£ Universitat

2 Iyl
A LI
> m

Ziirich*™

Institut fur Informatik

Sottware Engineering HS’16

Lecture: Design Patterns

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst and
Meghan Allen

‘ Reading!

For this lecture: (all required)

= Composite Design Pattern
http.//sourcemaking.com/design_patterns/composite

= Mediator Design Pattern
http://sourcemaking.com/design patterns/mediator

= Facade Design Pattern
http://sourcemaking.com/design patterns/facade

‘ Design Patterns Overview

= Introduction to design patterns
= How to use design patterns
= Components of a pattern

= Various patterns
a Creational
o Structural
o Behavioral

= Integrating Patterns

‘ Learning Goals

By the end of this unit, you will be able to:

= Explain why design patterns are useful and
some caveats to consider when using them

= Clearly and concisely describe, give examples
of software situations in which you'd use, explain
the key benefit of, and drawbacks or special
considerations for the presented design patterns

‘ Sottware Updates

e ——

I New Version Avaltable

Do you want to upgrade to Firefox 3.6 now?

Firefox 3.6 is Here!
Get the World's Best Browser

tools.

= Over 35,000 themes for your Firefox.
" « Plugin check & other new security

« Improved stability and performance.

| Get the New Version

H[MWHWMW]

Important Information

iPhone 2.0.2 Software Update

This version of the software includes the following
improvements and supersedes all previous versions.

 Bug fixes
For feature descriptions and complete instructions, see

the users guide for your iPhone at:
http:/ /www.apple.com/support/manuals/iphone

C————J«»

For more information about iPhone, go to:
http://www.apple.com/iphone

To troubleshoot your iPhone, or to view additional

...... B N P

1Y e

(" Previous) @—Nem—)

For

Get updates for other Microsolt products. Find cut more

See also

@v[a » Con » System ity » v | é9 |1 Search Controt Parel »)
b st °
Windows Update
Check for updates
Change settings. .
s Download and install updates for your computer
Restore hidden updates & important updates are svalable | 6 lmportant updates selected, 28.4
Updates frequently asked 34 opticesl updates we wvalable | M8
questions
Most recent check for updates: Today at 235 PM
Updstes were installed: Never

‘ Design Challenges

= Designing software with good modularity is hard!
= Designs often emerge from a lot of trial and error

Are there solutions to common recurring
problems?

Essentially...

= A Design Pattern is:

A Tried and True Solution
1o a Common Problem

= Basically, smart people, who have done
this a lot, are making a suggestion!

The “Design Patterns™ name

= original use really comes from
(building) architecture from i .
. atern Langua
Christopher Alexander o

= |t was used for architectural idioms,
to guide architectural design (a
house is composed of a kitchen, . Cirsosher Aeander
bathroom, bedrooms etc... to be Max Jsoobson -Ingeid iksdabl-King
placed in certain basic e

configurations)

‘ Real World Pattern Examples

= Problem: = Problem:

sink stinks highway

= Pattern: crossing

S-trap = Pattern:
clover leaf

.

|

‘ Design Patterns

In software engineering, a design pattern is a
general repeatable solution to a commonly
occurring problem in software design.

= A design pattern is a description or template for how to
solve a problem

= Not a finished design

= Patterns capture design expertise and allow that expertise
to be transferred and reused

= Patterns provide common design vocabulary, improve
communication, ease implementation & documentation

10

‘ Back to the Update problem

No objections here!

from CS 310 (UBC)

11

‘ A basic design...

\ X
Scientist Alien
location
status
fileReport()
applyForGrant() callHome()
spyOnAliens()

Anthropologist
| Martian I
| Linguist I | Vogons I

| Psychic I | Vulcan I

from CS 310 (UBC) 12

‘ Update Example cont’d

Current design very haphazard spying on aliens

You'd need to know the exact alien you're spying on,
aliens would need to know the exact scientist and what
they want...

How to design a better protocol?

Have all aliens send a signal every time something
happens?

Have them write to a log file?
Have them send a message when they're in trouble?
There are so many options! Which one is best?

from CS 310 (UBC)

13

‘ Updates — Observer Design Pattern

watching you!
where the "Observer’

4 N
QO =

v

(]

Observer Subject

watches the “Subject’

from CS 310 (UBC) 14

‘ Observer Design Pattern

Name: Observer

Intent: Ensure that, when an object changes state, all its
dependents are notified and updated automatically.

Participants & Structure:

Subject observers ..I Observer

Attach{Observer) Update()
Detach(Observer) .
for all 0 in observers |

Notify() o ------ --| o->Update() ¢

]
¢ ConcreteObserver

; subject : b 5 B
- t Update O--| - observerState =
onererSuee pom Subject->GetState()
GetState() ©---F-1 s : cEarvaitiats
SetState() retum subjectState
subjectState

15

‘ Step 1: Observer Registers

The observer has to Subject stores them in a
register/attach with the list/record to contact
subject for updates. them later.

my name is Pam.
Can you tell me when
something changes?

sure! | will make a
note of your name

b

2. storeObserver()

from CS 310 (UBC) 16

‘ Step 2: Notity Observers

subject notifies the

observer of a change M
Hey Pam!
Something .
changed! 4
| Subject ‘ Observer
Should | tel

—1. mﬁy—’ him it's too

small??

from CS 310 (UBC) 17

‘ Variation: lots of Observers

Subject loops through list
of observers and notifies

—g—
each one notify(

-

o)

=
<
—

AmMm<aamMmun O

=
0
=
<

notifyObservers:
for each observer in ObserverList:
observer.notify()

from CS 310 (UBC) 18

‘ Observer DP (cont’d)

= | need the professor to be notified when a
student joins his/her class

= | want the display to update when the size of a
window is changed

= | need the schedule view to update when the
database is changed

Design patterns are reusable!

19

‘ Real world example

Newspaper subscriptions

= The newspaper company publishes newspapers.

= You subscribe to a particular paper, and every
time there's a new paper it is delivered to you.

= At some point in the future, you can unsubscribe
and the papers won't be delivered anymore.

= While the newspaper company is in business,
people, hotels and other businesses constantly
subscribe and unsubscribe to the newspaper.

In this example, who is the Observer and who is the Subject?

example from Head First Design Patterns 20

How to use Design Patterns?

= Part “Craft”
2 Know the patterns
o Know the problem they can solve

= Part “"Art”

o Recognize when a problem is solvable by a pattern

= Part “Science”
o Look up the pattern
o Correctly integrate it into your code

21

‘ Knowing the patterns helps
understanding code

= The pattern sometimes convey a lot of information
= Try understanding this code:

S *x

* Decorates the clicked figure with a border.

*/

public void action(Figure figure) {
setUndoActivity(createUndoActivity());
List 1 = CollectionsFactory.current().createlList();
l.add(figure);
l.add(new BorderDecorator(figure));
getUndoActivity().setAffectedFigures(new FigureEnumerator(l));
((BorderTool.UndoActivity)getUndoActivity()).replaceAffectedFigures();

H

= Key is to know the Abstract Factory and Decorator patterns!

22

‘ Design patterns also provide a shared
vocabulary.

Dev 1: “| made a Broadcast class. It keeps track of
all of its listeners and anytime it has new data it
sends a message to each listener. The listeners
can join the Broadcast at any time or remove
themselves from the Broadcast. It's really
dynamic and loosely-coupled!”

Dev 2: “Why didn’t you just say you were using the
Observer pattern?”

example from Head First Design Patterns 23

‘ Components of a pattern

= Pattern Name

= Intent
o What problem does it solve?

= Participants

o What classes participate

= These classes usually have very general names, the pattern is
meant to be used in many situations!

= Structure
o How are the classes organized?
o How do they collaborate?

24

A Menagerie of Patterns!

= Fundamental patterns

Delegation pattern: an object outwardly expresses
Functional design: assures that each modular par
Interface pattern: method for structuring programs
Proxy pattern: an object functions as an interface t
Facade pattern: provides a simplified interface to ¢

Composite pattern: defines Composite object (e.q.
were a simple object.

= Creational patterns which deal with the creation of ol

Abstract factory pattern: centralize decision of wha
Factory method pattern: centralize creation of an 0
Builder pattern: separate the construction of a com
Lazy initialization pattern: tactic of delaying the cre
Object pool: avoid expensive acquisition and rele:
Prototype pattern: used when the inherent cost of «

isingleton pattern: restrict instantiation of a class to

= Structural patterns that ease the design by identifyin

Adapter pattern: 'adapts' one interface for a class il
Aggregate pattern: a version of the Composite pat
Bridge pattern: decouple an abstraction from its im
Composite pattern: a tree structure of objects whel
Decorator pattern: add additional functionality to a
Extensibility pattern: aka. Framework - hide compl

Facade pattern: create a simplified interface of an existir
Flyweight pattern: a high quantity of objects share a comr
Proxy pattern: a class functioning as an interface to anot
Pipes and filters: a chain of processes where the output
Private class data pattern: restrict accessor/mutator acce

= Behavioral patterns that identify common communication g

Chain of responsibility pattern: Command objects are h:
Command pattern: Command objects encapsulate an ax
Interpreter pattern: Implement a specialized computer la
lterator pattern: lterators are used to access the element
Mediator pattern: Provides a unified interface to a set of
Memento pattern: Provides the ability to restore an obje«
Null Object pattern: Designed to act as a default value o
Observer pattern: aka Publish/Subscribe or Event Listen
State pattern: A clean way for an object to partially chany
Strategy pattern: Algorithms can be selected on the fly

Specification pattern: Recombinable Business logic in a
Template method pattern: Describes the program skelet
Visitor pattern: A way to separate an algorithm from an o
Single-serving visitor pattern: Optimise the implementati
Hierarchical visitor pattern: Provide a way to visitevery r

25

Pattern Classifications

Creational Patterns

o deal with object creation mechanisms, trying to create
objects in a manner suitable to the situation

o Useful as system evolve: the classes that will be used in
the future may not be known now

Structural Patterns

o ease the design by identifying a simple way to realize
relationships between entities

o Techniques to compose objects to form larger structures

Behavioral Patterns

o Concerned with communication between objects (common
communication patterns)

o Describe complex control flow

26

‘ Discussion Question

Which class does the Observer pattern belong to?
o Creational, Structural, Behavioural?

SUb[ect observers J Observer
Attach{Observer) Update()
Detach(Observer) :
for all 0 in observers |
Notify() o ------ --{ o-=Update()
}
$ ConcreteObserver
: subject : =
oO--} -4 observerState =
ConcreteSubject I- Update() subject->GetState()
GetState() ©---F-- I observerState
SetState() retum subjectState
subjectState

27

‘ Behavioral Patterns

= Mediator Communication hub for multiple objects
s Observer Let’s an object watch other objects
= Visitor Iterate over a hierarchy...

= Chain of Responsibility
= Command

= Interpreter

= Iterator

= Memento

s State

= Strategy

= Template Method

28

‘ Creational Patterns

= Singleton

= Factory Method

= Abstract Factory
= Builder

= Prototype

make one thing

make something

make a family of somethings
make something slowly

clone something

29

‘ Design problem

= Build a maze for a computer game
= A maze is a set of rooms
= A room knows its neighbours: room, door, wall

= Ignore players, movement, etc.

30

w8 MapSite

Enter()
MazeGame
ICreateMaze())\
i Room Wall Door
Enter() Enter() Enter()
Maze SetSide() A
rooms GetSide() isOpen
AddRoom() e
RoomNaof) roomNumber

31

Exercise

1. Implement the function
MazeGame:CreateMaze() to design a maze
with 2 rooms and a connecting door.

2. Update that function to make a Maze
containing a Room with a bomb in it.

32

‘ Example

in the cl MazeG : . .
/1 lrf © C1ass Tlazehdnme What's wrong with this?
public Maze createMaze() {

Maze maze = new Maze();

Room room = new Room(); We can only use this
method to create a

maze that uses a Room

and a Door. What if we
maze.addRoom(room); want to create a

maze.addRoom(room2); different type of maze?
maze.addDoor (door);

Room room2 = new Room();
Door door = new Door();

return maze;

-’

example from Design Patterns by Gamma et al. 33

‘ Example cont’d

// 1in the class MazeGame

public
Maze
Room
Room
Door

maze.
maze.
.addDoor (door) ;

maze

Maze createBombMaze() {

maze = new BombMaze();

room = new RoomWithABomb();
room2 = new RoomWithABomb();
door = new Door();
addRoom(room) ;
addRoom(room2);

return maze;

‘ Example cont’d

// 1in the class MazeGame

public
Maze
Room
Room
Door
maze.
maze.
maze.

Maze createEnchantedMaze() {
maze = new Maze();

room = new EnchantedRoom();
room2 = new EnchantedRoom();
door = new DoorNeedingSpell();
addRoom(room) ;

addRoom(room2);

addDoor (door) ;

return maze;

35

‘ Abstract Factory

Sample Problem:

Your game needs to create rooms, but you are not quite sure yet
how these rooms will be implemented and you think they will be
extended in the future.

Solution 1:

// TODO: Change next line when we know what is a
// room

Room r = new TempRoom();

// Note: TempRoom is a subclass of Room

Problem? (any design principle violated?)

36

‘ Abstract Factory

Solution 2:
// myRoomFactory 1is an abstract factory!
Room r = myRoomFactory.createRoom();

Advantage:

Just set myRoomFactory once, then the good room will be
created!

Remark:

Setting myRoomFactory is referred to as Dependency
Injection: the class who is dependent on myRoomFactory
doesn’t retrieve it, but waits until someone else injects it.

37

' Solution!

// in the class MazeGame

public Maze createMaze(MazeFactory factory) {

Maze
Room
Room

maze = factory.createMaze();
room = factory.createRoom();
room2 = factory.createRoom();

Door door = factory.createDoor();
maze.addRoom(room);

maze.addRoom(room2); Now, we can use the same
maze.addDoor (door); createMaze method in all
return maze; three situations, as long as

we pass in a different
MazeFactory each time

38

‘ Solution cont’d

In this situation, MazeFactory is a concrete class.
Then, the EnchantedMazeFactory and
BombedMazeFactory can just override the
particular methods that they need.

39

‘ Abstract Factory

Name: Abstract Factory

Intent: Interface for creating families of related

objects
«stereotypes
= = Client
Participants
& Structure:
«stereotypes
AbstractFactory
{abstract }

+CreateProduct(] : AbstractProduct {abstract}

|

«stereotypes
ConcreteFactory
+CreateProduct(] : AbstractProduct

«instantiates»
produces

————— - -’

«stereotypes
AbstractProduct
{abstract }

«stereotypes
Product

#Product()

40

‘ Sample Problem

= You need to create a class to manage
preferences. In order to maintain consistency,
there should only ever be one instance of this
class. How can you ensure that only one
instance of a class is instantiated?

(Question: How could your preferences become

iInconsistent if your class was instantiated more
than once?)

41

‘ Singleton

Name: Singleton

Intent: Make sure a class has a single point of
access and is globally accessible (i.e. Filesystem,

Display, PreferenceManager...)
Participants & Structure:

«stereotypes
Singleton
+$instance: Singleton = new Singleton() ffinal}
-3ingleton()

‘ Singleton Example

private static Singleton uniquelInstance = null;

public static Singleton getInstance() {
if (uniquelInstance == null)
uniquelnstance = new Singleton();
return uniquelnstance;

// Make sure constructor 1is private!
private Singleton() {..}

43

‘ Singleton

Is this the only way to solve the problem of a class
that should only ever be instantiated once?

o No, of course not! But, like all design patterns,
it is a well-tested and well-understood solution.

44

‘ Structural Patterns

= Facade

= Composite
= Decorator
= Adapter

= Bridge

= Flyweight
= Proxy

Simple interface to a class
Tree structure, uniform access
Adds to an object’s behaviour

Link between two hierarchies

45

‘ Sample problem

You have created an awesome, but complicated,
home theatre system. In order to watch a movie,

you have to
= Dim the lights
= Pull down the screen
= Turn the projector on
= Set the projector input to DVD
= Put the projector on widescreen mode
= Turn the sound amplifier on
= Set the sound amplifier input to DVD
= Set the volume
= Turn the DVD player on
= Start the DVD player

example from Head First Design Patterns 4'6

‘ Sample problem cont’d

That sounds complicated!

Wouldn't it be better if you could use a simpler
interface to your home theatre system?

The simple interface could allow you to perform
common tasks easily. But, you still have full
access to your home theatre system if you need
to make any changes.

47

2 2
acade = 1
CCCCCCC Complex Subsystem| [Facade |

Name: Facade

Intent: Provide a unified interface to a set of interfaces
in a subsystem. Defines a higher-level interface. (wrap a
complicated interface with a simpler one)

Facade

Participants &

Structure:

AW

AN \

48

‘ Software Example

Consider a programming environment that gives applications
access to its compiler subsystem.

The subsystem contains classes that implement the compiler
(such as Scanner, Parser, Program Node, BytecodeStream
and ProgramNodeBuilder)

Some applications may need to access these classes directly,
but most applications just want the compiler to compile
some code and don’t want to have to understand how all the
classes work together. The low-level interfaces are powerful,
but unnecessarily complex for these applications.

example from Design Patterns by Gamma et al. 49

‘ Sotftware Example cont’d

In this situation, a Facade can provide a simple interface to
the complex subsystem, eg. a class Compiler, with the
method compile()

The Fagade (Compiler) knows which subsystem classes
are responsible for a request and delegates the request to
the appropriate subsystem objects

The subsystem classes (Scanner, Parser, etc.) implement
the subsystem functionality, handle work assigned by the
Facade object and have no knowledge of the Facade object
(ie, keep no reference to it)

50

‘ Sample Problem

You are implementing a menu that has a recursive
structure for a restaurant. Their menu contains
(sub)menus and/or menu items. Each
(sub)menu has (sub)menus and/or menu items.

You want to be able to represent this hierarchy,
and you want to be able to easily perform
operations on the whole menu, or any of its
parts.

51

‘ Composite

Name: Composite

Intent: Compose objects into tree structures. Lets clients
treat individual objects and compositions uniformly.

Participants & Structure:

Client | — g Component L‘

Operation()
Add{Component)
Remove{Component)
GeatChild{int)

A

children
Leaf Composite K
Operation() Operation() @ -----f-==-=-=-=-- 'Org "ogp';,‘,a“{,’[',’,ﬁ’{ ,en
Add(Component)
Remove(Component)
GetChild(int) 52

IResource _
Composite:Component
B

getParent() <

A

IFile IContainer

members()

getContents() getFile()

setContents() getFolder()
Composite:Leaf A

IFolder IProject IWorkspaceRoot é IWorkspace

build() getProjects()
getNature()

‘ Software Example

= Drawing application often has figures such as lines,
rectangles, circles...

= But they also have groups of such figures

Figure
- - hil
«stgle_ otyf & +a&dd(component: Component) : void Eisdeen
en +Remove(component: Component) : boolean
+GetChild(index:int) : Component
+Operation()
Line Group
+Operation(] +&ddcomponent: Component] : void L]

+Remove(component: Component) : boolean
+GetChildlindex:int) : Component

+Operation(]

54

Component (Figure)

o declares the interface for objects in the composition and implements
any common behaviour

o declares an interface for accessing and managing its child components

Leaf (Line)
o represents leaf objects in the composition (a leaf has no children)
o defines behaviour for figure objects in the composition

Composite (Group)

o defines behaviour for components having children

o stores child components

o implements child related options in the Component interface

Client

o manipulates objects in the composition through the Component
interface

55

‘ Sample problem

You need to implement a point-of-sale system for a
coffee shop. The coffee shop has some basic
beverages, but customers can customize their
drinks by choosing what kind of milk they want, if
they want flavoured syrup, etc.

You could create a class for each drink, but there
are so many possible combinations that the
number of classes would quickly get out of hand.

56

‘ Solving this problem with inheritance

Beverage

deacription

getDescripdon)
costf)

A Other useful methods._.

1

- 1 EspressoWithSteamedMilk
Hmnlogdmmamdlﬂk Dutﬁoa:tmit:.m De F—— andMocha
HouseBlen pow andMocha cost])
q ™ cost)
cost} H
andCaramel
RoastWithSteame
costi) Dark andCaramal dMilk andCaramel oeslf)| EspressoWithWhipandMocha
DarkRoastwithw <=/ DecafWith¥
- HouseBlei 7 o
HouseBle o8
- DarkRo, oosl) 0
= “ - DecafWithSteamedMilk
HouseBlen cost) DarkRoastWithSteamedMilk
andSoy t EspressoWitl
q BlendWithWhip = !]
House | DarkRoastWithSteamedM o DecafWithSteamedMilk

|
ol HouseB| <sl) cost]

DarkRoastWithWhipandSoy

cost)

Freeman, et al. Design Patterns, Head First

‘ Decorator

Name: Decorator

Intent: Attach additional responsibilities to an object

dynamically
Participants & Structure:

|

«stereotypes
Component
{abstract }
+Operation(] {abstract } component
«stereotypes «stereotypes
ConcreteComponent Decorator
{abstract } Py u——
+Operation(] +Operation()
Operation() {
component.Operation();
«stereotypes
ConcreteDecorator
-addedState: Operation){
+Operation) o super.Operation();
-AddedBehaviour()) AddedBehaviour);

58

‘ Solving this problem with Decorators

Beverage is an abstract tlass,
cubelassed by all beverades
offered n z)»c ctobfee shop:

Beverage The destription instante variiable
: ' d holds a
d ioti is set in eath subelass an -
escription deseviption of the \,cvcragc,”lukc
The ost() method is getDescription() “Most Exeellent Dark Roast’™

abstract; subtlassses T~ | cost()

need to define their

own im?|cm Cn‘ta{:ion.

The 5c’chscri?‘cion() method
veturns the deseription.

/I Other useful methods...

HouseBlend DarkRoast Decaf Espresso

cost()

cost() cost()

~ T 7/

Each subclass implements tost() o veturn the tost of the beverage.

Freeman, et al. Degsign Patterns, Head First

‘ Solving this problem with Decorators

Bc\lc\ragc ac’cs as our -
abstract Com\?oncn{‘. tlass

component

\’5 Beverage
description

cosf(}

HouseBlend DarkRoast

costi) cost()

getDescription()

Il other useful methods

CondimentDecorator
getDescription()

Espresso Decaf
cost() cost()
’(!- Milk Mocha Whip
; rontY ¢ o Beverage beverage Beverage beverage Beverage beverage
(4
QE et .bﬁc getDescription() getDescription() getDescription() getDescription()

Freeman, et al. Head First
Design Patterns

N 727

And here are our tondiment detorators; notice
H\&nccd to implement not onl\/ tost() but also

getDestription(). We'll see why in a moment... 60

Class Activity

= How do you create a soy mocha with whip?

61

How to use Design Patterns

1. Know the problems common Design Patterns
solve

2. During design, identify problems that Design
Patterns can solve
3. Look up the Design Pattern

4. Integrate into design

Find which of your classes should replace the
“stereotypes” provided by the pattern

62

‘ Integrating Patterns: Example 1

= You want to add borders, drop shadows, glowing
effects, outline... to all the figures in your

drawing program
= Which pattern do you use?

= How do you use it?

63

‘ Integrating Patterns: Example 1

= Look it up, apply it!

+Operation() {abstract } component
+Operation[) +Operation()

-addedState:

- : ddedState:
+Operation]) !)
. i +Operation)
-AddedBehaviour) “addedBehaviou)

Discussion Question

Look-and-Feel:

a GUI framework should support several look and feel
standards, such as Motif and Windows look, for its widgets.
The widgets are the interaction elements of a user interface
such as scroll bars, windows, boxes, buttons. Each style
defines different looks and behaviors for each type of
widget.

Which pattern is most applicable:
A.Observer

B.Decorator

C.Composite

D.Abstract Factory

65

Class Activity

The designer of an adventure game wants a player
to be able take (and drop) various items found in
the rooms of the game. Two of the items found in
the game are bags and boxes. Both bags and
boxes can contain individual items as well as other
bags and boxes. Bags and boxes can be opened
and closed and items can be added to or taken
from a bag or box.

Choose a pattern and adapt it to this situation

060

‘ Always this easy?

= No!

= Sometime a pattern won't work directly
o Adapt to a situation
o Use multiple patterns to solve the problem

= First step in mastering patterns?
o Recognizing them!
o Take the test (hard!)

= www.vincehuston.org/dp/patterns_quiz.html

67

‘ Design Patterns Summary

= Patterns are reusable, abstract “blocks”
= Embody good design principles
= Types of patterns

a Creational, Structural, Behavioral

= Know your patterns

o Their name, intent, and structure
o Master the basic patterns mentioned here

= How to integrate patterns in your designs

638

Resources

= Gamma, Helm, Johnson, Vlissides. Design
Patterns. Addison-Wesley.

= Freeman et. Al. Head First Design Patterns.
= Wikipedia (don't trust it blindly!)

= Bob Tarr’'s course
o http://userpages.umbc.edu/~tarr/dp/spr03/cs491.html

= Quick design patterns reference cards
o www.mcdonaldland.info/2007/11/28/40/

69

