Asia and complains about Dyspnea: P(B|A,D) = P(A,B,D)

P(A,D)

Bayesian Network for Our Medical Diagnosis

3

Why are Bayesian Networks interesting
nowadays?

• Development of propagation algorithms followed
by availability of easy to use commercial software

• Growing number of creative applications: dementia
diagnosis, cancer care symptom modelling, likelihood of
car purchase

• How are they different from other:
– Knowledge-based systems tools: uncertainty is

handled in mathematically rigorous yet efficient and
simple way

– Probabilistic analysis tools: network representation of
problems, use of Bayesian statistics, and the synergy
between these

5

Example from medical diagnostics

Network represents a knowledge structure that models the relationship between diseases,
their causes and effects, patient information and diagnostic tests

6

Visit to Asia

Tuberculosis

Tuberculosis
or Cancer

XRay Result Dyspnea

Bronchitis Lung Cancer

Smoking

Patient Information

Diseases

Diagnostic Tests

The Bayesian Network structures the joint probability distribution using
conditional independence:

P(A, T ,S, L,B,O,X ,D) = P(A)·P(T |A)·P(S)·P(L|S)·P(B|S)·P(O|T , L)·P(X |O)·P(D|O,B)

Inference query: Probability that she suffers from Bronchitis given that she
returned from Asia and complains about Dyspnea: P(B|A,D) = P(A,B,D)

P(A,D)

Computing the Inference Query P(A,B,D)

We aggregate away all other variables not relevant to our query:

P(A,B,D) =
∑

O,L,S,T ,X

P(A, T ,S, L,B,O,X ,D)

How can we do this efficiently?

• P(A,T ,S, L,B,O,X ,D) is a truth table with 28 rows

• In general, for n variables, we get 2n rows!

• Quick Medical Reference has > 5000 variables

Two main ideas (which are the pillars of our course):

• Exploit the factorised joint distribution

• P(A, T ,S, L,B,O,X ,D) factorised as the join of 8 conditional probability tables

• Apply the sum-product semiring’s distributivity law of product over sum

Computing the Inference Query P(A,B,D)

We aggregate away all other variables not relevant to our query:

P(A,B,D) =
∑

O,L,S,T ,X

P(A, T ,S, L,B,O,X ,D)

How can we do this efficiently?

• P(A,T ,S, L,B,O,X ,D) is a truth table with 28 rows

• In general, for n variables, we get 2n rows!

• Quick Medical Reference has > 5000 variables

Two main ideas (which are the pillars of our course):

• Exploit the factorised joint distribution

• P(A, T ,S, L,B,O,X ,D) factorised as the join of 8 conditional probability tables

• Apply the sum-product semiring’s distributivity law of product over sum

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Computing the Inference Query P(A,B,D)

P(A, B,D) =
∑

O,L,S,T,X

P(A, T , S, L, B,O, X ,D)

=
∑

O,L,S,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) · P(S) · P(L|S) · P(B|S)

=
∑

O,L,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) · P(O|T , L) ·
∑

S

P(S) · P(L|S) · P(B|S)

︸ ︷︷ ︸
φ1(L,B)

=
∑

O,T,X

P(A) · P(D|O, B) · P(X |O) · P(T |A) ·
∑

L

P(O|T , L) · φ1(L, B)

︸ ︷︷ ︸
φ2(T,O,B)

=
∑
O,X

P(A) · P(D|O, B) · P(X |O) ·
∑

T

P(T |A) · φ2(T ,O, B)

︸ ︷︷ ︸
φ3(O,A,B)

=
∑

O

P(A) · P(D|O, B) ·
∑

X

P(X |O)

︸ ︷︷ ︸
φ4(O)

·φ3(O, A, B)

= P(A) ·
∑

O

P(D|O, B) · φ4(O) · φ3(O, A, B)

︸ ︷︷ ︸
φ5(A,B,D)

= P(A) · φ5(A, B,D)

Is the Rewritten Expression for the Inference Query P(A,B,D) Better?

• Started with 8 (conditional probability) tables and joint pdf with 28 rows

• Pushed the summation (marginalisation) past the product

• Created intermediate results:

• φ1(L,B) has 22 rows

• φ2(T ,O,B) has 23 rows

• φ3(O,A,B) has 23 rows

• φ4(O) has 21 rows

• φ5(A,B,D) has 23 rows

Probability of Most Likely Configuration

How to find the probability for the mode of the joint probability distribution?

Change the semiring: From sum-product to max-product

• Sum-product semiring: P(A,B,D) =
∑

O,L,S,T ,X P(A,T ,S, L,B,O,X ,D)

• Max-product semiring: P(A,B,D) = maxO,L,S,T ,X P(A,T ,S, L,B,O,X ,D)

Our previous optimisation remains the same!

Probability of Most Likely Configuration

How to find the probability for the mode of the joint probability distribution?

Change the semiring: From sum-product to max-product

• Sum-product semiring: P(A,B,D) =
∑

O,L,S,T ,X P(A,T ,S, L,B,O,X ,D)

• Max-product semiring: P(A,B,D) = maxO,L,S,T ,X P(A,T ,S, L,B,O,X ,D)

Our previous optimisation remains the same!

Side Note: Working with Conditional Probability Tables

Task: Compute φ1(S, L,B) = P(S) · P(L|S) · P(B|S)

Recall the conditional probability tables (rows for S = F,B = F, L = F not shown):

S P(S)

T .4
S B P(B|S)

T T .6
F T .3

S L P(L|S)

T T .1
F T .01

P(S) · P(L|S) · P(B|S) is computed by the natural join (on S) of these tables:

S L B P(S) P(L|S) P(B|S)

T T T .4 .1 .6
F .4 .1 .4

F T .4 .9 .6
F .4 .9 .4

F T T .6 .01 .3
F .6 .01 .7

F T .6 .99 .3
F .6 .99 .7

P(S, L,B)

.024

.016

.216

.144
.0018
.0042
.1782
.4158

Side Note: Working with Conditional Probability Tables

Task: Compute φ1(L,B) =
⊕

S φ2(S, L,B)

We marginalise out variable S according to semiring operation
⊕

.

L B P(L,B)

T T max{.024, .0018}
T F max{.016, .0042}
F T max{.216, .1782}

F F max{.4158, .144}

maxS⇐

S L B P(S, L,B)

T T T .024
F .016

F T .216
F .144

F T T .0018
F .0042

F T .1782
F .4158

∑
S⇒

L B P(L,B)

T T .024 + .0018
F .016 + .0042

F T .216 + .1782
F .144 + .4158

Side Note: Working with Conditional Probability Tables

Task: Compute φ1(L,B) =
⊕

S φ2(S, L,B)

We marginalise out variable S according to semiring operation
⊕

.

L B P(L,B)

T T max{.024, .0018}
T F max{.016, .0042}
F T max{.216, .1782}

F F max{.4158, .144}

maxS⇐

S L B P(S, L,B)

T T T .024
F .016

F T .216
F .144

F T T .0018
F .0042

F T .1782
F .4158

∑
S⇒

L B P(L,B)

T T .024 + .0018
F .016 + .0042

F T .216 + .1782
F .144 + .4158

Side Note: Working with Conditional Probability Tables

Task: Compute φ1(L,B) =
⊕

S φ2(S, L,B)

We marginalise out variable S according to semiring operation
⊕

.

L B P(L,B)

T T max{.024, .0018}
T F max{.016, .0042}
F T max{.216, .1782}

F F max{.4158, .144}

maxS⇐

S L B P(S, L,B)

T T T .024
F .016

F T .216
F .144

F T T .0018
F .0042

F T .1782
F .4158

∑
S⇒

L B P(L,B)

T T .024 + .0018
F .016 + .0042

F T .216 + .1782
F .144 + .4158

TL;DR: The Unusual Power of Semirings

Why are Semirings Relevant in Computer Science?

• They enable generic problem solving

• by changing the semiring

• the algorithm remains the same

• They reduce computational complexity

• thanks to the distributivity law

Different semirings give different semantics of

• the same problem

• the same algorithm

• the same complexity

• the same implementation

