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Computing The Forward Reachable Set for a Multirotor
Under First-Order Aerodynamic Effects

Suseong Kim, Davide Falanga and Davide Scaramuzza

Abstract—Collision avoidance plays a crucial role in safe
multirotor flight in cluttered environments. Even though a given
reference trajectory is designed to be collision free, it might
lead to collision due to imperfect tracking caused by external
disturbances. In this work, we tackle this problem by computing
the Forward Reachable Set (FRS), which is the set of positions
and velocities that a multirotor can reach while following a
reference trajectory due to tracking errors. Hence, if the FRS is
computed before flight, we can utilize it to check the safety of
a given trajectory in terms of collision avoidance. To compute
a realistic FRS that covers an agile flight envelope, we consider
first-order aerodynamic effects, which have the most salient influ-
ence on the vehicle. For computing FRS, we conduct a thorought
stability analysis including these aerodynamic effects. Then, we
present a FRS computation method which can easily be adapted
to newly given reference trajectories. The presented method is
validated by comparing the FRS with real flight data collected
during agile and high-speed flight. In addition, we compare
the FRS computed with and without compensating for first-
order aerodynamic effect to highlight their significance on the
trajectory tracking performance. To the best of our knowledge,
this is the first attempt to compute FRSs by incorporating first-
order aerodynamic effects for multirotors.

Index Terms—Aerial systems, mechanics and control, motion
control

I. INTRODUCTION

TRAJECTORY planning and control for Micro Aerial
Vehicles (MAVs) represent very active research fields in

robotics. Among MAVs, recent work has shown that multiro-
tors are capable of executing very agile maneuvers in confined
spaces [1], and different solutions for computing trajectories
to let a quadrotor safely fly in cluttered environments have
been proposed [2], [3]. A large body of the literature relies on
model-based controllers to make multirotors follow collision-
free trajectories. Such controllers typically use partial or
simplified dynamical models, which do not take into account
aerodynamic effects [4], [5]. Hence, tracking a collision-free
trajectory might still lead to collisions due to tracking errors
caused by such unmodeled effects. This is especially true at
high speeds, where these effects are no longer negligible.

For analyzing the tracking errors, computing Forward
Reachable Sets (FRS) is a viable solution [6]. Intuitively, FRSs
are the subsets of the state space that a dynamical system
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Fig. 1: A multirotor is flying in forward reachable sets.

can reach while following a desired trajectory due to tracking
errors. For the case of a multirotor, such FRSs are the sets
of positions and velocities the robot could reach while flying
a trajectory in space. If a reference trajectory is given before
flight, we can compute the corresponding FRSs and use them
to check whether the tracking errors can potentially lead to a
collision with obstacles.

In this work, we propose a method for efficiently computing
FRSs for multirotors from any reference trajectories. To gen-
erate valid FRSs, we consider first-order aerodynamic effects
as the major cause of tracking performance degradation [7]–
[9]. We derive the model of the tracking error by explicitely
including the aerodynamic model in the multirotor dynamic
model. Then, we analyze the stability of the error dynamics
to study its evolution. From the error dynamics, we show
how the behavior of the errors depends on the disturbance,
which can be computed from the reference velocity and
acceleration, caused by the aerodynamic effects. Since external
disturbances are not known a-priori, most works assume them
to be bounded in norm, and conservatively use such a bound.
Conversely, we compute a less conservative disturbance by
exploiting aerodynamic model. Hence, the FRSs exhibit the
behavior of the errors realistically. In addition, since the
disturbance can be computed from reference velocity and
acceleration, we can generate the FRSs considering discrete
samples of a reference trajectory, independentely on how it is
parametrized with respect to space and time. The disturbance
values are then used to precompute the FRSs for each sample
of the trajectory. Then, the precomputed FRSs are concate-
nated to obtain the overall FRSs along the entire trajectory.
Since the FRSs computation only requires concatenation of
precomputed FRSs, we can efficiently evaluate FRSs for newly
designed reference trajectories.

We compare the computed FRSs with the actual errors from
real flight experiments. The results show that the computed
FRSs enclose the position and velocity errors well and, there-
fore, can be used to evaluate the safety of a reference trajectory
in terms of collisions.

http://rpg.ifi.uzh.ch
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A. Related Work

In this work, we aim to compute the largest deviation from
a nominal trajectory a multirotor can experience due to first-
order aerodynamic effects. First-order aerodynamic effects are
proportional to the translational and angular velocities of the
vehicle [10]. In the literature, they have been used for various
purposes. For example, they have been exploited for state
estimation [11]–[13]. Also, to enhance the trajectory track-
ing performance of a multirotor, approximated aerodynamic
effects were included in the controller in [7]–[9]. Conversely,
in this work, we consider the aerodynamic effects as the main
source causing position and velocity errors of a multirotor,
and use them to analyze trajectory tracking performance to
guarantee safety.

FRSs can be used as a tool for analyzing the trajectory
tracking performance of a robot [6]. For example, the tra-
jectory planner presented in [14] utilized FRS analysis to
compute the required safety margin for obstacle avoidance.
However, since FRSs were computed with Hamilton-Jacobi
(HJ) reachability analysis, the robot had to be controlled
using dynamic programming by solving the Hamilton-Jacobi-
Isaacs equation. On the contrary, our work aims to evaluate
the trajectory tracking performance of a multirotor controlled
with the commonly used geometric control method [4] under
aerodynamic effects. In [15], the authors computed FRSs for
a helicopter to design a safe trajectory (i.e., loitering motion)
to perform in emergency situations. To navigate in a cluttered
environment, the authors of [16] computed FRSs of predefined
motion primitives. For each primitive, the corresponding FRS
was optimized individually, and collision-free trajectories were
planned by combining the primitives. Conversely, unlike [15]
and [16], our method does not rely on precomputed reference
trajectories. Also, we do not require solving a complicated
optimization problem for each individual reference trajec-
tory. Therefore, we can efficiently generate FRSs when new
reference trajectories are given. Additionally, in [15] and
[16], FRSs are computed using the linearized dynamic model
around such a predefined trajectory, while we fully exploit
the nonlinear model of a multirotor. Finally, in [14]–[16],
the authors assumed the external disturbances to be bounded
in their norm, and used this conservative bound to compute
FRSs. On the contrary, by explicitly considering first-order
aerodynamic model as the main source causing the errors, we
compute FRSs in a less conservative manner.

B. Contributions

• We compute realistic FRSs for multirotors by considering
a first-order aerodynamic model.

• Our computation of FRSs is very efficient because it does
not require solving complex optimization problems for all
reference trajectories individually.

• We compute FRSs with and without compensating the
aerodynamic effects to quantitatively highlight its effect
on multirotor trajectory tracking performance.

• The computed FRSs are validated with experiments in-
cluding high-speed and agile flight.

C. Outline

This paper is organized as follows. First, the multirotor
dynamics and the aerodynamic effect are analyzed in Sec.
II-A and II-B. Then, in Sec. II-C, we introduce a multirotor
controller. After that, we analyze the stability of the overall
system in Sec. II-D. In Sec. III-A, we briefly present the
concept of the FRS. Then, the formulation for generating FRS
is described in Sec. III-B. Also, we explain how to assign the
computed FRSs along a given trajectory in Sec. III-C. The
experimental settings and results are summarized in Sec. IV.

D. Nomenclature

In this paper, 0ij stands for the zero matrix in Ri×j ,
and Ii denotes the identity matrix in Ri×i. For a matrix,
‖ · ‖ represents the induced 2-norm, and λmax(·) and λmin(·)
indicate its maximum and minimum eigenvalues. Also, | · | is
the Euclidean norm of a vector. For two vectors α, β ∈ R3,
we denote the cross product as S(α)β = α× β. Furthermore,
c and s are shorthands of cos and sin, respectively.

II. QUADROTOR DYNAMICS AND CONTROL

In this section, we briefly explain the multirotor dynamics
and first-order aerodynamic model. Then, we present the mul-
tirotor control law taking into account the aerodynamic effect
compensation. After that, we conduct the stability analysis of
the multirotor error dynamics.

A. Quadrotor dynamics

To describe the multirotor dynamic model, we define
the inertial Ow{xw, yw, zw} and the multirotor body-fixed
Ob{xb, yb, zb} frames. We assume the body-fixed frame to be
located at the center of mass of the multirotor. The transla-
tional and rotational dynamics of a multirotor are described as
follows [12]:

p̈ = −gzw + γzb − fd (1)

Ṙ = RS(ω) (2)

where p and R are the position and rotation matrix describing
the pose of Ob with respect to Ow. The angular velocity of
Ob represented in Ob is denoted as ω. The terms g and γ are
the gravitational constant and the mass-normalized collective
thrust, respectively. The axis zw is defined as e3 = [0 0 1]>,
and zb represents the axis zb in Ow. The term fd ∈ R3

denotes first-order aerodynamic effects which will be detailed
in Sec. II-B. In (1) and (2), we consider γ and ω as the control
inputs.

B. First-order aerodynamic effects

When a multirotor is maneuvering, the rotors experience
both translational and rotational motion. Then, due to the
multirotor motion, the rotor generates forces other than thrust.
According to [7], [10], the most prominent forces acting on
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the body are due to first-order aerodynamic effects, and can
be expressed as:

fd =
∑M
m=1{c̄1ωmRπR>ṗ+ c̄1ωmRπS(ω)dm

+ c̄2εmωmRS(e3)R>ṗ+ c̄2εmωmRS(e3)S(ω)dm

+ c̄3εmωmRπω − c̄4ωmRS(e3)ω}. (3)

In (3), m = {1, · · · ,M} indicates the rotor number, c̄1,··· ,4
are positive coefficients, ωm is the rotor speed, εm is the rotor
spinning direction (εodd = 1, εeven = −1), π = I3 − e3e

>
3 ,

and dm is the location of the rotor in Ob. The detailed
interpretation of (3) can be referred to [10] (especially, Ch. 7 ).

For further analysis, (3) is rewritten as :

fd =c1RπR
>ṗ+ c2RS(e3)R>ṗ

+ δd(c̄1···4, εm, ωm, dm, ω,R) (4)

where c1 = c̄1
∑M
m=1 ωm and c2 = c̄2

∑M
m=1 εmωm are

functions depending on the rotor speeds. Also, the terms not
depending on ṗ are lumped in δd. Unlike c1, which is the sum
of the absolute value of rotor speeds ωm, c2 incorporates the
rotor speed with their spinning direction εmωm. Since half of
the rotors rotate clockwise and the others counter-clockwise,
c2 is typically much smaller than c1. Therefore, in this work,
we assume c2 to be neglectable. For similar reasons, we further
assume that the term δd is also negligible [11].

From the definition in (4), c1 is a function of the rotor
speeds. However, in practice, rotor speed feedback is not
always available from typical off-the-shelf motor speed con-
trollers. Hence, in [7], [8], [11], the function c1 is approxi-
mated as a fixed parameter by assuming that a multirotor is
in hover conditions. In the same manner, let us define ĉd as
the fixed nominal value of c1 and c̃d as the residue such that
c̃d = c1 − ĉd. The term c̃d can be caused by the rotor speed
variation or wrong parameter estimation of ĉd. Then, from (4),
first-order aerodynamic effects can be rewritten as:

fd = ĉdRπR
>ṗ+ c̃dRπR

>ṗ. (5)

Here, |c̃d| is bounded since its arguments, including ω and
ωm, are all bounded. Then, the final form of the dynamic
equation (1) becomes:

p̈ = −ge3 + γzb − ĉdRπR>ṗ− c̃dRπR>ṗ. (6)

C. Multirotor control with aerodynamic effect compensation

Let us assume that a reference trajectory for the differential
flat outputs [2] {pr(t), ψr(t)} is given. The terms pr(t) and
ψr(t) are the reference position and yaw angle trajectory,
respectively. Let ep = p− pr and ev = ṗ− ṗr be the position
and velocity errors. Then, the normalized thrust γ and desired
thrust direction zdb can be computed as follows [7], [17] :

p̈d = Ffb + ge3 + p̈r + ĉdṗ

zdb = p̈d/|p̈d| (7)

γ = (p̈d − ĉdṗ)>zb = (|p̈d|zdb − ĉdṗ)>zb

where Ffb = −Kpep −Kvev with the positive diagonal gain
matrice Kp and Kv .

Note 1. The control law in (7) is designed to compensate
the aerodynamic effects by including ĉdṗ term. However, if
we set ĉd = 0 and c̃d = c1, the control law is identical to the
geometric controller [4]. In this case, we do not compensate
the aerodynamic effects in the controller.

For further analysis, the dynamics in (1) are rewritten as

p̈ = −ge3 + γzb − ĉdRπR>ṗ− c̃dRπR>ṗ
= −ge3 + γzb − ĉdṗ+ ĉd(ṗ

>zb)zb − c̃dRπR>ṗ.

Then, by substituting p̈d, γ and zdb in (7), the error dynamics
can be derived as follows :

ëp = p̈− p̈r + p̈d − p̈d

= Ffb + (γ + ĉdṗ
>zb)zb − p̈d − c̃dRπR>ṗ

= Ffb + |p̈d|{(z>b zdb)zb − zdb} − c̃dRπR>ṗ
= −Kpep −Kvev + |p̈d|sΦu− c̃dRπR>ṗ (8)

where Φ is the angle error between the axes zb and zdb , and u
is the unit vector indicating the direction of (z>b zdb)zb − zdb so
that sΦu is equivalent to (z>b zdb)zb − zdb [4].

For the attitude dynamics in (2), we can compute the desired
attitude of the multirotor Rd by having ψr(t) and zdb in (7) [2].
Then, the angular rate ω can be commanded to make R follow
Rd by referring to [4], and the error term Φ can be bounded.
Hence, we assume that the following relation holds:

|sΦ| ≤ s̄Φ. (9)

The term s̄Φ refers the sine value of the maximum error bound
between the axes zb and zdb .

D. Stability analysis

As a first step, the error dynamics of a multirotor in (8) are
rewritten as:

ėp = ev
ėv = −Kpep −Kvev + |p̈d|sΦu− c̃dRπR>ṗ.

(10)

To analyze the stability of the error dynamics conveniently,
we assume that Kp = kpI3 and Kv = kvI3, with positive
scalar values kp and kv . Then, we define a Lyapunov candidate
function as V̄ = 1

2e
>P̄ e, where e = [e>p e>v ]> and

P̄ =

[
(kp + kv)I3 I3

I3 I3

]
.

The Lyapunov function is positive definite when kp + kv > 1.
The directional derivative of V̄ is:

˙̄V = −kpe>p ep − kve>v ev + e>v ev

+ (ep + ev)
>{−c̃dRπR>ṗ+ |p̈d|sΦu}. (11)

Then, with the term p̈d in (7), |c̃dRπR>ṗ| ≤ |c̃d||ṗr+ev|, and
the assumption in (9), the above relation is rearranged further
as:

˙̄V ≤ −ē>Q̄ē+ 2∆|ē| (12)
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where ē = [|ep| |ev|]>, ∆ = |c̃d||ṗr| + s̄Φ|ge3 + ĉdṗ
r + p̈r|,

and Q̄ = Q̄A + s̄ΦQ̄B + s̄ΦQ̄C with

Q̄A =

[
kp − 1

2 |c̃d|
− 1

2 |c̃d| kv − 1− |c̃d|

]
Q̄B =

[
−kp − 1

2 (kp + kv)
− 1

2 (kp + kv) −kv

]
Q̄C =

[
0 − 1

2 ĉd
− 1

2 ĉd −ĉd

]
.

By setting kv > 1 + |c̃d| and kp > |c̃d|2
4(kv−1−|c̃d|) ,

we can guarantee that the matrix Q̄A is positive defi-
nite. On the other hand, the matrices Q̄B and Q̄C can-
not be positive definite since det(Q̄B) = − 1

4 (kp − kv)2 ≤ 0
and det(Q̄C) = − 1

4 ĉ
2
d ≤ 0. However, even though Q̄B

and Q̄C are not positive definite, we can ensure that
the matrix Q̄ is positive definite with the condition
s̄Φ < −λmin(Q̄A)/(λmin(Q̄B) + λmin(Q̄C)). This can be eas-
ily achieved by suitably designing an attitude controller, such
that s̄Φ ≈ 0. Therefore, with the gain values kp and kv
fulfilling λ(Q̄) > 0, (12) becomes:

˙̄V ≤ −λmin(Q̄)|ē|2 + 2∆|ē|
≤ −λmin(Q̄)(1− θ)|ē|2 − λmin(Q̄)θ|ē|2 + 2∆|ē|

where 0 < θ < 1. Finally, we have:

˙̄V ≤ −λmin(Q̄)(1− θ)|ē|2, for |ē| ≥ 2∆

λmin(Q̄)θ
. (13)

Therefore, the error dynamics of the translational system of a
multirotor is uniformly ultimately bounded [18].

Note 2. In this analysis, we concluded that |ē| will
eventually enter into the ultimate bound, and the size of the
ultimate bound is proportional to ∆ which is

∆ = |c̃d||ṗr|+ s̄Φ|ge3 + ĉdṗ
r + p̈r|. (14)

The terms on the right-hand side can be identified
{ĉd, |c̃d|, s̄Φ} or directly available {ṗr, p̈r} so that we can
compute ∆ before flight.

III. COMPUTING FORWARD REACHABLE SET

In Sec. II, we studied the behavior of the error dynamic
system via Lyapunov stability analysis. However, from this
analysis, it is difficult to quantitatively know how the error
would evolve and get into the ultimate bound region. There-
fore, in this section, we numerically evaluate the evolution of
the error. First, we introduce the concept of Forward Reachable
Set (FRS). Then, we explain how to compute the FRS with
a fixed disturbance ∆ in (14). After that, we describe how to
concatenate them to find a FRS along with ∆ which is time
varying.

A. Background

In this work, the FRS refers to the possible set of position
and velocity errors that a multirotor can experience while
tracking a reference trajectory. Let F (t) ⊂ R6 represent the
FRS of the error e(t) ∈ R6 at time t ∈ [0, tf ] given the initial
set of error e(0) ∈ ξ0 and the closed-loop dynamics in (10).

In other words, the error e(0) in the set ξ0 will evolve inside
of the set F (t) for t ∈ [0, tf ] as:

e(0) ∈ ξ0 ⊂ F (0) ⇒ e(t) ∈ F (t), t ∈ [0, tf ]. (15)

This condition can be enforced by having two constraints.
The first one is related to the evolution of the error. Let
P (t) ∈ R6×6 be a time varying positive definite matrix,
V (t, e) = e(t)>P (t)e(t) a Lyapunov candidate function, and
α(t) be a positive scalar variable indicating the level of V (t, e).
Then, the FRS can be represented with P (t) and α(t) as :

F (t) = {e(t)|V (t, e) ≤ α(t)} (16)

with the V and α satisfying the following constraints :

V̇ (t, ê) < α̇(t) (17)
for ê(t) = {e(t)|V (t, e) = α(t), t ∈ [0, tf ]}.

From (17), the state e(t) ∈ F (t) cannot escape from the
sublevel set described by V (t, e) = α(t). Therefore, the FRS
can be described with P (t) and α(t).

The second constraint is related to the initial set of errors.
The initial set ξ0 should be a subset of F (0). To satisfy the
constraint, we define a positive definite matrix R0 satisfying
ξ0 = {e|e>R0e ≤ 1}. Then, the constraint can be written as
follows:

V (0, ê) ≤ α(0) for ê = {e|e>R0e ≤ 1}. (18)

B. Computing FRS with a fixed ∆

Since we are interested in computing the FRS having the
smallest volume as possible, we can formulate a problem
which optimizes P (t) and α(t) that minimize the volume of
F (t) for t ∈ [0, tf ] while satisfying (17) and (18).

To compute the FRS in (16), we define the Lyapunov
function such as V = e(t)>P (t)e(t) with the time varying
positive definite matrix:

P (t) =

[
Pp(t) Ppv(t)
Ppv(t) Pv(t)

]
(19)

where Pp(t), Ppv(t), Pv(t) ∈ R3×3 are diagonal matrices. By
substituting (10) in the Lyapunov candidate, its directional
time derivative can be rearranged as follows:

V̇ = −e>Qe+ 2e>PB(|p̈d|sΦu− c̃dRπR>ṗ) + e>Ṗ e (20)

where Q = −(A>P + PA), and

A =

[
033 I3
−Kp −Kv

]
, B =

[
033

I3

]
.

On the right hand side of (20), the second term is further
developed as:

e>PB(|p̈d|sΦu− c̃dRπR>ṗ)
≤ (ppv|ep|+ pv|ev|)(ηp|ep|+ ηv|ev|+ ∆)

where ppv , pv , kp, and kv are the maximum eigenvalues of
Ppv , Pv , Kp, and Kv , respectively. Also, ηp = s̄Φkp and
ηv = s̄Φ(kv + ĉd) + |c̃d|. The term ∆ is from (14).
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(a) The FRSs computed with ξs0 .
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(b) The FRSs computed with ξb0.
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Fig. 2: The FRSs computed with various values of ∆ and ξ0. For the coefficients, we set ĉd = 0.0 and |c̃d| = 0.35. The other
settings are available in Tab. I. Since we use same gain values for x, y, and z axes, the results are the same for all the axes.

We define two variables ēp, ēv ∈ R satisfying the following
constraints:

ē2
p = |ep|2, ēp ≥ 0, ē2

v = |ev|2, ēv ≥ 0.

Then, V̇ can be further developed as follows:

V̇ ≤ −e>Qe+ e>Ṗ e (21)
+ 2(ppv ēp + pv ēv)(ηpēp + ηv ēv + ∆).

Also, we introduce the positive definite matrix S(t) ∈ R6×6

to define an ellipsoid enclosing the set of error as:

ê>(t)S(t)ê(t) ≤ 1 for ê(t) = {e(t)|V (t, e) = α(t)}. (22)

Since the ellipsoid is constrained to enclose the set of errors,
we can minimize the volume of the FRS by minimizing
the volume of the ellipsoid. The volume of an ellipsoid is
monotonic with respect to −det(S(t)).

Hereinafter, we describe the optimization problem to com-
pute P (t) and α(t) minimizing the volume of F (t) using the
Lyapunov analysis in (21) with the constraints in (17), (18),
and (22). To deal with the problem more conveniently, we
discretize the variables P , α, S, ppv , and pv in time t. The
discretized time is denoted as tn (n = {0, · · · , N}). Then, we
set an optimization problem such as :

inf
P (tn),α(tn),S(tn),ppv(tn),pv(tn)

−
N∑
n=0

det(S(tn)) (23)

s.t. α̇(tn)− V̇ (tn) ≥ 0 for e, ēp, ēv satisfying c1 to c9,
1− e>S(tn)e ≥ 0 for e satisfying c9 and c10,
α(t0)− V (t0) ≥ 0 for e satisfying c11.

where

c1 : ē2
p = eTp ep, c2 : ēp ≥ 0

c3 : ē2
v = eTv ev, c4 : ēv ≥ 0

c5 : ppv(tn)I3 ≥ Ppv(tn), c6 : pv(tn)I3 ≥ Pv(tn)
c7 : ppv(tn)I3 ≥ −Ppv(tn), c8 : pv(tn)I3 ≥ −Pv(tn)
c9 : α(tn)− V (tn) = 0, c10 : S(tn) > 0

c11 : 1− e>R0e = 0.

The constraints c5 to c8 are added to ensure that ppv(tn) ≥
‖Ppv(tn)‖ and pv(tn) ≥ ‖Pv(tn)‖. The optimization prob-
lem (23) can be solved by referring to [16].

In the optimization problem settings, the input terms can be
categorized as: (i) multirotor system parameters {ĉd, |c̃d|, s̄Φ};

(ii) controller gain values {Kp,Kv}; (iii) user selected pa-
rameters {ξ0,∆}. The parameters in (i) and (ii) should be set
to match with multirotor properties. On the other hand, the
parameters in (iii) could vary in accordance with the initial
condition or the reference trajectory. Hence, we compute FRSs
with various values of ξ0 and ∆. Let ∆l (l = {1, · · · , L})
be the disturbance value which can be selected to range the
disturbance values of interest. For the initial condition ξ0, we
use two different settings to see how the set of error evolves to
ultimate bounds from both bigger and smaller regions. The two
initial conditions will be denoted as ξj0 with j = {b, s} where
b and s stand for bigger and smaller regions, respectively.

For each combination of input terms ∆l and
ξj0, we will denote the output of the optimization
as F jl = {F jl (t0), · · · , F jl (tN )} with the element
F jl (tn) = {e|e>P jl (tn)e ≤ αjl (tn)} by utilizing the
sub and superscripts used in the input terms. Then, the
outputs, which are computed with various settings of the
disturbances and initial condition values, can be quoted with
l, j, and n where n indicates the sequence number of tn.

We generated FRSs with the settings in Tab. I using MOSEK
with YALMIP [19]. The computed FRSs are displayed in
Fig. 2. The FRSs are projected to each coordinate for visu-
alization purposes. There are two notable characteristics from
the FRSs shown in Fig. 2. First, the final values that each FRS
converged to are proportional to the value of ∆l. Second, if the
disturbance ∆l is set to the same value, the FRSs converges to
the similar values regardless of the initial condition j. These
are the expected results from the analysis in (13) and Note 2.

Note 3. From Fig. 2, it is obvious that the FRSs, computed
with the setting in Tab. I, are fully converged at about 5 s.
The fully converged FRSs could be considered as the ultimate
bound mentioned in Note 2.

param value param value

Kp 10I3 [s-2] dt 0.05 [s]
Kv 6I3 [s-1] Rs

0 (ξs0) blockdiag(100I3, 25.0I3)

s̄Φ
0.052 [·]

Rb
0 (ξb0)

blockdiag(1.56I3, 0.39I3)
≈ sin 3◦ [m-2, m-2s2]

ĉd
(w) 0.3 [s−1] |c̃d|

(w) 0.05 [s−1]
(wo) 0.0 [s−1] (wo) 0.35 [s−1]

TABLE I: Parameters used for computing FRSs. The (w) and
(wo) represent that the parameters are chosen with and without
the aerodynamic compensation, respectively.
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Algorithm 1 Assigning FRSs along a reference trajectory

1: function CONCATENATE FRS
2: inputs ∆(t) in (24), ξ0, ∆l, and
3: Fl = {F bl , F sl } (l = {1, · · · , L})
4: find ∆l s.t. ∆l−1 < ∆̂ ≤ ∆l

5: where ∆̂ = max(∆(t)), ∀t ∈ [t0, t1]
6: l0 ← l
7: find F j

∗

l0
(n∗) = argminF j

l0
(n) Volume(F jl0(n))

8: s.t. F jl0(n) ∈ Fl0 , ξ0 ⊂ F
j
l0

(n)
9: n0 ← n∗, j0 ← j∗

10: for q ← 1 to Q− 1 do
11: find ∆l s.t. ∆l−1 < ∆̂ ≤ ∆l

12: where ∆̂ = max(∆(t)), ∀t ∈ [tq, tq+1]
13: lq ← l

14: find F j
∗

lq
(n∗) = argminF j

lq
(n) Volume(F jlq (n))

15: s.t. F jlq (n) ∈ Flq , F
jq−1

lq−1
(nq−1 + 1) ⊂ F jlq (n)

16: nq ← n∗, jq ← j∗

17: end for
18: return lq , jq , nq for q = {0, · · · , Q− 1}
19: end function

C. Concatenating FRS with respect to time varying ∆(t)

In Sec. III-B, we described a method to generate FRS
with a fixed disturbance value and an initial set of error.
However, the disturbance ∆(t) will keep varying with respect
to time in most of flight operation scenarios. Let us assume
that we use only one FRS computed with ∆l satistying
∆l−1 ≤ max(∆(t)) ≤ ∆l for t ∈ [0, tf ] to analyze the FRS
of a given reference trajectory. In this case, the computed FRS
would indicate that the set of errors will eventually converge
to the ultimate bound computed with ∆l. Then, the FRS will
be too conservative since the size of the ultimate bound is
proportional to the maximum norm of disturbance during the
entire flight duration.

Indeed, the FRS computed in the previous section describes
that the set of error ê(tn) = {e|e>P jl (n)e ≤ αjl (n)} will
evolve to ê(tn+1) = {e|e>P jl (n + 1)e ≤ αjl (n + 1)} during
the time interval dt under the disturbance ∆l. If the overall
flight time is descritized as tq (q = {0, · · · , Q}) using dt =
tn+1 − tn in (23), we can assign a disturbance value ∆l for
every time interval between tq and tq+1 using (14) as

∆(t) = |c̃d||ṗr(t)|+ s̄Φ|ge3 + ĉdṗ
r(t) + p̈r(t)|. (24)

Then, by concatenating the elements of FRSs along with
the ∆l assigned to every time interval dt, it is possible to
make FRSs more tight than using a single ∆l. Therefore, our
approach for generating FRS is assigning nq , jq , and lq for
all q = {0, · · · , Q− 1} to quote element F jqlq (nq) along with
the time varying ∆(t).

We explain how to concatenate the FRS elements F jl (n)
along with Alg. 1. First, we compute ∆(t) for a given
reference trajectory with (24). Also, we prepare Fl optimized
with various ∆l values ranging ∆(t). Furthermore, we guess
the set of error ξ0 that includes possible initial position and
velocity errors (lines 2-3).

Fig. 3: Concatenating FRSs with respect to ∆(t). In the upper
figure, we select lq for each time interval. Then, in the lower
figure, we select the smallest F jqlq (nq) s.t. F jqlq (nq) ∈ Flq and
F
jq−1

lq−1
(nq−1 + 1) ⊂ F jqlq (nq).

We start concatenating the FRS from q = 0. First, we find l0
indicating the disturbance for the time interval t ∈ [t0, t1] by
following the line 4 to 6. Then, among Fl0 , we find the element
which can include ξ0 as shown in line 7 to 9. For n0 and j0,
it is possible to assign any combination of n and j indicating
the elements of F̂l0 = {F jl0(n)|ξ0 ⊂ F jl0(n), F jl0(n) ∈ Fl0}.
However, since we are interested in finding FRS as tight as
possible, we choose n0 and j0 indicating the element of F̂l0
having smallest volume.

After that, we concatenate FRSs for q = {1, · · · , Q−1} by
repeating the following procedure. For t ∈ [tq, tq+1], we find
lq referring to line 11 to 13. Next, we search for the nq and jq
as explained in line 14 to 16. Here, the F jq−1

lq−1
(nq−1 +1) is the

replacement of ξ0 appeared at line 8. This is because the set
F
jq−1

lq−1
(nq−1) at tq−1 evolves to F jq−1

lq−1
(nq−1 + 1) at tq . Once

the loop is done, we have the tight FRS for the given reference
trajectory by referring lq , jq , and nq for q = {0, · · · , Q− 1}.
The concatenating procedures are illustrated in Fig. 3.

Note 4. To clearly deliver the proposed FRS computation
method, we summarize the overall procedure as follows:

1) Collect input values for solving (23).
2) Compute Fl = {F bl , F sl } for a range of ∆l values.
3) Compute ∆(t) by using (24) for a reference trajectory.
4) Concatenate the elements of Fl using Alg. 1.

Once new reference trajectories are designed, we can ef-
ficiently generate FRSs for them by computing ∆(t) and
concatenating the precomputed Fl.

IV. EXPERIMENTS

We conducted a number of experiments to validate the
proposed FRS computation method. The detailed experimental
setup, scenarios, and results are presented in this section.

A. Experimental setup

Our experimental platform is based on the DJI F330 frame.
We used Cobra CM2208 motors with 6045 propellers con-
trolled by DYS XSD30A ESCs. The desired thrust and the
rate commands of the multirotor are computed by a ground
control computer. The multirotor states are estimated using
an OptiTrack motion-capture system, and the estimates are
used to compute the commands. The commands are sent to an
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Fig. 4: The identifcation result for c1 = ĉd + c̃d.

onboard computer (UP-board), which transmits the signal to
a Lumenier F4 AIO flight controller responsible for bodyrates
control. The detailed software and hardware informations are
public at https://github.com/uzh-rpg/rpg quadrotor control.

In the FRS computation, we used ∆l for every 0.1 m s−2

from 0.5 to 2.5 m s−2. The rest of settings are in Tab. I.

B. Parameter identification for computing FRSs

We run a system identification based on [13] to find ĉd, |c̃d|,
and s̄Φ. We flew the multirotor along circular trajectories while
varying the reference speed from 1.0 to 5.0 m s−1. For each
0.5 m s−1 interval, we collected data and estimated c1 in (4).
Fig. 4 shows that c1 tends to become larger with respect to the
flight speed. It is because the rotors speed increases with the
multirotor speed in the circular trajectory. Since the parameter
varies approximately from 0.25 s−1 to 0.35 s−1, we set the
coefficients ĉd and |c̃d| as in Tab. I. Also, during the entire
flight, the maximum error between zb and zdb in (7) is observed
as 3 deg. Therefore, we set s̄Φ = sin 3◦.

C. Experimental scenario

We designed two different experimental scenarios to con-
duct a quantitative analysis on the computed FRS. The first
one is to show the quality of the ultimate bound, which is
mentioned in Note 3, computed from FRS. The second one
is to evaluate the quality of the concatenated FRSs computed
by referring to Alg. 1. In both experiments, we compute FRSs
with and without aerodynamic effects compensation (Note 1),
and compare them with the measured tracking errors.
Scenario 1 : The goal of the first experimental scenario is
to compare the measured position error with the ultimate
bound. To achieve the goal, we make the multirotor fly along
a circular trajectory while ramping up the speed. The diameter
of the circle was set to 5 m and the speed was gradually
increased up to 5 m s−1 during 50 s. Since we increase the
velocity very slowly, the predicted disturbance from (24) also
changes slowly so that we can assume the multirotor to be
under quasi-static disturbance. According to the definition of

0 1 2 3 4
0

1

2

Fig. 5: The disturbance computed using (24). The solid and
dotted lines represent ∆(t) histories with and without the
aerodynamic compensation, respectively.

the ultimate bound, if the error started evolving inside of the
ultimate bound, it cannot escape from it. Therefore, we start
the position and velocity error of the multirotor from very
small region and see whether the error stays inside of the
ultimate bound during the entire flight.
Scenario 2 : To show the quality of the FRS computed by
concatenating its elements, we generate a reference trajectory
that rapidly alters ∆(t) in (24) with respect to time. The
reference trajectory is generated as in Fig. 7 to minimize
the snap of the trajectory [3] while connecting a series of
waypoints (0, 0), (3, 1.5), (4.5, 0), (3, -1.5), and (0, 0). Here,
the overall flight duration is set to 4 s. Also, the maximum
and average speed of the trajectory are about 4.5 m s−1 and
3.2 m s−1, respectively. The computed disturbance profiles
with and without the aerodynamic compensation are described
in Fig. 5. To report concrete experimental results, we fly the
multirotor fifty times along the reference trajectory.

D. Experimental results and discussion

Scenario 1 : In Fig. 6, the ultimate bounds and the position
errors are described. The ultimate bound for continuously
varying ∆(t) is generated by interpolating the fully converged
set of FRS computed with various ∆l values as mentioned in
Note 3.

Here, there are two notable aspects. First, when the ref-
erence speed is small (|ṗr| ≤ 1 m s−1), the position errors
are comparably small in both cases. However, as we increase
the reference speed, the position errors rapidly become larger
if the aerodynamic effects are not compensated. This is not
surprising, since the aerodynamic effects linearly depend on
the velocity of the multirotor. Second, the position errors do
not escape from the computed ultimate bounds. As we speed
up, the position errors increase together with the size of the
ultimate bound in both cases. From this tendency, it is possible
to say that the computed FRSs well encircle the position errors.
Scenario 2 : In Fig. 7, we show FRSs located along the refer-
ence trajectory. Also, the position trajectories measured during
fifty runs are represented. From the figure, it is clearly shown
that the measured trajectories always evolved inside of the
computed FRSs in both conditions. The detailed comparison
between the tracking error and the FRSs are shown in Fig. 8.
In the figure, together with the evolution of the errors, we can
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w/o compensation
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0.3
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1
2
3
4
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w/ compensation

0 1 2 3 4
0
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Fig. 6: The FRSs are described with the grey shaded region.
The measured errors are represented with the black dots. The
velocity profile is shown with the blue-dotted line.

https://github.com/uzh-rpg/rpg_quadrotor_control
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Fig. 7: The FRSs (shaded ellipsoid) are located for every 0.05 s
around the reference trajecotry (blue line). The measured
positions from fifty runs are described with black lines.

0 1 2 3 4
0

0.5 w/ compensation

0 1 2 3 4
0

0.5 w/o compensation

Fig. 8: The FRSs (grey shaded region) and position error
histories of the fifty trials (black dots) are described.

see the evolution of the FRSs concatenated with respect to the
disturbance described in Fig. 5. In both cases, the volume of
the FRSs becomes larger along with the disturbance (shown in
Fig. 5) until 3 s. After that, the volume starts shrinking as like
the disturbance. If we do not perform concatenation, the FRS
will increase and converge to the ultimate bound computed
with the maximum disturbance |∆(t)|. Therfore, the computed
FRSs will be too conservative. However, by concatenating the
FRSs, we can make the volume of FRSs follow the tendency
of the disturbance while surrounding errors.

In both scenarios, the position errors were much bigger if we
did not perform aerodynamic effects compensation, especially
during high speed and agile flight. By comparing the FRSs
and the errors measured with two different controllers, we
can say that compensating aerodynamic effects should be
considered to design a high performance trajectory tracking
controller for multirotors. Furthermore, in Figs. 6 and 8, the
trend of the errors matches with the evolution of the FRSs
which are computed with the disturbance caused by first-order
aerodynamic effects. By exploiting the known, but overlooked,
aerodynamic model, we could compute less conservative FRSs
than using a heuristically determined constant disturbance.
From this consideration, we can conclude that the proposed
FRS computation method for multirotors can be practically
utilized in trajectory generation process for guaranting safe
navigation in the proximity of clutter.

V. CONCLUSIONS

In this work, we proposed a method to generate forward
reachable sets for multirotors in order to utilize them as a tool
for verifying safety of given reference trajectories. Our study
takes into account that first-order aerodynamic effects are not
negligible when a multirotor is required to fly at high-speed.
Using our approach, it is possible to predict the consequences
of such effects on the closed-loop behaviour of a multirotor,
and verify whether there might be collisions or, on the con-
trary, whether the trajectory is safe. Since planning obstacle-
free trajectories for a robot does not guarantee that it will
not experience collisions, this study provides crucial results to
guarantee obstacle avoidance in cluttered environments.
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