Part I: Fundamentals

Part II: Requirements Engineering Practices

Part III: Enablers and Stumbling Blocks

Conclusions

References

15 Requirements tools

What can be supported by a RE tool?

- Elicitation
- Documentation
- Modeling
- Management (Store and retrieve, prioritize, trace,...)
- Validation (simulators, model checkers,...)

Support levels for RE tools

General purpose

- Word processors
- Spreadsheet tools
- General purpose graphic drawing tools

Database-level

- Requirements management tools for organizing, storing, retrieving and tracing requirements
- Language & method-based
 - Tools supporting specific requirements languages, e.g., drawing state machine diagrams
 - Tools for supporting specific methods, e.g., validation with model-checking

Which RE tool should I use / buy?

- No general recommendation possible
- Depends on what the tool(s) shall support
- An up-to-date list of requirements tools is maintained at the VOLERE website:

https://www.volere.org/requirements-tools/

We no longer believe in big, unambiguous, and complete requirements specifications as the standard result of good Requirements Engineering.

- Although many standards and textbooks still do
- Modern RE is value-driven: the effort invested into RE is determined by the value that the requirements create
- Depends on domain and project context, driven by various factors, in particular
 - Shared understanding
 - Risk
 - Customer-supplier relationship

17 RE under time pressure

- Risk-oriented specification
 - The risk determines the needed effort, not the available time frame!
- Don't specify in uniform depth
 - Only the risky stuff in full detail
 - The rest coarsely or not at all
- Employ incremental processes
- Don't strive for perfection;
 good enough suffices

What is indispensable?

- Know and involve the critical stakeholders
- Know the problem
- Identify the key goals
- Define the key terms (of the domain and the system) in a glossary
- Identify and document the system's main functions and use cases
- Identify and document critical quality requirements, constraints and risks
- Identify critical domain assumptions and domain constraints

What makes it harder? (implies higher effort)

- High complexity of the domain
- O Team is not familiar with the domain
- Many stakeholders
- Distributed development and/or stakeholders
- Long feedback cycles
- Safety-critical requirements
- High project risks

What do you reply to your boss?

Part I: The Fundamentals

Part II: Requirements Engineering Practices

Part III: Enablers and Stumbling Blocks

Conclusions

References

Requirements Engineering in a nutshell

- Stakeholders are key
- Validate your requirements early and frequently
- O Work value-oriented:
 - Cost and benefit of requirements need to be in balance
 - Concentrate on the essential don't just collect tons of detailed requirements
- Work risk-driven: the more risk, the more extensive and precise requirements specifications are necessary
- Intertwining of requirements and design is natural you'll need to live with it

Requirements Engineering in a nutshell – 2

- Situate your system in its context
 - Value is only created when using systems in their real world context – so you need to know this context
 - Elicit and document domain assumptions and constraints
- No discovery: Requirements must be elicited with serious endeavor, they can't be just discovered
- Strive for innovation: just automating what we have today is not enough
- You are not the stakeholders' voice recorder elicit and design requirements that make stakeholders excited

Requirements Engineering in a nutshell – 3

- Control requirements evolution otherwise requirements evolution will control you
- No universal language or method: You'll need to use a variety of practices and languages
- Specifying is not programming: Skip all technical details which are not part of the problem
- Finally: make it fun. Nobody likes boring tasks. Make RE a fascinating expedition into the unknown, to places where the desirable and the doable meet and eventually merge into exciting new opportunities.

Conclusions

Follow the principles.

Practice the practices.

Be guided by the risk.

Strive for value.

Requirements Engineering – doing things right ...

...from the very beginning