
Software Engineering HS’16

Lecture: Design Patterns

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst and
Meghan Allen

Reading!
For this lecture: (all required)
n  Composite Design Pattern

http://sourcemaking.com/design_patterns/composite

n  Mediator Design Pattern
http://sourcemaking.com/design_patterns/mediator

n  Facade Design Pattern
http://sourcemaking.com/design_patterns/facade

2

Design Patterns Overview

n  Introduction to design patterns
n  How to use design patterns
n  Components of a pattern
n  Various patterns

q  Creational
q  Structural
q  Behavioral

n  Integrating Patterns

3

Learning Goals

By the end of this unit, you will be able to:
n  Explain why design patterns are useful and

some caveats to consider when using them

n  Clearly and concisely describe, give examples
of software situations in which you’d use, explain
the key benefit of, and drawbacks or special
considerations for the presented design patterns

4

Software Updates

5

Design Challenges

n  Designing software with good modularity is hard!

n  Designs often emerge from a lot of trial and error

 Are there solutions to common recurring
 problems?

6

Essentially...

n  A Design Pattern is:

n  Basically, smart people, who have done
this a lot, are making a suggestion!

 A Tried and True Solution
 To a Common Problem

The “Design Patterns” name
n  original use really comes from

(building) architecture from
Christopher Alexander

n  It was used for architectural idioms,
to guide architectural design (a
house is composed of a kitchen,
bathroom, bedrooms etc... to be
placed in certain basic
configurations)

Real World Pattern Examples

n  Problem:
sink stinks

n  Pattern:
S-trap

n  Problem:
highway
crossing

n  Pattern:
clover leaf

9

Design Patterns

In software engineering, a design pattern is a
general repeatable solution to a commonly
occurring problem in software design.
n  A design pattern is a description or template for how to

solve a problem

n  Not a finished design

n  Patterns capture design expertise and allow that expertise
to be transferred and reused

n  Patterns provide common design vocabulary, improve
communication, ease implementation & documentation

10

Back to the Update problem

from CS 310 (UBC) 11

from CS 310 (UBC) 12

A basic design…

Current design very haphazard spying on aliens
n  You’d need to know the exact alien you’re spying on,

aliens would need to know the exact scientist and what
they want…

How to design a better protocol?
n  Have all aliens send a signal every time something

happens?
n  Have them write to a log file?
n  Have them send a message when they’re in trouble?
n  There are so many options! Which one is best?

Update Example cont’d

from CS 310 (UBC) 13

where the “Observer”
watches the “Subject”

Observer Subject

Updates – Observer Design Pattern

from CS 310 (UBC) 14

Observer Design Pattern
Name:	Observer	
Intent:	Ensure	that,	when	an	object	changes	state,	all	its	
dependents	are	no8fied	and	updated	automa8cally.	
Par+cipants	&	Structure:	

15

The observer has to
register/attach with the

subject for updates.

Step 1: Observer Registers

Subject stores them in a
list/record to contact

them later.

from CS 310 (UBC) 16

subject notifies the
observer of a change

Step 2: Notify Observers

from CS 310 (UBC) 17

Subject loops through list
of observers and notifies

each one

Variation: lots of Observers

from CS 310 (UBC) 18

O
B
S
E
R
V
E
R

Observer DP (cont’d)

n  I need the professor to be notified when a
student joins his/her class

n  I want the display to update when the size of a
window is changed

n  I need the schedule view to update when the
database is changed

 Design patterns are reusable!

19

Real world example
Newspaper subscriptions

n  The newspaper company publishes newspapers.
n  You subscribe to a particular paper, and every

time there’s a new paper it is delivered to you.
n  At some point in the future, you can unsubscribe

and the papers won’t be delivered anymore.
n  While the newspaper company is in business,

people, hotels and other businesses constantly
subscribe and unsubscribe to the newspaper.

example from Head First Design Patterns 20

In this example, who is the Observer and who is the Subject?

How to use Design Patterns?

n  Part “Craft”
q  Know the patterns
q  Know the problem they can solve

n  Part “Art”
q  Recognize when a problem is solvable by a pattern

n  Part “Science”
q  Look up the pattern
q  Correctly integrate it into your code

21

Knowing the patterns helps
understanding code

n  The pattern sometimes convey a lot of information
n  Try understanding this code:

n  Key is to know the Abstract Factory and Decorator patterns!

22

Design patterns also provide a shared
vocabulary.

Dev 1: “I made a Broadcast class. It keeps track of
all of its listeners and anytime it has new data it
sends a message to each listener. The listeners
can join the Broadcast at any time or remove
themselves from the Broadcast. It’s really
dynamic and loosely-coupled!”

Dev 2: “Why didn’t you just say you were using the

Observer pattern?”

example from Head First Design Patterns 23

Components of a pattern

n  Pattern Name
n  Intent

q  What problem does it solve?
n  Participants

q  What classes participate
n  These classes usually have very general names, the pattern is

meant to be used in many situations!

n  Structure
q  How are the classes organized?
q  How do they collaborate?

24

A Menagerie of Patterns!

25

Pattern Classifications
Creational Patterns

q  deal with object creation mechanisms, trying to create
objects in a manner suitable to the situation

q  Useful as system evolve: the classes that will be used in
the future may not be known now

Structural Patterns
q  ease the design by identifying a simple way to realize

relationships between entities
q  Techniques to compose objects to form larger structures

Behavioral Patterns
q  Concerned with communication between objects (common

communication patterns)
q  Describe complex control flow

26

Discussion Question

Which class does the Observer pattern belong to?
q  Creational, Structural, Behavioural?

27

Behavioral Patterns

n  Mediator
n  Observer
n  Visitor
n  Chain of Responsibility
n  Command
n  Interpreter
n  Iterator
n  Memento
n  State
n  Strategy
n  Template Method

28

Communication hub for multiple objects

Let’s an object watch other objects

Iterate over a hierarchy…

…

Creational Patterns

n  Singleton
n  Factory Method
n  Abstract Factory
n  Builder
n  Prototype
n  …

29

make something

make a family of somethings

make something slowly

clone something

make one thing

Design problem

n  Build a maze for a computer game

n  A maze is a set of rooms

n  A room knows its neighbours: room, door, wall

n  Ignore players, movement, etc.

30

MazeGame

CreateMaze()

31

Exercise

1.  Implement the function
MazeGame:CreateMaze() to design a maze
with 2 rooms and a connecting door.

2.  Update that function to make a Maze
containing a Room with a bomb in it.

32

Example

//	in	the	class	MazeGame	
public	Maze	createMaze()	{	
	Maze	maze	=	new	Maze();	
	Room	room	=	new	Room();	
	Room	room2	=	new	Room();	
	Door	door	=	new	Door();	
	maze.addRoom(room);	
	maze.addRoom(room2);	
	maze.addDoor(door);	
	return	maze;	

}	

33

What’s wrong with this?

example from Design Patterns by Gamma et al.

We can only use this
method to create a

maze that uses a Room
and a Door. What if we

want to create a
different type of maze?

Example cont’d

34

//	in	the	class	MazeGame	
public	Maze	createBombMaze()	{	
	Maze	maze	=	new	BombMaze();	
	Room	room	=	new	RoomWithABomb();	
	Room	room2	=	new	RoomWithABomb();	
	Door	door	=	new	Door();	
	maze.addRoom(room);	
	maze.addRoom(room2);	
	maze.addDoor(door);	
	return	maze;	

}	

Example cont’d

35

//	in	the	class	MazeGame	
public	Maze	createEnchantedMaze()	{	
	Maze	maze	=	new	Maze();	
	Room	room	=	new	EnchantedRoom();	
	Room	room2	=	new	EnchantedRoom();	
	Door	door	=	new	DoorNeedingSpell();	
	maze.addRoom(room);	
	maze.addRoom(room2);	
	maze.addDoor(door);	
	return	maze;	

}	

Abstract Factory
Sample Problem:
Your game needs to create rooms, but you are not quite sure yet
how these rooms will be implemented and you think they will be
extended in the future.

Solution 1:
//	TODO:	Change	next	line	when	we	know	what	is	a		
//	room	
Room	r	=	new	TempRoom();		
//	Note:	TempRoom	is	a	subclass	of	Room	

Problem? (any design principle violated?)

36

Abstract Factory
Solution 2:
//	myRoomFactory	is	an	abstract	factory!	
Room	r	=	myRoomFactory.createRoom();		

Advantage:
Just set myRoomFactory once, then the good room will be
created!

Remark:
Setting myRoomFactory is referred to as Dependency
Injection: the class who is dependent on myRoomFactory
doesn’t retrieve it, but waits until someone else injects it.

37

Solution!

38

//	in	the	class	MazeGame	
public	Maze	createMaze(MazeFactory	factory)	{	
	Maze	maze	=	factory.createMaze();	
	Room	room	=	factory.createRoom();	
	Room	room2	=	factory.createRoom();	
	Door	door	=	factory.createDoor();	
	maze.addRoom(room);	
	maze.addRoom(room2);	
	maze.addDoor(door);	
	return	maze;	

}	

Now, we can use the same
createMaze method in all
three situations, as long as

we pass in a different
MazeFactory each time

Solution cont’d

In this situation, MazeFactory is a concrete class.
Then, the EnchantedMazeFactory and
BombedMazeFactory can just override the
particular methods that they need.

39

Abstract Factory

Name: Abstract Factory
Intent: Interface for creating families of related
objects
Participants
& Structure:

40

Sample Problem

n  You need to create a class to manage
preferences. In order to maintain consistency,
there should only ever be one instance of this
class. How can you ensure that only one
instance of a class is instantiated?

(Question: How could your preferences become
inconsistent if your class was instantiated more
than once?)

41

Singleton

Name: Singleton
Intent: Make sure a class has a single point of
access and is globally accessible (i.e. Filesystem,
Display, PreferenceManager…)
Participants & Structure:

42

Singleton Example

private	static	Singleton	uniqueInstance	=	null;	
	
public	static	Singleton	getInstance()	{	

	if	(uniqueInstance	==	null)		
	 		uniqueInstance	=	new	Singleton();	
	return	uniqueInstance;		

}	
	
//	Make	sure	constructor	is	private!	
private	Singleton()	{…}	

43

Singleton

Is this the only way to solve the problem of a class
that should only ever be instantiated once?

q  No, of course not! But, like all design patterns,

it is a well-tested and well-understood solution.

44

Structural Patterns

n  Façade
n  Composite
n  Decorator
n  Adapter
n  Bridge
n  Flyweight
n  Proxy

45

Simple interface to a class

Tree structure, uniform access

Adds to an object’s behaviour

Link between two hierarchies

…

Sample problem
You have created an awesome, but complicated,

home theatre system. In order to watch a movie,
you have to

n  Dim the lights
n  Pull down the screen
n  Turn the projector on
n  Set the projector input to DVD
n  Put the projector on widescreen mode
n  Turn the sound amplifier on
n  Set the sound amplifier input to DVD
n  Set the volume
n  Turn the DVD player on
n  Start the DVD player

example from Head First Design Patterns 46

Sample problem cont’d

That sounds complicated!

Wouldn’t it be better if you could use a simpler

interface to your home theatre system?

The simple interface could allow you to perform

common tasks easily. But, you still have full
access to your home theatre system if you need
to make any changes.

47

Façade

Name:	Façade	
Intent:	Provide	a	unified	interface	to	a	set	of	interfaces	
in	a	subsystem.	Defines	a	higher-level	interface.	(wrap	a	
complicated	interface	with	a	simpler	one)	
Par+cipants	&		
Structure:	

48

Software Example
Consider a programming environment that gives applications

access to its compiler subsystem.

The subsystem contains classes that implement the compiler

(such as Scanner, Parser, Program Node, BytecodeStream
and ProgramNodeBuilder)

Some applications may need to access these classes directly,

but most applications just want the compiler to compile
some code and don’t want to have to understand how all the
classes work together. The low-level interfaces are powerful,
but unnecessarily complex for these applications.

49 example from Design Patterns by Gamma et al.

Software Example cont’d

In this situation, a Façade can provide a simple interface to
the complex subsystem, eg. a class Compiler, with the
method compile()

The Façade (Compiler) knows which subsystem classes
are responsible for a request and delegates the request to
the appropriate subsystem objects

The subsystem classes (Scanner, Parser, etc.) implement
the subsystem functionality, handle work assigned by the
Façade object and have no knowledge of the Façade object
(ie, keep no reference to it)

50

Sample Problem

You are implementing a menu that has a recursive
structure for a restaurant. Their menu contains
(sub)menus and/or menu items. Each
(sub)menu has (sub)menus and/or menu items.

You want to be able to represent this hierarchy,

and you want to be able to easily perform
operations on the whole menu, or any of its
parts.

51

52

Composite
Name:	Composite	
Intent:	Compose	objects	into	tree	structures.	Lets	clients	
treat	individual	objects	and	composi8ons	uniformly.	
Par+cipants	&	Structure:	

52

53

Software Example

n  Drawing application often has figures such as lines,
rectangles, circles…

n  But they also have groups of such figures

Figure	

Line	 Group	

54

 Component (Figure)
q  declares the interface for objects in the composition and implements

any common behaviour
q  declares an interface for accessing and managing its child components

 Leaf (Line)
q  represents leaf objects in the composition (a leaf has no children)
q  defines behaviour for figure objects in the composition

 Composite (Group)
q  defines behaviour for components having children
q  stores child components
q  implements child related options in the Component interface

 Client
q  manipulates objects in the composition through the Component

interface

55

Sample problem

You need to implement a point-of-sale system for a
coffee shop. The coffee shop has some basic
beverages, but customers can customize their
drinks by choosing what kind of milk they want, if
they want flavoured syrup, etc.

You could create a class for each drink, but there

are so many possible combinations that the
number of classes would quickly get out of hand.

56

Solving this problem with inheritance

Freeman, et al. Design Patterns, Head First 57

Decorator
Name:	Decorator	
Intent:	AIach	addi8onal	responsibili8es	to	an	object	
dynamically	
Par+cipants	&	Structure:	

58

59

Solving this problem with Decorators

Freeman, et al. Design Patterns, Head First

59

Solving this problem with Decorators

Freeman, et al. Head First
Design Patterns

60

Class Activity

n  How do you create a soy mocha with whip?

61

How to use Design Patterns

1.  Know the problems common Design Patterns
solve

2.  During design, identify problems that Design
Patterns can solve

3.  Look up the Design Pattern
4.  Integrate into design

 Find which of your classes should replace the
 “stereotypes” provided by the pattern

62

Integrating Patterns: Example 1

n  You want to add borders, drop shadows, glowing
effects, outline… to all the figures in your
drawing program

n  Which pattern do you use?
n  How do you use it?

63

Integrating Patterns: Example 1

n  Look it up, apply it!

Figure	

Square	 FigureDecorator	

Shadow	 Borders	

64

Discussion Question

65

Look-and-Feel:
a GUI framework should support several look and feel
standards, such as Motif and Windows look, for its widgets.
The widgets are the interaction elements of a user interface
such as scroll bars, windows, boxes, buttons. Each style
defines different looks and behaviors for each type of
widget.

Which pattern is most applicable:

A. Observer

B. Decorator

C. Composite

D. Abstract Factory

Class Activity
The designer of an adventure game wants a player
to be able take (and drop) various items found in
the rooms of the game. Two of the items found in
the game are bags and boxes. Both bags and
boxes can contain individual items as well as other
bags and boxes. Bags and boxes can be opened
and closed and items can be added to or taken
from a bag or box.

Choose a pattern and adapt it to this situation

66

Always this easy?

n  No!
n  Sometime a pattern won’t work directly

q  Adapt to a situation
q  Use multiple patterns to solve the problem

n  First step in mastering patterns?
q  Recognizing them!
q  Take the test (hard!)

n  www.vincehuston.org/dp/patterns_quiz.html

67

Design Patterns Summary

n  Patterns are reusable, abstract “blocks”
n  Embody good design principles
n  Types of patterns

q  Creational, Structural, Behavioral
n  Know your patterns

q  Their name, intent, and structure
q  Master the basic patterns mentioned here

n  How to integrate patterns in your designs

68

Resources
n  Gamma, Helm, Johnson, Vlissides. Design

Patterns. Addison-Wesley.

n  Freeman et. Al. Head First Design Patterns.

n  Wikipedia (don’t trust it blindly!)

n  Bob Tarr’s course
q  http://userpages.umbc.edu/~tarr/dp/spr03/cs491.html

n  Quick design patterns reference cards
q  www.mcdonaldland.info/2007/11/28/40/

69

