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Active Autonomous Aerial Exploration for Ground
Robot Path Planning

Jeffrey Delmerico, Elias Mueggler, Julia Nitsch and Davide Scaramuzza

Abstract—We address the problem of planning a path for a
ground robot through unknown terrain, using observations from
a flying robot. In search and rescue missions, which are our target
scenarios, the time from arrival at the disaster site to the delivery
of aid is critically important. Previous works required exhaustive
exploration before path planning, which is time-consuming but
eventually leads to an optimal path for the ground robot. Instead,
we propose active exploration of the environment, where the
flying robot chooses regions to map in a way that optimizes
the overall response time of the system, which is the combined
time for the air and ground robots to execute their missions.
In our approach, we estimate terrain classes throughout our
terrain map, and we also add elevation information in areas
where the active exploration algorithm has chosen to perform
3D reconstruction. This terrain information is used to estimate
feasible and efficient paths for the ground robot. By exploring
the environment actively, we achieve superior response times
compared to both exhaustive and greedy exploration strategies.
We demonstrate the performance and capabilities of the proposed
system in simulated and real-world outdoor experiments. To the
best of our knowledge, this is the first work to address ground
robot path planning using active aerial exploration.

Index Terms—Search and Rescue Robots, Motion and Path
Planning, Visual-Based Navigation

SUPPLEMENTARY MATERIAL

This paper is accompanied by a video illustrating the
approach, available at: https://youtu.be/s2v6TICaukQ.

I. INTRODUCTION

IN disaster environments or search and rescue scenarios,
time is a critical factor in the success of the first respon-

ders [1]. These are also scenarios where those same rescue
personnel must often put themselves in dangerous situations in
order to provide aid. Unmanned systems have the possibility to
provide new capabilities for these operators, as well as increase
their safety and decrease the response time in delivering that
aid. However, one challenge for these scenarios is that the
environment may have been altered by the disaster (e.g., an
earthquake or a mudslide), potentially invalidating any prior
information about the environment, such as maps from aerial
surveys or satellite imagery. Consequently, robotic systems

Manuscript received: September, 9, 2016; Revised November, 25, 2016;
Accepted December, 24, 2016.

This paper was recommended for publication by Editor Wan Kyun Chung
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the National Centre of Competence in Research Robotics
(NCCR) through the Swiss National Science Foundation.

The authors are with the Robotics and Perception Group, University of
Zurich, Switzerland—http://rpg.ifi.uzh.ch.

Digital Object Identifier xxxxxxxxxxxxxxxxxxx

(a) Terrain Map

(b) System Overview

Fig. 1: Overview of the proposed system. Fig. 1a shows
a diagram illustrating our intended terrain map output. It
includes the elevation information, terrain classification, and
the path found for the ground robot. Fig. 1b shows the
workflow of the collaborative team.

that can benefit first responders must be capable of gathering
and using data on demand, without reliance on a priori maps.

The approach proposed here is motivated by the need to
deliver a fast unmanned response in a previously unexplored
environment using a collaborative robot team. We address
the problem of exploration of an unknown environment by
a flying robot using its onboard sensors from an overhead
perspective. Initially, we classify the ground surface using a
classifier that is trained “on-the-spot” for the terrain types
that are present. We then actively explore the environment by
iteratively reconstructing segments of the map in 3D, in order
to guide the ground robot over only traversable terrain. To
minimize the overall response time from system deployment
to delivery of aid, this exploration seeks to minimize both
the estimated travel time for the ground vehicle and the time
required to explore the map from above.

Our system operates in three stages, illustrated in Fig. 1.
During all stages of operation, the micro aerial vehicle (MAV)
operates fully autonomously or in vision-assisted flight (sta-
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bilized and controlled using visual odometry), due to the
importance of reducing the attentional load and stress level
of the operator by providing autonomous assistance [1].

1) Initial operation involves a human operator flying in
vision-assisted mode, commanding the MAV to search
for a goal location for the ground robot (e.g. a victim).
During this phase, 3D reconstruction of the environment
does not take place because the MAV flies too high for
precise reconstruction. However, camera imagery from
the MAV is used to obtain an initial classification of the
terrain for regions that the MAV flies over, while the
operator searches for a goal.

2) Once the goal is found, the MAV engages in autonomous
vision-guided flight to a series of waypoints (3D posi-
tions that the MAV should fly to, beginning with the start
location) that are chosen actively. For each waypoint, 3D
reconstruction and ground robot path planning are com-
puted, and the next waypoint is chosen to minimize the
estimated response time for the full system (combined
aerial exploration and ground path traversal time).

3) Stage 2 repeats until a feasible path is completely
explored, and then the ground robot executes that path.

Our proposed system accomplishes these tasks by perform-
ing onboard visual odometry for localization and navigation,
while mapping the terrain with monocular 3D reconstruction
from low altitude in order to provide a precise elevation map.
We obtain the terrain class labels in our map through patchwise
image classification on the MAV’s image stream. Our classifier
is trained “on-the-spot” by collecting data and training in
flight, in approximately one minute [2]. This allows us to adapt
our classification to the terrain that is present in the search
and rescue environment, without relying on a priori maps or
classifiers. These components provide the elevation and terrain
classification inputs to our active exploration algorithm. Their
implementations and motivations are described in more detail
in Section III.

We validate the performance of our active exploration ap-
proach in extensive simulated experiments (see Sec. V-A) and
demonstrate our collaborative system in field experiments (see
Sec. V-B). We achieve faster response times when compared
to both greedy and exhaustive exploration.

A. Contributions

We make the following contributions:
• An active exploration planner that builds a terrain map

from an MAV and plans a path for a ground robot.
• A collaborative system that improves the response time

of a ground robot delivering aid in an unknown search
and rescue environment. It utilizes the active, autonomous
exploration planner for the MAV, as well as human-in-
the-loop control for other components.

II. RELATED WORK

Other works have combined the capabilities of air and
ground robots to perform path planning through a terrain map.
An unmanned helicopter is used in [3] to gather multimodal

aerial data, which is used to create an a priori terrain clas-
sification map. This classified map is used for path planning
with the intention of allowing a ground robot to navigate the
computed path. Like our proposed system, they utilize the D*
algorithm [4] for planning, but unlike our approach there is
no active interaction between the flying robot and the path
planner, and the map is exhaustively explored before the path
is computed.

Terrain classification for ground vehicle navigation has
previously been studied where ground-level data, aerial data,
or a combination have been integrated into a traversability
map, but without a collaborative robot team. In [5], the authors
utilize high altitude aerial imagery, publicly available contour
maps, and 3D point clouds from aerial LiDAR surveys. These
overhead data are combined with the output of laser and
camera sensors onboard a ground robot in a single cost map
to enable long-distance path planning and replanning through
challenging outdoor terrain. This system requires data from
airplane flyovers, which may not be available or may no longer
be accurate in a search and rescue or disaster scenario.

In [6], a flying robot was equipped with an RGB camera
and used for patchwise terrain classification. Various pictures
were taken between 1m and 5m altitude and the performance
of different features was evaluated using a Random Forest
for classification. Unlike our approach, however, the classified
patches were not further used for ground robot guidance.

High altitude, high resolution aerial images are frequently
used to perform terrain classification [7], [8], [9]. However,
none of these approaches consider ground robot guidance or
path planning, and do not operate using active vision.

A combination of high resolution grayscale and multi-
spectral information is used in [10] to perform a pixelwise
classification and 3D reconstruction using a Support Vector
Machine for classification. As a postprocessing step, elevation
information from the reconstruction is used to refine some
classes. While this approach is similar to ours, in that the
authors seek to reconstruct both the 3D surface and terrain
classes, they utilize high-altitude aerial imagery that was
captured a priori and passively, rather than actively. Our
motivation for an active approach is that emergency response
personnel cannot rely on a priori data that is no longer valid
following a disaster.

To determine feasible and efficient paths for the ground
robot, we must estimate both the terrain topology and terrain
class. Thus, we leverage tools for 3D reconstruction [11] and
terrain classification [2]. The latter was specifically designed
to be trained rapidly and “on-the-spot”.

Unlike existing methods, we propose an active approach for
terrain mapping to guide a ground robot in a search and rescue
scenario, and we demonstrate superior performance to passive
approaches that do not explicitly consider the overall response
time of the system. To the best of our knowledge, this is the
first work to use active exploration by a flying robot to guide
a ground robot through terrain.

III. TERRAIN MAPPING

Our robot team consists of a lightweight MAV and an
all-terrain ground vehicle. Our MAV is equipped with a
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downward-looking camera, and flies in autonomous and
vision-assisted manual flight modes using onboard visual
odometry [12], [13]. The images from this camera are ad-
ditionally used for terrain classification (Sec. III-A) and ele-
vation mapping (Sec. III-B). We use both the estimated terrain
class and elevation to determine traversable paths in the map,
and estimate their costs in terms of response time. The ground
robot in our system is a rugged tracked vehicle that is capable
of driving on a variety of different terrain types and climbing
both moderate grades and low obstacles. More information
about the robots in our team can be found in Section V-B.

We represent the scenario environment as a discretized,
rectangular 2D map of size L×W meters, made up of discrete
square cells of size r×r meters, containing start (ys) and goal
(yg) locations for the ground robot. For each cell in the map,
we record terrain class probabilities, and elevation information
if the cell has been mapped during 3D reconstruction. We
store these different quantities as layers in a Grid Map data
structure [14]. In principle, the map could be dynamically
allocated as our robot explores, but within the scope of this
paper we use a fixed size that is sufficiently large for our
environment and contains the start and goal.

Some existing works that combine semantic classification
with 3D mapping utilize other map types. In [15] the envi-
ronment is decomposed into cubes for classification, but their
map representation is actually a 2D grid of these cubes, so ulti-
mately their map contains elevations as a point cloud contained
within each cube. While in [16], the authors use forward-
facing, ground-level stereo imagery to generate semantically
labeled dense 3D maps.

However, we chose a 2.5D elevation map as the most
appropriate representation for our task, as it facilitates the use
of the D* algorithm in finding paths for the ground robot. It
also allows us to represent the elevation of the terrain, since
only the top surface of the ground and obstacles are visible
from an overhead perspective. A full 3D representation would
be unnecessary, since we are unable to observe the sides of
any vertical obstacles in the scene as a ground vehicle could.
Additionally, our scenario contains an initial phase in which
we search for a goal, but do not yet perform 3D reconstruction.
We can still leverage the appearance information in our camera
images to classify the terrain of any map cells that we fly over
during this search.

A. Terrain Classification

We consider the scenario where no map, and no information
about the terrain classes, is available a priori. Therefore, our
terrain classifier must be trained when the robot system is
deployed. In [2], we developed an “on-the-spot” classifier
training approach where an operator launches the MAV and
labels a few regions of interest on the live image stream from
the MAV’s downward-looking camera.1 With these few labeled
regions, many training patches are collected by projecting
subsequent images to the map and cropping patches that fall
on the previously labeled areas. A feature-based classifier can

1A video illustrating our rapid training procedure can be found at: https:
//youtu.be/yVyyhQch6bI.

Fig. 2: Classification results on example images from our
field experiments, using a classifier trained “on-the-spot”.
Accumulated probability estimates in our map are projected
to the input image, with color representing the class and
confidence. Green corresponds to grass, blue to water, yellow
to concrete/rock, and gray to pavement.

be trained in flight, requiring only 60 seconds from launch
to begin generating semantic labels for the terrain. We are
also able to train a convolutional neural network (CNN)
based classifier within 10-15 minutes using the same training
data collection procedure. This provides better performance if
additional time for training is available.

In the work proposed here, we utilize the procedure that we
previously developed in [2] when training the classifiers for
our system. In the experiments of Sec. V-B, we use a CNN
classifier (see Fig. 2 for examples of the classifier output).
After training, we begin to survey the environment as we
would in a mission scenario. Patches are sampled from the
image stream, classified, and then projected to the terrain map.
The probabilistic output of the classifier is accumulated for
each cell in the map, and averaged over all of the classified
patches that have projected to that cell. The most probable
class is then used to represent the terrain for each cell.

B. Elevation Mapping

We generate elevation measurements using monocular dense
reconstruction, whereby a sequence of images is used to
triangulate common 3D points. These images are collected
with the camera on our MAV when it flies over a region of the
map that is chosen for reconstruction. The 3D reconstruction is
computed using REMODE [11]. During exploration, the MAV
flies at a known elevation, so we assume an approximately
constant field of view of the ground surface. Consequently, we
obtain an approximately rectangular patch of elevation data for
each waypoint visited by the MAV.

IV. EXPLORATION

Within the map structure defined in Section III, we represent
the cost of passing from a cell to its neighbor in terms of
traversal time. In particular, we compute the time cost of
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traversing from cell xi to cell xj based on terrain type and
local gradient:

Ti,j =
dist(xi, xj)

v(xi, xj)
(1)

where dist(xi, xj) is the euclidean distance between the cen-
ters of the cells, and v(xi, xj) is the velocity that the ground
robot can drive while traversing this terrain. This function is
defined based on the terrain class (Ci) of the current cell and
the elevation gradient between the two cells:

v(xi, xj) = VCi
(1− L(grad(xi, xj))) (2)

where VCi
is the speed of the ground robot over a level surface

of class Ci, grad(xi, xj) is the gradient (slope) determined
from the elevation change between the two cells. We propose
a function L(x) as a logistic curve that interpolates between
VCi

for level ground, and the minimum speed (Vmin) that
the ground robot can travel continuously for its maximum
traversable gradient (gradmax).

L(x) =
Vratio

1 + exp(−k(x− x0))
(3)

Here Vratio = Vmin/VCi
, k is a free shape parameter that

controls the steepness of the logistic curve, and x0 = gradmax

is the midpoint of the curve. This logistic function captures the
real-world behavior of many ground robots. With small slopes,
the speed is minimally affected, but when the incline becomes
larger, the operator must take greater care. When climbing
inclined surfaces that approach the robot’s mechanical limits,
the speed will approach zero.

We define a feasible path as a sequence of adjacent cells
{X = x0, . . . , xN} such that x0 = xs, xN = xg , xi+1 is
adjacent to xi in an 8-connected neighborhood ∀xi, and the
sum of the costs of the cells along that path is finite. We
require that elevation data be available for all of the cells along
the path, in order to avoid non-traversable discontinuities that
would make the path infeasible.

Based on the field of view of the MAV’s onboard camera,
we discretize the map into potential waypoints for the MAV
to visit in order to perform 3D reconstruction there. Each
waypoint is centered on a patch of size l × w meters. One
waypoint is located above xs, and the remaining map is
decomposed into a non-overlapping grid of these patches (see
Fig. 3).

The problem of efficiently finding a feasible path for a
ground robot using observation from a flying robot is partially
one of minimizing the number of waypoints visited, and
therefore the MAV flight time. In particular, we consider this
problem as one of minimizing overall response time, which
is the sum of the MAV exploration time Tmav and the path
traversal time of the ground robot Tgr. We propose a novel
exploration strategy that specifically minimizes this response
time in its iterative selection of waypoints, and we compare
to several alternative strategies in order to demonstrate its
superior performance.

We make the following design choices about our approach
to the exploration and mapping task:
• The size of the environment to be explored is known, and

the start and goal locations are contained within it.

• The first visited waypoint is always the one centered over
xs, and only waypoints that are adjacent to previously
explored areas are considered at each iteration of the
planner. We restrict to these candidates in order to guaran-
tee that our explored area is contiguous by incrementally
extending it.

• Consider one map state, where for each map cell, class
labels are known with some uncertainty, and elevation
information may or may not be available. Using a modi-
fied version of the D* algorithm [4], we can compute the
cost to reach the goal from any cell in the map using the
available information, and therefore construct the optimal
path through the current map.

The D* algorithm constructs optimal paths on a discretized
map of cells representing possible states for a mobile robot.
These states are modeled as nodes in a graph, connected with
edges to each of their eight neighbors. The edges have weights
associated to them that represent the cost of traversing from
one cell to the other. In our system, we define these costs to be
the estimated time required to move the ground robot to the
neighboring state. With a known robot motion model, these
costs can be estimated accurately for different terrain types
and inclinations.

The D* algorithm permits updates to these costs, such as
when new sensor data is obtained, and will dynamically re-
compute the optimal path. Normally, D* is used for a robot
that re-plans its path as it moves and encounters new obstacles
sensed with its onboard sensors. In that case, updates must be
processed only until they will no longer improve the cost-to-
goal from the robot’s current position. Our mapping scenario
motivates a slight modification, since our ground robot is
not following the path as we update it, and we instead want
to process updates to the map so that the changes to paths
propagate fully in the map. In the terminology of [4], at each
update we run the PROCESS STATE algorithm until the
OPEN list is empty. With this modification, we compute the
path and cost-to-goal for every cell in the map, given the state
of the map after each update. It should be noted that we can
not guarantee the global optimality of the response time, since
the elevation in the full map would need to be known a priori.
However, given a particular map state, and start and end cells
within it, the D* algorithm does guarantee an optimal path
between them.

A. Exhaustive Exploration
The naive way to approach the task of finding a feasible

path would be to first perform exhaustive mapping of every
waypoint in the map by flying a lawnmower pattern over the
full environment. Given complete elevation and terrain class
estimates, the flying robot could then compute the optimal
path for the ground robot. While this approach would produce
the optimal path, in terms of traversal time for the ground
robot, the exploration time necessary for the MAV to map the
full environment would be too large to justify the search for
global optimality. The total response time for both exhaustive
mapping and ground robot deployment is denoted TEx. We
have described this strategy here as a baseline to motivate our
active approach.



DELMERICO et al.: ACTIVE AUTONOMOUS AERIAL EXPLORATION FOR GROUND ROBOT PATH PLANNING 5

(a) D* step 1 (b) Response Time step 1

(c) D* step 2 (d) Response Time step 2

(e) D* step 3 (f) Response Time step 3

Fig. 3: This sequence of diagrams illustrates several steps of
the D* and Response Time planners. In this simple environ-
ment, with a uniform terrain class and a large rectangular
obstacle in the middle (dark gray), the MAV is exploring
from the start location (green dot) to the goal location (red
dot). The grid represents the coarse set of waypoints/dense
reconstruction patches. The finer grid of cells in the elevation
map are not shown. The explored patches are in red, and the
patch chosen for the next step is in blue. The D* planner
(left column) oscillates between following the obstacle to
the left and then to the right. The Response Time planner
(right column) evaluates multiple candidate paths (one for each
boundary segment, but only two shown here for simplicity)
to compute an estimate of the remaining time to explore that
path. In this case, continuing to follow the yellow path requires
exploring an extra patch. But the time required for the MAV
to fly from the current location to the next waypoint along the
green path would make its total response time greater, so it
continues exploring the yellow path.

B. D* Path Exploration

A more efficient strategy utilizes a greedy approach to
exploration, where the waypoint that is chosen for exploration
at each iteration is the one that follows the current D* optimal
path from ys to yg . In particular, this strategy extends the
explored area by following the optimal path to the boundary of
the previously explored waypoints and chooses the waypoint
on the unexplored side of that boundary segment. This strategy
is presented as another performance reference. Although the

greedy approach will eventually produce the same optimal path
as in the exhaustive search, it does not consider the flight time
of the MAV in its choice. This can result in visiting many
unnecessary waypoints when the D* optimal path changes due
to new information in the map. See Fig. 3 for an example of
this behavior. We denote as TD∗ the total response time using
this exploration strategy.

C. Response Time Minimized Path Exploration

Our proposed exploration strategy utilizes an exhaustive
search over candidate paths in order to explicitly minimize the
total response time of the system, not just the path cost. More
concretely, we consider the set B of boundary line segments
that separate the explored region from the unexplored region.
For each bi ∈ B, we find the lowest cost path that exits the
explored area through this segment, at cell xbi . This path is
a sequence of states in the map {Xi|xbi ∈ X}, such that
a sequence of waypoints {Wi} would extend the contiguous
explored region from xs to xg along {Xi}. For each cell on
b, extending the explored area by mapping the waypoint on
the unexplored side of b would require the same flight time
(i.e. cost) to explore, so we only consider the best path through
each bi. The boundary segment whose corresponding waypoint
is chosen next for exploration is the one that minimizes:

bnext = argmin
bi∈B

Txs,xbi
+ Txbi

,xg
+

∑
wj∈{Wi}

Twj−1,wj
(4)

where Txs,xbi
represents the estimated time for the ground

robot to reach xbi from xs, Txbi
,xg is the estimated time for

the ground robot to reach xg from xbi , and each Twj−1,wj is
the time necessary for the flying robot to reach waypoint j
from waypoint j−1 plus the time to capture elevation data at
waypoint j. This expression is the sum of the time remaining
to map a candidate path plus the time required to drive
that path with the ground robot. By minimizing this quantity
over all candidate paths that cross our known boundary, we
select the next waypoint as the one that minimizes the overall
response time for the ground robot to reach its goal. We call
this combined aerial robot exploration and ground robot path
following time TRT for the Response Time planner.

V. EXPERIMENTAL RESULTS

We conducted simulated experiments to assess the quantita-
tive performance of our Response Time planner with respect to
the reference D* and Exhaustive approaches. We also executed
several real-world experiments to demonstrate the performance
of our approach in mock search and rescue scenarios.

A. Simulated Experiments

We designed several scenarios in which to test the ex-
ploration planners described in Section IV. Each scenario
is a 30m × 40m map with large, untraversable obstacles
in different arrangements. The rest of each map has level
elevation that is corrupted with zero-mean Gaussian noise with
a standard deviation of 3 cm. Several terrain classes are defined
in blobs that cover approximately one third of the map each:
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(a) block map (b) stones map

(c) dead end map (d) Terrain class labels

Fig. 4: Simulated experiment scenario maps. For each map,
the black areas are untraversable obstacles and the rest of the
map has level but noisy elevation. Fig. 4d shows the terrain
classes used for all of the maps. Yellow represents concrete,
green represents grass, and gray represents gravel.

concrete, gravel, and grass. The maps, named block, stones,
and dead end, along with the terrain class arrangement are
shown in Fig. 4.

In both our real and simulated experiments, the maps are
discretized to a cell resolution of 0.1m, which was chosen as
a reasonable granularity for our robot size (∼ 40 cm×80 cm)
and the resolution of our camera imagery from mapping height
(2−3m). Our waypoints are spaced such that our map patches
are of size 2.0m × 1.5m, which is slightly smaller than the
field of view of our depth maps from mapping altitude, in order
to ensure continuity in our elevation map. The base speeds
associated to each terrain class were Vconcrete = 0.5m/s,
Vgrass = 0.25m/s, and Vgravel = 0.33m/s. The MAV
speed between waypoints is set to 0.6m/s, and the time to
compute elevation at a chosen waypoint is fixed at 10.0 s.
These parameters are all set empirically from the real-world
performance of our MAV and ground robot during operation.

For each map, 100 trials were performed, where for each
trial we randomly generated a start position and a goal posi-
tion, and then ran both the D* and Response Time exploration
planners. Initially, the robot’s terrain map begins with only the
terrain class label for each cell, but no elevation information.
Beginning with the waypoint over the start location, we
add that waypoint’s rectangular patch of elevation from the
corresponding map in Fig. 4 to the robot’s terrain map. This
approach to simulating the elevation assumes that the 3D
reconstruction is perfect and converges for all pixels in the
reference image. Clearly this is not the case in field scenarios,
but these experiments are intended to evaluate the choices
made by the exploration planners, and not the system as a
whole.

Since each trial has a different path length, resulting in
a wide range in the magnitude of the response times, we
compute the speedup of the Response Time planner over the
D* planner (S = TD∗

TRT
) and exhaustive exploration (S = TEx

TRT
),

TABLE I: Average Speedup of Response Time Exploration
Planner w.r.t Greedy (D*) and Exhaustive Strategies

Map Name Block Stones Dead End

Speedup: RT to D* TD∗
TRT

1.24 1.189 1.275

Speedup: RT to Exhaustive TEx
TRT

10.15 9.00 7.58

which is unitless and allows direct comparison of trials with
different start and goal locations (see Table I).

B. Field Experiments

We successfully tested our systems in two outdoor scenar-
ios, which we name driveway and canyon, using a quadrotor
MAV and a ground robot. We chose these scenarios in order to
demonstrate the main capabilities of our system. In particular,
while the driveway scenario has little elevation change, it
serves as a proof of concept. The canyon scenario, however,
consists of a culvert and creek, with an elevation difference
between the water level and the top of the culvert of almost
2m. The purpose of this testing environment was to verify that
our path planner could avoid untraversable terrain classes and
handle significant elevation changes.

The stages of operation are as described in Section I and
visualized in Fig. 1b. In both scenarios, the terrain classes were
pavement, concrete, grass, and water. The base speeds used
for path planning are the same as in our simulated experiments,
with the addition of the pavement class, where Vpavement =
0.5m/s. Unlike the other classes, with empirically-determined
velocities in Sec. V-A, we mark all cells that are classified as
water as impassable, since our robot cannot traverse it. We first
describe the deployed robots and then detail the two scenarios
and achieved results.

1) Robot Description: The MAV, a custom built quadrotor
based on off-the-shelf components (see Fig. 6a), is equipped
with a downward-looking camera, an inertial measurement
unit (IMU), and an onboard computer. Our state estimation
and control pipeline integrates pose estimates from the visual
odometry algorithm SVO [13] with accelerometer and gyro-
scope measurements from the IMU to stabilize itself [12]. All
computations necessary for autonomous flight are performed
on the single board computer (an Odroid U3) onboard the
MAV, but a subset of the images is streamed to a laptop
computer that runs both the terrain classification and dense
3D reconstruction. Our exploration algorithm also runs on this
computer and sends waypoints to the quadrotor.

The ground robot is an “Absolem” from Bluebotics (see
Fig. 6b) that is capable of driving over rough terrain. Dur-
ing the experiments, it was remote-controlled to follow the
computed path. We must note here that while a flying robot
with an onboard camera and a somewhat rugged ground robot
are assumed for our proposed system, the particular vehicles
used in our experiments are not in any way definitive, and
each could be replaced with any platform having similar basic
capabilities.

2) Driveway Experiment: The first scenario (see Fig. 7a)
demonstrates the system’s capability to distinguish different
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(a) Speedup on block map. (b) Speedup on stones map. (c) Speedup on dead end map.

Fig. 5: Quantitative results of the simulated experiments. For each map, 100 trials were run with randomized start and goal
locations. The D* and Response Time planners were executed for each set of start and goal locations, and the ratio of their
overall response times computed (speedup factor). The individual trials (dots), mean speedup (green line), and ±1 standard
deviation (light green band) are shown. The red line represents no improvement with respect to the D* planner, and the blue
line represents no improvement with respect to exhaustive exploration.

(a) Quadrotor (b) Ground Robot

Fig. 6: A closeup of our quadrotor (left): 1) down-looking
camera, 2) Odroid U3 quad-core computer, 3) PIXHAWK
autopilot. At right is the ground robot, a Bluebotics Absolem.

terrains: although a straight line path through the grass might
seem faster (and is feasible for the ground robot), it is
beneficial to stay on concrete since the ground robot can drive
twice as fast on a hard surface. Fig. 7b shows the classification
result after vision-assisted manual flight and Fig. 7c shows the
final result. When driving the path with the ground robot, we
found that the path on concrete is in fact 50% faster than the
straight path over grass.

3) Canyon Experiment: The second, more challenging sce-
nario (see Fig. 8a) includes steep terrain and water, which
cannot be traversed by the ground robot. The terrain classi-
fication safely distinguished pavement, grass, concrete, and
water, leading to a feasible path for the ground robot (see
Fig. 8b). The elevation mapping assured that the path remains
in regions that are flat enough for the ground robot to traverse
(see Fig. 8c). Finally, we could successfully follow the path
with the ground robot.

VI. DISCUSSION

Simulated experiments demonstrated a significant improve-
ment in response time when comparing our proposed path
planner to the greedy D* approach and to exhaustive explo-
ration (see Fig. 5). With the exception of a small number of
outlier trials (∼ 1.7% of our 300 trials) where the Response
Time planner performed worse than the D* planner (S < 1),
the RT planner consistently provides a speedup between 1 and
1.5, with an average factor of 1.23 across all of the maps. The
response time when using our proposed active approach is also

8 to 10 times faster than the exhaustive mapping strategy. The
average speedup factors relative to the D* planner and the
exhaustive approach are collected in Table I.

We also successfully deployed our collaborative system and
used it to test the proposed Response Time exploration planner
in two real-world scenarios. These two field experiments
demonstrate that the proposed path planning algorithm is
capable of exploring a feasible and efficient path for the ground
robot in environments with multiple terrain classes, elevation
changes, and untraversable terrain.

VII. CONCLUSION

In this paper, we proposed a collaborative search and rescue
system consisting of a flying robot that explores and maps
the environment, in order to find a traversable path for a
ground robot. Our primary innovation is an active exploration
strategy for the MAV. Rather than exhaustively mapping the
environment, or following the current best path to the goal, our
Response Time planner explicitly minimizes the overall time
for the system to operate. By considering the time necessary
for the MAV to map the waypoints along the ground robot’s
path, in addition to the time required to drive that path, we
have demonstrated that the combined time for exploration
and path traversal can be significantly reduced. Our focus on
minimizing response time is motivated by the desire to provide
a robot system that both puts robots in dangerous situations
instead of rescuers, and provides aid as fast as possible.

In accomplishing this goal, we also demonstrated the use of
a convolutional neural network image classifier for terrain clas-
sification, which we used in mapping the terrain and finding
traversable terrain for the ground robot. In further minimizing
response time, we utilized an “on-the-spot training” procedure
that allowed us to train the classifier on demand with the
terrain that is present at a disaster site, where pre-trained
classifiers would not be available.

Our proposed Response Time planner and overall system
have been validated in simulated and real-world scenarios, and
in the future we intend to expand the scope of these field
deployments to large-scale disaster sites. This work represents
a step toward a field-deployable system that can extend the
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(a) Overview (goal in red) (b) Initial Classification (c) Elevation along path

Fig. 7: Driveway Experiment: While a direct path would be shorter, the chosen path (in red) would have lower response time
due to the speed of the ground robot on different terrains. The terrain classes are concrete (yellow), pavement (gray), grass
(green), and water (blue). Elevation mapping is only performed along the path for the ground robot, as visible in (c).

(a) Overview (goal in red) (b) Initial Classification (c) Final Result

Fig. 8: Canyon Experiment: The ground robot cannot cross the water. Our system finds a feasible path for the ground robot
that stays on the grass. The terrain classes are concrete (yellow), pavement (gray), grass (green), and water (blue). The path
is shown in red in (b) and (c). Elevation mapping is only performed along the path for the ground robot, as visible in (c).

capabilities of first responders and reduce the response time
of their aid in real disaster situations.
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