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Abstract

The discrete Fourier transform is an algorithm that is used to transform the time representa-
tions of a function into its frequency components under the assumption that this given function
is periodic. It is the base of many modern applications that use signal processing. Currently the
fast Fourier transform algorithm, which reduces the run time of the discrete Fourier transform
from O(n2) to O(n ∗ log(n)) is the fastest way to compute the Fourier transform.

In order to calculate the Fourier transform of two dimensional data, the algorithm will
just be used to transform all rows and then transform all columns. One use case of the two
dimensional algorithm is to generate dirty sky images form radio astronomy data.

In this thesis a faster algorithm to compute the single point two dimensional Fourier trans-
form is described and it is mathematically proofed. This new algorithm will describe all fields
of the Fourier transform with its first row or column of the transformed grid. Furthermore
the importance of Fourier transform in stream pipelines is considered and this new algorithm
is implemented using the stream processing environment Apache Flink. After the initial im-
plementation of the new algorithm, some stream specific optimization have been made to the
algorithm. While computing the Fourier Transform, a lot of computations are made a multiple
time. This fact is used to further improve the algorithm.

These different Algorithms are then evaluated using artificially generated source files to de-
termine the run time. This shows that the new algorithm, for the biggest grid tested, is 60 times
faster than the normal FFT implementation. With the small stream specific enhancements, the
algorithm is even up to 120 times faster for the largest grid tested.



Zusammenfassung

Die diskrete Fourier Transformation ist ein Algorithmus, der benutzt wird, um aus Datenpunk-
ten zu verschiedenen Zeiten die Frequenz-Komponenten eines Signals zu ermitteln, unter der
Annahme das Signal sei periodisch. Sie ist die Basis vieler modernen Applikationen die Sig-
nalverarbeitung machen. Zurzeit ist die schnelle Fourier Transformation, welche die Laufzeit
von der diskreten Fourier Transformation von O(n2) zu O(n∗ log(n)) reduziert der schnellste
Weg die Fourier Transformation zu berechnen.

Um die Fourier Transformation von zwei dimensionalen Daten zu berechnenen, wird der
eindimnensional Algorithmus benutzt um zuerst alle Reihen und dann anschliessend alle Spal-
ten zu transformieren. Eine Anwendung des zweidimensionalen Algorithmus ist es, aus Ra-
dioastronomiedaten verunreinigte Bilder des Himmels zu machen.

In dieser Arbeit wird ein schnellerer Algorithmus für die Berechnung der zwei dimension-
alen Fourier Transformation für einen Punkt beschrieben und mathematisch bewiesen. Der
neue Algorithmus wird alle Ergebnisfelder der Transformation durch die Felder der Trans-
formation der ersten Reihe oder der ersten Spalte ausdrücken können. Weiteres wird die
Wichtigkeit der Fourier Transformation in Stream Pipelines berücksichtigt und der neue Al-
gorithmus wurde in der Stream Processing Umgebung Apache Flink implementiert. Nach-
dem der ursprüngliche Algorithmus implementier wurde, wurden einige Stream spezifischen
Anpassungen gemacht, um die Performance zu optimieren. Währendem die Fourier Transfor-
mation berechnet wird, werden viele Rechnungen mehrmals gemacht. Wir haben diesen Fakt
benutzt, um den Algorithmus weiter zu verbessern.

Diese verschiedenen Algorithmen sind dann evaluiert worden mit einem künstlich gener-
ierten Datenset um die Laufzeit jener zu bestimmen. Das ergab, dass die ursprüngliche Imple-
mentation des neuen Algorithmus für das grösste Raster 60-mal schneller ist als die normale
FFT Implementation. Mit kleinen stream spezifischen Anpassungen ist der Algorithmus sogar
bis zu 120-mal schneller für das grösste getestete Raster.
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1. Introduction

Multiple scientific fields rely on continuously observing certain object and processing the gen-
erated data. With the innovation in the current observation technologies, such as telescopes,
the amount of data generated tends to increase. This demands the use of data streaming plat-
forms and stream environment to allow real time processing of the data. Apache Flink is
a stream processing framework ruining on java and allowing real time processing of stream
data.

One concrete scientific field that could benefit from stream processing is astronomy. For
example the Australian Square Kilometer Array Pathfinder (ASKAP) is one of the leading
radio telescope facilities in the world. It generates roughly 2.5 GB/s of data, what adds up to
nearly 216 TB a day[3]. On this data Fourier transform has to be applied to generate dirty sky
images.

Fourier transform is used to decompose a signal over time in its constituent frequencies[4].
When looking at astronomy data, Fourier transform needs to be applied to generate dirty sky
images out of the data received to enable further processing of the data. In the process of
calculating the Fourier transform on a stream, for every single data point of the input, the
Fourier transform will be calculated, and its output will add up to the final transformed image.
In order to successfully transform a datastream, such a stream processing platform needs to be
robust against failure of machines or the connecting network, since the output is dependent of
every input point. Any loss in data will result in a distortion of the result.

Our goal was to implement a high performance single point discrete Fourier transform to
be able to use the output data in a stream fashion instead of saving a certain amount of data in
batches and then calculation the Fourier transform for each batch of data.
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2. The Fourier Transform
The Fourier transform is used in many different fields of science. It can be used to process
different type of wave-forms such as acoustical, electrical or optical signals[4]. The Fourier
transform has been used since its discovery to break up a given function or signal in sine and
cosine that add up to an alternate representation. It shows, that any waveform can be written
as a sum of sinusoidal functions. For a continuous Signal the Fourier transform is defined as
(2.1).

F (jw) =

∞∫
−∞

f(t)e−jwtdt (2.1)

with −∞ < f < ∞,−∞ < t < ∞ and j =
√
−1. The F (jw) is the Fourier-transformed

output, whereas f(t) is the input signal at a given time t.
This formula can not be used in a computer environment since its input and output are both

in a continuous domain. To be able to analyze sampled signals using a computer system, the
signal must be transformed in a discrete domain and then the discrete Fourier transform has to
be used[5].

2.1. Discrete Fourier transform
The discrete Fourier transform takes a sequence of a finite length on a time domain as input
and produces a frequency-domain finite length sequence as output. For this a signal is sampled
at N instants separated by the sample time T . So the samples of the continuous signal f(t)
will be called f [0], f [1], f [2], f [3], ..., f [k], ..., f [N−1]. So the integral will only be calculated
at each sampling point[5]. The Fourier transform of such a signal will be as shown in (2.2)

F (jw) =

(N−1)T∫
0

f(t)e−jwtdt

= f [0]e−j0 + f [1]e−jwT + ...+ f [k]e−jwkT + ...+ f [N − 1]e−jw(N−1)T

i.e. F (jw) =
N1∑
k=0

f [k]e−jwkT

(2.2)

Since the interval of the sequence of data analysed is not anymore infinite, the discrete Fourier
transform treats the data as if it were periodic (for example f(0) to f(N − 1) is the same as
f(N) to f(2N − 1).
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(a)

(b)

Figure 2.1.: (a) Sequence of N = 10 Samples. (b) periodicity in DFT

Since the data is treated as if it were periodic, the discrete Fourier transform equation is
evaluated for the fundamental frequency and its overtones. The fundamental frequency corre-
sponds to one cycle per sequence or 2π

NT
rad/sec. The overtones are the multiple of the funda-

mental frequency.This results in definition (2.3) for w:

w = 0,
2π

NT
,
2π

NT
× 2, ...,

2π

NT
× n, ..., 2π

NT
× (N − 1) (2.3)

So in general the discrete Fourier transform for a sequence f [k] is defined in the Equation
(2.4).

F [n] =
N−1∑
k=0

f [k]e−j
2π
N
nk where n = 0 to N − 1 (2.4)

e−j2π/N can be re written as the WN , the principal Nth root of unity. A Nth root of unity is a
complex number that results in 1 when it is raised by N. e−j2π/N is an Nth root of unity since
e−j2π/N raised by N results in 1 as shown in (2.5)[5].

e−j2π/N∗N = e−j2π = cos (−2π) + j ∗ sin (−2π) = 1 (2.5)
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WN is a so called twiddle factor[6]. When the formula for discrete Fourier transform is rewrit-
ten using the so called twiddle factor WN (2.6), it is easier to see, that a lot of computations
of these twiddle factors can be easily reused and not computed again, in order to reduce the
complex additions and trigonometric functions that are used to calculate W nk

N , since the in-
teger product nk may be repeated by different values of n and k during the computation and
W nk
N is periodic and will only have N distinct values[5]. The so called fast Fourier transform

algorithm, discussed in 2.2, use this principle to store precomputed twiddle factors.

F [n] =
N−1∑
k=0

f [k]e−j
2π
N
nk =

N−1∑
k=0

f [k]W nk
N where n = 0 to N − 1 (2.6)

Since WN is the Nth root of unity, its values are symmetric such as W x
N = −W y

N − x. For an
input of size 8 the twiddle factors would be as described in (2.7).

W 4
8 = −W 0

8

W 5
8 = −W 1

8

W 6
8 = −W 2

8

W 7
8 = −W 3

8

(2.7)

This definition of the discrete Fourier transform can be implemented in an algorithm such as
Algorithm 1. We assume the size of the input Array can be accessed using x.size().

Algorithm 1 calculate dft(x)

N ← x.size()
result← Complex[N ]
for k = 1 to N do
result[k]← 0
for t = 1 to N do
w ← e(−2jπ/N)tk

result[k]+ = x[t] ∗ w
end for

end for
return result

For 1-D data the discrete Fourier transform algorithm has a complexity of O(N2).
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2.1.1. 2D Discrete Fourier transform
The two dimensional discrete Fourier transform is defined as in (2.8).

F (u, v) =
N−1∑
m=0

N−1∑
n=0

f(m,n)e−j2π
um
M

+ vn
N where u, v = 0 to N − 1 (2.8)

This two dimensional discrete Fourier transform is carried out by applying the one dimensional
discrete Fourier transform to all rows of the input and then either transposing the resulting
matrix and transform the rows again or just transforming the columns of the resulting matrix.
The order of the calculations steps are not important. The algorithm 2 will compute the two
dimensional discrete Fourier transform for an input matrix x. We assume we can aces the nth
row of the matrix using x.row[n] and aces the nth column using x.column[n]. Furthermore,
the size of the row can be computed using row.size().

Algorithm 2 calculate 2d dft(x)

N ← x.column[1].size()
M ← x.row[1].size()
for i = 1 to N do
x.row[i]← dft(x.row[i])

end for
for i = 1 to M do
x.column[i]← dft(x.column[i])

end for
return x

2.2. Fast Fourier transform
The fast Fourier transform is a method, that allows to compute the discrete Fourier trans-
form in a more efficient way. Cooley and Tukey describe such an algorithm in their 1965
published paper "An algorithm for the machine calculation of complex Fourier series"[7].
They were able to reduce the number of complex additions and multiplications from O(n2) to
O(n ∗ log(n)), by splitting the problem with size N recursively in n smaller problems of size
N/n, until the solving of the split problem gets trivial. They did also rely on the symmetric
properties of the twiddle factors described in 2.1. This resulted in the so called Cooley-Tukey
FFT algorithm[7].
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3. Streaming Pipeline

Data stream platforms allow data sources producing data to provide data in a continuous flow-
ing manner to other applications or data sinks. Most of the time, such data streams contain
raw data, that needs some processing steps, until it can be consumed by a data sink or further
processed by an other application. this so called stream processing can be done by a stream
processor. There are many concerns using a streaming environment, since a failure of the
network or a machine involved in the whole stream may result in loss of data or duplicated
processing of a single record. Once a failure has occurred, the process must be restarted and
its state needs to be recovered, since a loss of computations would result in lost output data
and the recalculation of lost computations. This would make a failure a fatal risk. Such an
open source stream processing platform is Apache Flink 1.

It can be used to perform a variety of operations on the streamed data in real-time or close-
to-real-time. Apache Flink can process bounded or unbounded data streams. For this pur-
pose it provides a DataSet API for bounded (batch) processing and an DataStream API for
unbounded (stream) processing. Flink will provide a data flow graph consisting of statefull
operators and data streams form a source or output of an operator. In order to be fault tolerant,
Flink offers processing with strict only-once-processing guarantee, as it deals with failures via
checkpointing, restoration of checkpoint and then partial re-execution. It also takes snapshots
of the state of the operator and its current position of input stream to reduce recomputing when
a failure occurred [8]. A basic streaming platform consists of a data source, a stream processor
and a data sink. In our case the built in function of Apache Flink is used to read a file as the
data source, use the operators of Apache Flink to process the data and then write the results
back to a file sink. Our architecture can be seen in Figure 3.1.

Figure 3.1.: Architectual overwiev

1https://flink.apache.org/
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3.1. Dataset
In order to just evaluate the performance of the new implemented two dimensional Fourier
transform, it was agreed on using a randomly generated input file as our data set, since one
of the goals was to evaluate the performance for a variety of different grid sizes. Therefore
a python script (Listing 3.1) is used to generate a file with a n amount of lines. Every line
represents the value received at a given coordinate. The values are uniform values from -10
to 10. Generally, the random module is used to generate random integers or floats. So the
amount of lines in the file corresponds to points that will be processed in our stream processor.

Listing 3.1: Source file generator
import random

s i z e = 4096
f = open ( " T e s t "+ s t r ( s i z e )+ " _ long . t x t " , "w+" )
f o r i in range ( 1 0 0 0 0 ) :

f . w r i t e ( s t r ( random . r a n d i n t ( 0 , s i z e −1)) + " , "
+ s t r ( random . r a n d i n t ( 0 , s i z e −1)) + ’= ’
+ s t r ( random . un i fo rm (−10 , 1 0 ) ) + " \ n " )

f . c l o s e ( )

This will result in a text file such as shown in Listing 3.2

Listing 3.2: Snippet of source file
1303 ,143=5.922648574340709
802 ,2497=−5.74036278862879
1853 ,421=−7.033751721577319
1426 ,124=−7.766737416794996
1760 ,1592=−2.6279102211014234

A data set for every grid size that will be evaluated will be generated. So there will be a data
set for every grid size N = 2 to N = 4096. This data files will then be read by Apache Flink.
It will be declared as the stream source. The file will then be read from Flink and every line
of the file will be emitted as a single data point in a stream. In the next Section (3.2) it will be
further evaluate how the data will be represented while it is processed.

3.2. Data Model and Processing functions
Apache Flink offers a variety of different operation that can be applied to data stream and will
then result in another data stream or various other types of streams. One category of operators
are the data stream transformations. The map function 3.2.2 will be used to process our strings,
that are streamed from the input file. Then a regular expression is used to split the input of our
map function to extract the coordinate values X and Y and the value V at the position (X, Y )
that is updated with the line of the input file[9]. With the usage of the Tuple3[10] datatype
provided by Apache Flink the input stream will now be represented as a tuple with 3 values.
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The data types integer are used to represent the X and Y values and the double datatype is
used to represent the value at the point(X, Y ).

The next step in our processing pipeline is to compute the Fourier transform for every
data point in our input stream. Since we wanted to evaluate different ways to compute the
single point discrete Fourier transform, we will have different ways, how the data stream
will be processed. These different ways will be presented in Subsection 3.2.2 to Subsection
3.2.5. To evaluate the performance, our implementation will also be compared to a fast Fourier
transform implementation embedded in our processing pipeline.

3.2.1. Data Classes
For all the Implementations the same two classes will be used to represent and process the
data.

Complex Number

Since the Fourier transform uses complex numbers consisting of a real part and an imaginary
part, a class to represent the complex numbers will be needed. This data model is represented
in Listing 3.3.

Listing 3.3: Data Model of Complex as a .java class
p u b l i c c l a s s Complex implements S e r i a l i z a b l e {

p r i v a t e f i n a l double r e ; / / t h e r e a l p a r t
p r i v a t e f i n a l double im ; / / t h e i m a g i n a r y p a r t

/ / c r e a t e a new o b j e c t
/ / w i t h t h e g i v e n r e a l and i m a g i n a r y p a r t s
p u b l i c Complex ( double r e a l , double imag ) {

r e = r e a l ;
im = imag ;

}
. . .

}

This class will also provide all functionalities needed during the calculation of the Fourier
transform, mainly addition an multiplication of complex numbers. The addition of a real
only version of multiplication was made, since the input values multiplied with the complex
numbers tend to be real an therefore non complex. This reduces the computational power
required.

Since the precision of floating point numbers, such as the datatype float or double in java,
is not unlimited, a so called underflow may occur when calculations are done with very small
numbers. This produced some error when comparing complex numbers. In order to solve this
problem, a certain precision was added for the comparison of complex numbers. In order to
achieve this, it is checked , whether the absolute amount of the difference of the real numbers
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and the imaginary numbers of the compared complex numbers are within a certain area. A
reasonable precision is 10−10 and therefore this level of precision is used.

Output Plane

The result of the Fourier transform will be a grid of complex numbers the same size as the input
grid where measurements were taken. Therefor a data model for a grid of complex number
needs to be made. This was implemented by making a class called OutputPlane consisting of
a two dimensional array of complex numbers and two integer row and column to store the size
of the plane.

Listing 3.4: Data Model of OutputPlane as a .java class
p u b l i c c l a s s O u t P u t P l a n e implements S e r i a l i z a b l e {

p r i v a t e Complex [ ] [ ] P l a n e ;
p r i v a t e i n t row ;
p r i v a t e i n t column ;

p u b l i c O u t P u t P l a n e ( i n t row , i n t column , boolean i n i t ) {
P l a n e = new Complex [ row ] [ column ] ;
t h i s . row = row ;
t h i s . column = column ;
i f ( i n i t ) { t h i s . i n t i a l i z e ( ) ; }

}
. . .

}

Since this data model is either used to pass the values of a single point Fourier transform or to
sum up all the values of each points Fourier transform, a boolean is added to the constructor to
specify whether the plane of complex numbers should be initialized with complex numbers of
value (re = 0, im = 0), so it can be used to sum up values in order to get the final values of
the Fourier transform or it should not be initialized, since the values of each complex number
will be passed by a object reference to later add to the final result plane.

3.2.2. Discrete Fourier transform
For the discrete Fourier transform we will use two nested loops to calculate the Fourier trans-
form for every point of the grid. This way an initialization of the grid is not necessary. Since
there is only one point of the grid with a value non zero, the discrete Fourier transform for
every point in the plane can be described as in Equation 3.1 where N stands for the length of
rows and M stands for the length of columns.

F (u, v) = V (x, y) ∗ (cos(−2πxu
N

) + j ∗ sin(−2πxu
N

)) ∗ (cos(−2πyv
M

) + j ∗ sin(−2πyv
M

))

(3.1)
This calculations will be done in a map function. The plane with the results of the transform
will then be added to a class variable of type OutputPlane to sum up the transforms of every
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single point. For every input tuple the plane with the sum of all transform until this point will
be emitted. The complete algorithm will be be described in Section 4.1 .

Map Function

a map function in Apache Flink is a function that processes an element of a stream and
produces exactly one output element. In Apache Flink, such operators are implemented by
classes, which need to implement certain interfaces. In our case the map function. Once a
stream is needs to be processed, for every parallel instance of the stream, an instance of the
class implementing the map function is instantiated. This allows to pass some information to
the class in its constructor and also store some values as class attributes, such as grid size.
Furthermore, the summation of a whole OutputPlane can be done by declaring a class variable
of this type[2]. A basic implementation of a map function is shown in listing 3.5.

Listing 3.5: Example for a Map Function [2]
new MapFunction < I n t e g e r , I n t e g e r > ( ) {

@Override
p u b l i c I n t e g e r map ( I n t e g e r v a l u e ) throws E x c e p t i o n {

re turn 2 ∗ v a l u e ;
}

}

3.2.3. Discrete Fourier transform with rotation
As mentioned in Section 3.2.2, the discrete Fourier transform of a single point will only be
dependent on the value of the input and the coordinates of the input. This fact, combined
with the periodic attribute of the Nth root of unity will lead to the fact, that every value of
the Fourier transform for a single Point will either be in the first row or first column of the
transformed plane, as long as the grid has the same length as width and the length is a power
of 2. The other one (row or column) will be a subset of the row or column that contains all
values. All point in the transformed grid can then be expressed using the first row or column
and apply the shift n − 1 times, where n stands for the index of the row or column. Lets
assume an example where the first row contains all values and the amount of shift is two. The
first value of the third row will then be the fifth value of the first row. Mathematical proof will
be done in Section 4.2. Such an example is illustrated in Figure 3.2.

Due to this properties, only the values of the first row and column will be computed and
the type of shift2 and the amount of shift will be determined by the map function. To reduce
data in the stream, the map function will only emit the type and amount of shift and the first
row or column instead of combining it into a OutputPlane. Without using window functions,
the output of the map function will be processed by another map function, that constructs a
full plane out of the shift type and amount and the first row or column. This full plane is then
added to the final plane of the map class and emitted for every new data point.

2Whether the row or the column contains all values and therefore needs to be shifted to build the other values

19



Figure 3.2.: Example of Shift of the Rows

The first map function, that provides shift and first row or column can operate in parallel,
since this determination is independent. However, the combination of all the output of the first
map function can not be done in parallel, since the OutputPlan needs to include the values of
every point. If this process would be parallelized, multiple instances of an OutputPlane would
exist and the data points would not flow into one OutputPlane containing all the data.

3.2.4. Discrete Fourier transform using Window Function
With the usage of a window function, the process of calculating the discrete Fourier transform
can be optimized. The first map function described in Section 3.2.3 will be used again to
determine shift properties and the first row or column. The data stream will then be be keyed.
Keying is the action of partitioning a stream by a given key. Streams with the same key will
then be processed by the same instance function. We will key the stream by its shift type and
its shift value. This is done, because the first row or column of data point with the same shift
properties can be added to each other and then the plan can be produced out of the summed
up row or column.

Windows

To still have a near-real-time-processing, the usage of a time window functions is advised. A
window in general splits the stream in finite buckets of data. A time window will do this based
on different implementations in combination with time. Apache Flink supports three different
types of time windows.

• The tumbling window, which partitions the data into non overlapping windows of a
given time t. A data point will be in exactly one window.
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• The sliding window will make windows of a given time t1 every time t2. This allows
sliding windows to overlap.

• The session window is a flexible length window, that will close once the data stream has
been producing any new data for a given time t.

(a) Tumbling window

(b) Sliding window

(c) Session window

Figure 3.3.: Different window implementations in Apache Flink [1]

Figure 3.3 illustrates the different time windows.
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Other types of windows, such as count windows3 would not fulfil the requirement of a
close-to-real-time processing of records. The time window is then used in combination with
a reduce function. This function reduces the input of the window to a single output once the
window is closed. The reduce function is then used to sum up the values of the first row or
column. At the closing of the window, the summed up array will be emitted in a tuple with
its shift properties. The window providing the least time between the input in the window
and the windows closing while not processing multiple times is the tumbling window. A
sliding window would either do the same as the tumbling window or process a record multiple
times. A session window might stay busy to long and keep the input values to long in the
reduce function until releasing the summed up values and therefore might even exclude a
often occurring shift from the result, since the window may never close. Therefore a tumbling
window has to be chosen[1].

After the tuples have been emitted, they can be added to the result plane with the same map
function described and used in Section 3.2.3. In contrast to the previous implementations, the
OutputPlane will no longer be evaluated for every datapoint but for every keyed stream created
by keying the stream. This keyed streams will include multiple datapoints with the same key
that were received during the in the tumbling window defined time.

3.2.5. Fast Fourier transform
For the fast Fourier transform a two dimensional array of complex numbers, using our class
Complex.java, is initialized for every single input tuple. The complex number at the point
X = tuple.f0 and Y = tuple.f1 is then set to the value of tuple.f2. Similar to the normal two
dimensional dft-algorithm (see Algorithm 2) the two dimensional fft algorithm is implemented
by transforming every row of the plane with fft and then transforming every column of the
plane. In Listing 3.6 the map function doing exactly this fast Fourier transform is described.

The implementation of the dofft(x) function will be described further in 4.5. The class vari-
able myplane is used to add up all the values of the fast Fourier transform of every datapoint
processed. The type of the output of this map function is in the Section 3.2.1 described Out-
putPlane. This plane will be emitted every time a new datapoint has been processed and its
result has been added to the result plane.

3A count window takes n input data points and closes after these n data points have been taken. The next n data
point will be processed by the next count window. This can be used to control the size of batches processed.
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Listing 3.6: FFT Map Function
p u b l i c O u t p u t P l a n e map ( Tuple3 < I n t e g e r , I n t e g e r ,

Double > i n T u p l e 3 ) {
Complex [ ] [ ] i n p = new Complex [ row ] [ row ] ;
Complex [ ] x = new Complex [ row ] ;

f o r ( i n t i = 0 ; i < row ; i ++) {
f o r ( i n t j =0 ; j <row ; j ++) {

i n p [ i ] [ j ] = new Complex ( 0 , 0 ) ; ;
}

}
i n p [ i n T u p l e 3 . f0 ] [ i n T u p l e 3 . f1 ] =
new Complex ( i n T u p l e 3 . f2 , 0 ) ;
f o r ( i n t i = 0 ; i < row ; i ++) {

f o r ( i n t j = 0 ; j < row ; j ++) {
x [ j ] = i n p [ j ] [ i ] ;

}
d o f f t ( x ) ;
f o r ( i n t k = 0 ; k < row ; k ++) {

i n p [ k ] [ i ] = x [ k ] ;
}

}
f o r ( i n t i = 0 ; i < row ; i ++) {

f o r ( i n t j = 0 ; j < row ; j ++) {
x [ j ] = i n p [ i ] [ j ] ;

}
d o f f t ( x ) ;
f o r ( i n t k = 0 ; k < row ; k ++) {

i n p [ i ] [ k ] = x [ k ] ;
}

}
f o r ( i n t i = 0 ; i < row ; i ++) {

f o r ( i n t j =0 ; j < row ; j ++) {
myplane . addValue ( i , j , i n p [ i ] [ j ] ) ;

}
}
re turn myplane ;

}
}
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3.3. Complete Pipeline
The before mentioned functions and techniques used will result in a finished stream pipeline.
For an example data input 2, 3 = 2.00 with a grid of size 4, the full streaming pipeline will
process the data point as followed.

The datapoint will be read from the file and a string with the value 2, 3 = 2.00 will be pro-
duced. To control the data flow, a count window is used. This window will create data batches
of the size of the window. This string will then be converted in a Tuple3<Integer, Integer,
Double>. This conversion in done by the splitter class, that implements a map function. After
the values are represented in this tuple, the different implementations of the Fourier transform
will be applied to the data. In the experiment setup, there are five different ways the Fourier
transform is computed. These are defined as following:

• DFT with Rotation: With this implementation, the shift type and amount will be calcu-
lated. For the example point the shift type will be row shift and the amount will be 2.
The complex vector that makes up the first row is [2.0, 2.0i,−2.0,−2.0i]. Based on the
shift properties the full grid will be calculated. The resulting grid will be show in Table
3.1. This values will then be added to the OutputPlane.

2.0 2.0i -2.0 -2.0i
-2.0 -2.0i 2.0 2.0i
2.0 2.0i -2.0 -2.0i
-2.0 -2.0i 2.0 2.0i

Table 3.1.: Result of Fourier transform of Point V (2, 3) = 2.00

• DFT with Rotation and Window Functions: In this implementation, the shift properties
and the first vector are computed in the same way as mentioned in DFT with Roatation.
After these computations have been made, the stream will be keyed by the shift amount
and shift type. Each stream with a different key will then be processed by a time window
of five seconds. In the time window, all the first row vectors will be summed up.

Consider the Input of our example occurs twice in the time window. The two points will
have the same shift properties and therefore be processed by the same window function.
This results in a vector with the values [4.0, 4.0i,−4.0,−4.0i]. The summed up vector
together with the shift properties will then be emitted. Out off this, the plane will be
constructed and added up.

• DFT with Rotation and Twiddle Factor precomputation: In this implementation, the
twiddle factors will be pre computed. We will pre compute W 0

N to WN−1
N . We could

even reduce this toW 0
N toWN/2

N . This would make the lookup of the twiddle factor more
complicated, because the lookup function then would need to determine if the position
is smaller or larger than N/2. Since the computation is only made once, but the look
ups are done multiple times, the simplicity of the lookup function is preferred.
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For the example points, the index of the twiddle factors would be [0, 3, 2, 1] the twid-
dle factors would be a s described in Table 3.2. The Twiddle factors at the index are
looked up and then multiplied with the value V (u, v) = 2.00. The vector for the first
row will then be emitted and processed in the same way as in the before mentioned
implementations.

W x
N rel img

x = 0 1.0 0.0i
x = 1 0.0 -1.0i
x = 2 -1.0 0.0i
x = 3 0.0 1.0i

Table 3.2.: Twiddle factors for grid size N = 4

• DFT with Rotation, Twiddle Factor precomputation and use of Window Functions: As
the name implies, this implementations combines the twiddle pre computation with the
window function.

• Fast Fourier transform: For FFT the in Listing 3.6 described map function will be used.
This measurement will be used as base line reading.

After the Fourier transform has been computed in one of the described ways, the resulting
OutputPlane will be emitted and saved to the Output File. The graphic representation of the
different implementations is provided in Figure 3.4.
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(a) DFT with Rotation

(b) DFT with Rotation and Window Functions

(c) DFT with Rotation and Twiddle Factor pre-computation

(d) DFT with Rotation and Twiddle Factor precomputation and use of Window Functions

(e) Fast Fourier transform

Figure 3.4.: Graphic representation of different stream pipelines
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4. Fourier Transform implementation

In this Section the different implementations of the Fourier transform will be discussed and
mathematical proof of correctness will be done. Especially the implementation wit the rotation
of the first row or column will be described. For these implementations, the grid has to be same
length as with and the length needs to be a power of 2. The discussed algorithm is then applied
to our standard example.

Example

To illustrate the different algorithms discussed, we will use a set of example points with their
value in a grid of size 4 to show how the Fourier transform is calculated.

Point Number x-coordinate y-coordinate value
1 1 1 4
2 2 2 1
3 3 3 2

Table 4.1.: Example points and its values

4.1. Single Point DFT
Since a single point implementation of the discrete Fourier transform is discussed, the general
formula see (2.8) of the 2D discrete Fourier transform can be simplified. The normal discrete
Fourier transform at one point (u, v) would consist of a sum of all input values at point (m,n)
multiplied with W um

M and W vn
N . Therefor the Value at point (u, v) would be a sum of M times

N complex values, where M and N correspond to the grid size.
Since single point DFT is discussed, only the value at our single input point (x, y) is not

zero. Therefore the output of the Fourier transform is only dependent on this one input point,
since all the multiplications with the input value zero would result in zero. Therefor every
point (u, v) of the transformed matrix can be described by a single multiplication of the input
value at point (x, y) with its twiddle Factors W ux

M and W vy
N as described in (4.1).

F (u, v) = v(x, y) ∗W ux
M ∗W

vy
N (4.1)

So the two dimensional discrete Fourier transform can easily be implemented using two for
loops to loop over the whole plane. For the Nth root of unity e−j2π/N is used, which can be
re-written as cos (−2π/N) + j ∗ sin (−2π/N). The terms −2π ∗ u ∗ x/M and −2π ∗ v ∗ y/N
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are then used to describe the angle, of which the cosine and sine will describe our complex
twiddle factor. This will result in the implementation listed in Listing 4.1.

Listing 4.1: Map function for DFT
p u b l i c O u t P u t P l a n e map ( Tuple3 < I n t e g e r ,

I n t e g e r , Double > i n T u p l e 3 ) {
double i n v e r s e 1 = 1 . 0 / myplane . ge tRowSize ( ) ;
double i n v e r s e 2 = 1 . 0 / myplane . ge tColumnSize ( ) ;
f o r ( i n t x = 0 ; x < myplane . getRowSize ( ) ; x ++)

f o r ( i n t y = 0 ; y < myplane . ge tColumnSize ( ) ; y ++) {
double a n g l e 1 =
−2 ∗ Math . PI ∗ x ∗ i n T u p l e 3 . f0 ∗ i n v e r s e 1 ;

double a n g l e 2 =
−2 ∗ Math . PI ∗ y ∗ i n T u p l e 3 . f1 ∗ i n v e r s e 2 ;

Complex W1 =
new Complex ( Math . cos ( a n g l e 1 ) , Math . s i n ( a n g l e 1 ) ) ;

Complex W2 =
new Complex ( Math . cos ( a n g l e 2 ) , Math . s i n ( a n g l e 2 ) ) ;

Complex r e s u l t = W1. t i m e s (W2) . t i m e s ( i n T u p l e 3 . f2 ) ;
myplane . addValue ( x , y , r e s u l t ) ;

}
re turn myplane ;

}

Example

For the example point number 1 from our Table 4.1 we would make the following computa-
tions to calculate the discrete Fourier transform. First the inverse will be calculated which is
equal to 1/4 for both values, since we are using a grid with same length as width. We will
first calculate the first column of the output, since the y-coordinate is in the inner loop. To
calculate the final value at the point we will illustrate the calculation of the complex numbers
angles, the complex numbers and the resulting number in Table 4.2a.

When then calculating all numbers for x and y from 0 to 3 the resulting grid will be as
shown in Table 4.2b. When now computing the Fourier transform for the second point, the
resulting grid after the transform would be as shown in Table 4.2c. When added together the
Fourier transform of the grid containing point 1 and 2 would be as shown in Table 4.2d.
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x y Angel1 Angel2 Complex w1 Complex w2 Result (w1 ∗ w2 ∗ value)
0 0 0 0 1 1 4
0 1 0 −1/2π 1 -i -4i
0 2 0 −π 1 -1 -4
0 3 0 −3/2π 1 i 4i
1 0 −1/2π 0 -i 1 4i
1 1 −1/2π −1/2π -i -i 4
1 2 −1/2π −π -i -1 -4i
1 3 −1/2π −3/2π -i i -4

(a) computations for the first two columns of DFT
4 -4i -4 4i

-4i -4 4i 4
-4 4i 4 -4i
4i 4 -4i -4

(b) Result of DFT at point (1,1) with value 4
1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1

(c) Result of DFT at point (2,2) with value 1
5 -1-4i -3 -1+4i

-1-4i -3 -1+4i 5
-3 -1+4i 5 -1-4i

-1+4i 5 -1-4i -3

(d) Result of DFT of the points 1 and 2

Table 4.2.: Computation for DFT of Point 1 and 2 of discussed Example

4.2. Shift Implementation
As stated in Section 4.1, the Fourier transform for a point can be described by a single function
without any summation. Since the twiddle factor is periodic, any values X for WX

N bigger
than N will result in the same as X modulo N . Since there are only N different values of
the twiddle factor we will refer to a specific value as the X − th twiddle factor = WX

N . As
stated in the definition of the twiddle factor, this value X is in our case defined by ux and vy.
Since W ux

M ∗W
vy
N have the same base, we can rewrite the exponentiation as an addition of the

exponents with the same base. For the Fourier transform of a input value v(u, v) the transform
would then be defined as in Equation (4.2).

F (u, v) = V (x, y)e−j2π
ux
M

+ vy
N (4.2)

When only looking at the first row, the twiddle factor will be determined by the x-coordinate
of the input value and the x-coordinate of the cell of the output, since the y-coordinate of the
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first row is zero. Therefor the twiddle factor will be a multiple of the x-coordinate of the input
for all values of the first row ux. Since we are only interested in values from 0 to N − 1 we
can state, that the twiddle factor of the first row can be described by

W [u] = W u∗x mod N
N for u from 0 to N − 1. (4.3)

For any odd values of x, the result of this equation will contain all the values from 0 to N − 1.
To proof this, we have to look at the greatest common divisor of the value x and N . Since

N is a power of 2b, the only prime factors N consists of will be b times the prime factor 2.
Every odd number x is per definition not divisible by 2. Therefore its prime factors will never
contain 2. This leads to the fact, that the lowest common multiple is in fact the multiplication
of the number x and N .

Therefore u ∗ x mod N will only be zero if u ∗ x is either 0 or the lowest common multiple
or a multiple of the lowest common multiple. u ∗ x would be the lowest common multiple
once u is equal to N . However, this will never happen, since as stated in Equation (4.3), u is
only in the range of 0 to N − 1. The modulo of u ∗ x by N will be u ∗ x until u ∗ x is greater
than N .

Since x is odd and does not contain any common prime factor with N , at the point, where
u ∗ x is the first time bigger than N it will be bigger by an number r that is in the range of 1
and x− 1 because the previous number, that was smaller than N has been increased by x. The
general range of r is 0 to x− 1.

The first case, where u ∗ x mod N yields 0 is when u is 0. The next point will be at the the
lowest common multiple of x and N . Modulo can be re written as u ∗ x − k ∗ N , where k
should be the biggest possible number that will yield a non negative results. The term u ∗ x
will range from 0 to N ∗ x− x. Therefore k will range from 0 to x− 1. Since k ranges from
0 to x − 1, the number r defined as the rest once u ∗ x is bigger than N , has to progress to
a point where the rest would be zero again. This would happen when u = N . Therefore for
every different k, we will have a different number r. Since k covers every number from 0 to
x− 1, r will also cover every number from 0 to x− 1.

Until u ∗ x is bigger than N , every multiple of x will be a result of u ∗ x mod N . Once it
gets bigger than N , we will start at the point r and from there on add all multiples of x. Since
r is every number from 0 to x, we therefore will cover every number from 0 to N − 1.

When looking at an even value of x, it will depend on how many time the number x contains
the prime factor 2. The more this prime factor 2 is contained, the more the lowest common
multiple is divided by 2. The lowest common multiple defines how many different rest r will
occur. This will range from x

21
to x

N/2
. Therefore the set of numbers that build the rest r once

u ∗ x exceeds N still ranges from 0 to x − 1 but will only be every 2nth Number, where n is
how many times the number x has 2 as a prime factor. For example the number 10 would have
the values 0, 2, 4, 6, 8 for r, since it only contains the prime factor 2 once. For 12 it would be
0, 4, 8.

Therefor every multiple of 2n from 0 to N − 1 will be in the result set of u ∗ x mod N ,
where u from 0 to N − 1 and n = amount of prime factor 2 in number x.

The same is true for the first column, which is only defined by vy. Therefore the first row
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and the first column will either contain the same values or either one will be a subset of the
other one.

When looking at the second row, the index of the twiddle factor will still be defined by ux,
but it is now also dependent on 1 ∗ v . So the index will be one y bigger than in the first row.
But the increase of the twiddle factor for the next value in the same row will still be the same
as in the first row. For the third row, it will be two y bigger and so on. The same is true for all
columns. There are now three different cases that can occur.

• The first row and column can both contain all numbers. If this is the case, all rows or
columns can be expressed by a shift of the first one, since it will contain all index values.

• One first row or column contains all numbers, the other one not. If this is the case, the
following rows or column will be expressed by the first row or column containing all
values. The increase of the index does not matter since it will contain all index values.

• Both rows are only a subset of M = {a|0 ≤ a ≥ N − 1}. In this case, the first row
or column with the greater set of distinct numbers will be used to express the following
ones. If both have the same amount it does not matter which one is taken. Otherwise
the row or column with the smaller set will now determine how much the index of the
second row is increased. This is exactly the value x or y, depending on whether the
row or the column has the smaller set of numbers. As described, the size of the set of
numbers contained is related to how many times 2 is a prime factor of x or y. Therefore
an addition of the increase defined by x or y will always be made with a number that is
at least dividable with the same power of two or higher as the other number, since its
prime factorization will contain at least the same amount of 2 as its prime factor. Thus
the index of the twiddle factor of point (0,0) with the addition of the value x or y to get
the index at point (0,1) or (1,0) will result in a number that is still contained in the bigger
set of numbers that is represented by the row or column. Therefore, it can still be used
to describe all the values of the grid.

To determine the amount and type of shift the following Equation (4.4) has to be solved.

x ∗ i mod N = y or y ∗ i mod N = x Where i is the amount of shift (4.4)

The Algorithm 3 does compute exactly this to determine the shift
Assuming, that the row contains all values, the values of the output of the Fourier transform

can then be expressed by the following equation (4.5). If the first column contains all the
values, x and y have to be swapped.

F (x, y) = Firstrow[(shiftamount ∗ x+ y) mod N ] (4.5)

Firstrow refers to the array of complex numbers of the first row. With the use of Firstrow[x],
the xth element of the array will be accessed.
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Algorithm 3 determine shift
for i = 0 to N do

if (x*i) mod N == y then
columshift← true
Shiftamount← i

end if
if (y*i) mod N == x then

columshift← false
Shiftamount← i

end if
end for

Example

For the example point 1 described in Table 4.1 we will first determine what type and amount of
shift occurs. For this we have to evaluate the terms (x∗i) mod N == y and (y∗i) mod N ==
x for i from 0 to N − 1. This is shown in Table 4.3a. Since both row and column shift are
possible it was decided, that in this case the column shift will be preferred. Therefore we will
have a column shift of 1. So we will compute the values of the first row as described in Table
4.2a. We can then calculate the index of the first column that represents any point in the grid
as stated in (4.5). This will result in the values shown in Table 4.3b.When now constructing
the plane out of the values of the first column, we will have the same resulting grid as shown
in 4.2b.

For the second point (2, 2) = 1 the shift type will be column shift and also by an amount
of 1. Therefore the indices for the point in the grid will be the same as ahown in 4.3b. After
calculating the values of the first column, we can also construct the full plane, which will
result in a representation excatly the same as shown in Table 4.2c. Therefore the result of the
addition will also be the same.

4.3. Twiddle Factor precomputation
As described in Section 4.2, the twiddle factor of the first row or column can be determined
by only the index of the field of the row and the coordinates of the input values. Therefore,
instead of calculating the value of the twiddle factor for every point an then multiply it with
the value at the input point, all values of the twiddle factor can be precomputed and then just
looked up.

The twiddle factor for the first row is defined as W x∗u
N . So for the output point (u, 0) we

will look up the twiddle factor at index x∗u mod N . To precompute the twiddle factor, a class
can be used. All values will be calculated as soon as an object of the class is instantiated.

Listing 4.2: TwiddleFactors class
p u b l i c c l a s s T w i d d l e F a c t o r s implements S e r i a l i z a b l e {

p r i v a t e Complex [ ] myVector ; / / t o s t o r e t h e v a l u e s
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i (x ∗ i) mod N == y (y ∗ i) mod N == x
0 0 == 1 = false 0 == 1 = false
1 1 == 1 = true 1 == 1 = true
2 2 == 1 = false 2 == 1 = false
3 3 == 1 = false 3 == 1 = false

(a) Shift determination for point (1,1)
x y Index ((shiftamount ∗ x+ y) mod N )
1 0 1
1 1 2
1 2 3
1 3 0
2 0 2
2 1 3
2 2 0
2 3 1

(b) Index of first column for following column for point (1,1)

Table 4.3.: Computations made to determine shift and construct plane

p u b l i c T w i d d l e F a c t o r s ( i n t s i z e ) {
myVector = new Complex [ s i z e ] ;
double i n v e r s e 1 = 1 . 0 / s i z e ;
f o r ( i n t i = 0 ; i < s i z e ; i ++) {

double a n g l e 1 = (−2.0 ∗ Math . PI ∗ i ∗ i n v e r s e 1 ) ;

Complex W1 =
new Complex ( Math . cos ( a n g l e 1 ) , Math . s i n ( a n g l e 1 ) ) ;

myVector [ i ] = W1;
}

}
p u b l i c Complex getComplex ( i n t i n d e x ) {

re turn myVector [ i n d e x ] ;
}

}

The value of a point in the first row (u, 0) is defined as shown in Equation 4.6.

F (u, 0) = v(x, y) ∗W x∗u mod N
N . (4.6)

Therefore the values of the first row of the output of the Fourier transform can then be
calculated without the use of trigonometric functions and only one complex factor in the mul-
tiplication, since we are only considering real input values.The complex multiplication that is
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defined as
z1 = (a+ bi), z2 = (c+ di)

z1 ∗ z2 = (ac− bd) + (ad+ bc)i.
(4.7)

can be re written as
z1 = (a+ bi), z2 = (c+ 0i)

z1 ∗ z2 = (ac) + (bc)i.
(4.8)

where z2 is a real number. This reduces the number of computations required to calculate the
Fourier transform.

Example

For our example the twiddle factors will be as shown in Table 4.4a. The values of the first row
can then be calculated using the formula shown in Equation (4.6). For the first point this will
result in the values shown in Table 4.4b. For the second point the values are as shown in Table
4.4c

Index Complex W
0 1
1 -i
2 -1
3 i

(a) Twiddle factors for N = 4
Index Twiddle Factor Resulting Value

0 W 0
N = 1 4

1 W 1
N = −i -4i

2 W 2
N = −1 -4

3 W 3
N = i 4i

(b) Values for the first row using twiddle factor precomputation for point 1
Index Twiddle Factor Resulting Value

0 W 0
N = 1 1

1 W 2
N = −1 -1

2 W 0
N = 1 1

3 W 2
N = −1 -1

(c) Values for the first row using twiddle factor precomputation for point 2

Table 4.4.: Computations made for twiddle factor precomputation

4.4. Window Function
Since the goal of our stream processing use case is to continuously compute the Fourier trans-
form, every input is separately transformed and all the transformed output will be added up.
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As described in the shift implementation, the Fourier transform can be described by the shift
properties and the first row or column. Instead of constructing the full plane out of this infor-
mation an the adding together all planes to get the final result, we can key the stream by the
shift properties. This is done, because for data points with the same shift properties, the plane
will be constructed in the same way as shown in (4.5).

After the construction of the plane, the whole planes would be added to the final output
plane. This would require N ∗ N complex additions. Instead of adding the output plane of
every single data point individually, a time window is used to sum up the first vector of streams
with the same key. This additions will only take N complex additions for every data point that
is an input to the time window and then the already summed up plane can be added to the final
plane, which will still requireN ∗N complex additions. The additions in the time window will
be done by a reduce function. The implementation of keyed streams and window functions is
very straight forward in Apache Flink.

The .keyBy() function can easily be called on any data stream. As argument it will take the
index of the element that should made up the key or its field name. After the data stream has
been keyed, a window can be applied with the use of the window() function that takes a win-
dow as function argument such as TumblingProcessingT imeWindows.of(Time.seconds(5)),
which will create a five second tumbling time window. The windowed stream can then be re-
duced by calling the .reduce() function that takes a class that implement the reduce method.
In this case the reduce function is defined as listed in Listing 4.3.

Listing 4.3: Reduce Function for addition of first row or column
p u b l i c Tuple3 <Complex [ ] , Boolean , I n t e g e r > r e d u c e

( Tuple3 <Complex [ ] , Boolean , I n t e g e r > v1 ,
Tuple3 <Complex [ ] , Boolean , I n t e g e r > v2 ) {

f o r ( i n t i = 0 ; i < row ; i ++){
v1 . f0 [ i ] = v1 . f0 [ i ] . p l u s ( v2 . f0 [ i ] ) ;

}
re turn new Tuple3 < >( v1 . f0 , v1 . f1 , v1 . f2 ) ;

}

Example

Assuming the three points shown in Table 4.1 are processed in the same window, depending
on their keys, they might be processed by the same instance of the reduce function. As we
already evaluated in the shift example, the first two point both have a column shift of one.
Therefore they have the same key and will be processed by the same reduce function. This
function will sum up the values of the first column. In our example this would result in a first
column as shown in Table 4.5a. Because the shift has an amount of 1, the plane expressed by
the first column will be the same as shown in Table 4.2d.

Now once we also look at the third point in our window, we realize, that its shift also is a
column shift of the amount of 1. Therefor the third point will also be added up in our reduce
function, which will result in an output vector of the reduce function as shown in Table 4.5b.
This will then result in an plane that describes the Fourier transform of a grid containing all
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the input points such as shown in Table 4.5c. The resulting grid constructed of shifting the
reduced vector will then be as shown in 4.5d

Point 1 Point 2 Resulting column
4 1 5

-4i -1 -1-4i
-4 1 -3
4i -1 -1+4i

(a) Resulting column of reduce function for point 1 and 2
Point 1 Point 2 Point 3 Resulting column

4 1 2 7
-4i -1 2i -1-2i
-4 1 -2 -5
4i -1 -2i -1+2i

(b) Resulting column of reduce function of all three points
0 0 0 0
0 4 0 0
0 0 1 0
0 0 0 2

(c) The full input grid
7 -1-2i -5 -1+2i

-1-2i -5 -1+2i 7
-5 -1+2i 7 -1-2i

-1+2i 7 -1-2i -5

(d) The result of the Fourier transform of all three points

Table 4.5.: Computations made with usage of window function
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4.5. Fast Fourier transform
For the evaluation of the performance of the fast Fourier transform, a standard implementation
published by Sedgewick and Wayne has been used[11]. This one dimensional implementation
has then been used as shown in listing 3.6. The standard implementation is defined as in
Algorithm 4.

Algorithm 4 dofft()[11]
n = x.length;
shift = 1 + Integer.numberOfLeadingZeros(n);
for int k = 0; k < n; k++ do

int j = Integer.reverse(k) > > > shift;
if j > k then

Complex temp = x[j];
x[j] = x[k];
x[k] = temp;

end if
end for
for int L = 2; L <= n; L = L+L do

for int k = 0; k < L/2; k++ do
double kth = −2 ∗ k ∗Math.PI/L;
Complex w = new Complex(Math.cos(kth), Math.sin(kth));
for int j = 0; j < n/L; j++ do

Complex tao = w.times(x[j*L + k + L/2]);
x[j*L + k + L/2] = x[j*L + k].minus(tao);
x[j*L + k] = x[j*L + k].plus(tao);

end for
end for

end for
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5. Experimental Evaluation

5.1. Goal
The goal of the performance evaluation made, was to analyze and compare the performance of
the new implemented discrete Fourier transform algorithm, which uses the shift computation
and then the computation of the first row or column, with the traditional FFT implementation.
Furthermore the performance behavior of the other enhancements proposed should also be
analyzed. Another goal is to evaluate whether the parallelization of the shift determination
grants an increase in performance or not. This may give some additional information about
how much the additions of the whole plane are still the bottleneck of these computations.
Therefore the performance of the algorithm will be evaluated on different grid sizes. When
referring to a grid of size N a grid with N rows and N columns is meant. This means the
amount of Points in the grid is N2. The different implementations have been evaluated with
a grid size of 2N where N ranges from 5 to 12 resulting in grids from 32 to 4096. For all the
different grid sizes, a separate input file with a total of 10′000 values has been generated with
the python script mentioned in Listing 3.1.

5.2. Experimental Setup
To evaluate the performance of the different implementations of Fourier transform in the
stream processing environment, a constant platform for running the experiments had to be
used. For our results, Apache Flink was run on a desktop computer with an Intel core i7 sixth
generation quad core processor with a total of eight threads boosting up to 3.8 GHz processing
speed. To not limit the performance by input/output operations, all files have been saved on an
m.2 nvme SSD. The computer running Flink used two 16GB modules of DDR4 RAM adding
up to a total capacity of 32 GB of RAM. The computer is running Windows 10 as operating
system.

Since the running time of the larger grids (n = 4096) tend to bee at around the 30 minute
mark, we settled on running the configuration we want to evaluate ten times and then use the
mean and median of these measurements to compare the different implementations. All the
measurements are made by using the System.nanoT ime() function in java to get the current
system time in nanoseconds. This function is used at the start of the main method to get
the start time and is then taken again after the stream environment has been executed. By
calculating the difference and multiplying with 106 we will get the run time in milliseconds.
All the listed run times will be in milliseconds if not explicitly noted different.

The experiments have then been run for the following different configurations:
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• FFT: the FFT implementation described in 3.2.5 and 4.5 will build our base line reading
to compare our new algorithm with the current standard implementation.

• DFT with rotation: This implementation will be evaluated with a variety of different
parallelism levels of the shift determination algorithm ranging from one to four, since
the computer running the experiments has four cores. The final additions can not be
calculated in parallel manner since all input points have to add up to one final value.

• DFT with rotation and twiddle factor precomputation: Instead of computing the twiddle
factors for every point, we will now just precompute the twiddle factors

• DFT with rotation and window Functions: The window function implementation will
bee evaluated for different sizes of window ranging from 1 to 10 seconds, since we still
want to be at the close-to-real-time execution of computations.

• DFT with rotation, twiddle factor precomputation and use of window Functions: As
stated we will combine the window function with the twiddle factor precomputation
and evaluate its performance.

5.3. Results of Experiments
In this Section the raw data of the experiments will be presented and discussed. All the raw
data is included in the appendix A.

5.3.1. Linear Stream Pipelines
In this Section the FFT implementation, the rotation implementation, the rotation with twiddle
precompute implementation and the window implementation, all of these in a serial configu-
ration without any parallel computation steps, will be compared. The run times are visualized
in Figure 5.1.

We can clearly see, the run time of the FFT implementation drastically increases with the
grid size. If the computation time for one point in the FFT algorithm is compared to the same
measurement of the rotation algorithm, we can clearly see, that the computation time starts
at barely the same time for one record at a grid of size 32 but then drastically increases until
the FFT algorithm needs 60 times more time to calculate than the FFT for one point at a grid
size of 4096 as seen in Figure 5.2. When only comparing the implementation with rotation
and its enhanced variants with twiddle factor precomputation and the window function, We
can see that both of the enhancements made, grant an increase in performance. We can see
that the twiddle factor precomputation only grants a small increase in performance in contrast
to the window implementation, which grants a much bigger increase in speed. This is due to
the fact, that the precomputation implementation only reduces the computation in the for-loop
where the first row or column is computed. therefore the saving of computation is only for a
computational step that is executed N times.
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Figure 5.1.: Linear Run Times

Figure 5.2.: Ratio of computation time for one single point for FFT and rotation implementa-
tion

The window function in contrast reduces the amount of times a whole plane is added to the
OutputPlane. Therefore the additions that are carried outN2 times can be reduced. How many
of these additions can be reduced depends on how many data point with the same shift are in
the time window. This effect will be evaluated in Section 5.3.3

5.3.2. Parallel Stream Pipelines
When comparing the normal rotation implementation, we can barely see in Figure 5.3, that
the computations of the shift properties and the first vector tend to get more efficient once
the operations are performed in a parallel manner. However, the performance gain for the
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computation of one record for the grid of size 4096 is only in the millisecond range and
therefore is pretty negligible. This indicates that the additions of the single Fourier transformed
grids to the final OutputPlane still take the most computational power and therefore bottleneck
the stream processing. Therefore a more efficient computation of the rotation will in either way
be useless since these outputs can not be processed any faster.

Figure 5.3.: Run Times for different parallelism levels of the rotation implementation

The parallel implementations of the rotation algorithm in combination with the twiddle fac-
tor precomputation even sees a decrease in performance as seen in Figure 5.4. This may occur
because the parallel computation of the shift properties and the first vector by just looking up
the twiddle factor may overload the map function that adds up the plane and the final Output-
Plane. Further evaluation must have been done to be able toe exactly specify the reason of this
performance decrease.

5.3.3. Window Size
The size of the time window will determine the amount of records processed by one window.
This will also influence the probability of having a case where the shift properties of two data
point are the same and out window function can be used to decrease the additions to add the
transformed grid to the final OutputPlane. As we can see in Figure 5.5, the computation times
for the smaller grids is nearly the same for all tree different sized time windows. This may
be due to the fact that the total running time is within the five to ten seconds mark. Therefore
the amount of data points per window are enough to have points with the same shift in one
window.

When the grid size increases, we can see that the performance of the one second time win-
dow drastically decreases in comparison to the five second window. The five second window
is also getting slower in comparison to the ten second window. This is due to the fact, that the
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Figure 5.4.: Run Times for different parallelism levels of the Twiddle precomputation imple-
mentation

shift determination of one single data point will take more time and also the number of dif-
ferent possibilities of shift property combinations increase. Therefore a window with a bigger
time slot will increase the chance to have data points that can be reduced.

However, choosing a larger window, for example with a time slice of 30 seconds, will
destroy the idea of the close-to-real-time computation we are aiming for when using stream
processing on the given data. So a trade-of between real time data and efficient processing
must been made, once a certain size of grid is used to calculate the Fourier transform on. We
settled on a five second time window since this unites the performance and the close-to-real-
time processing in a way we want the performance to be.

5.4. Combination of findings
As evaluated in Section 5.3, the combination of the window function with a time window of
size five seconds and the twiddle factor precomputation should yield the best performing im-
plementation of a single point Fourier transform. The shift determination will be done in serial
manner since a parallel computation will not affect the running time, since the additions after
the transform are still the bottleneck. When combining these, the run time for the computation
has decreased further as can bee seen in Figure 5.6.

42



Figure 5.5.: Run Time for different window sizes

Figure 5.6.: Run Time of combined stream versus the other implementations
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6. Conclusion

We showed that with the concern of having a grid with a size that is the power of 2, as it is
with most of the FFT implementations, the computation of the Fourier transform for a single
data point can be done in such a manner, that it is only necessary to compute the first row or
column of the output grid and all other values can be represented by the first row or column.
This implementation will still be bottle-necked by the complex additions that have to be done
to sum up all the single point Fourier transforms to then yield the final result. We proposed the
use of Window functions to decrease this bottleneck. However, until there is parallel no way
to add up the single point Fourier transform, while still preserving a stream order, the final
additions of the transforms to the OutputPlane are the bottleneck.

We showed with our artificially generated test data sets, that our base line implementation
using only the rotation algorithm already is a huge performance upgrade compared to the
normal FFT implementation. With the biggest grid used in our test, we can record a 60-
times faster processing time in comparison to the standard FFT implementation. During the
experimental evaluation, we found out, that the parallelization of the determination of the
shift properties is only leading to a performance gain as long as the computations made use a
certain amount of computational power. When we combined the determination of shift with
the precomputation of the twiddle factors, the performance was even reduced when executing
the computation of shift in parallel. The performance gain introduced by the usage of window
function was the biggest gain of all enhancements done to the algorithm since it reduced the
amount of times the whole grid needed to be added up to the final output grid. The combination
off all our enhancements of the algorithm even lead to a result that is up to 120 times faster
than the standard FFT implementation when comparing run times of the biggest grid.

The findings of our experiments are consistent with the theory our algorithm and its en-
hancement are base on. As predicted does the window function yield a bigger improvement in
performance of our algorithm than the precomputation of the twiddle factors. A way to further
increase the performance of this algorithm would be to find a way to aggregate the input of
the windows to create less output data that has to be added separately.
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A. Running Times

Grid Size Mean Running Time Median Running Time Mean Time for one record
32 7034.23091 6977.18069 0.70342309
64 16459.0537 16318.4034 1.64590537

128 55153.9608 55299.6424 5.51539608
256 209247.925 208702.07 20.9247925
512 952755.145 952755.145 95.2755145

1024 3442480.214 3323940.188 344.2480214
2048 17815213.6 174665.277 1781.52136
4096 112408954.6 1126814.524 11240.89546

Table A.1.: FFT results
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Grid Size Mean Running Time Median Running Time Mean Time for one record
32 4334.8109 4340.10722 0.43348109
64 4821.30645 4761.48184 0.48213064

128 6344.19153 6277.7676 0.63441915
256 11369.1983 11400.87 1.13691983
512 33121.2038 33254.7626 3.31212038

1024 106002.559 105044.837 10.6002559
2048 371454.968 365470.651 37.1454968
4096 1875693.675 1790838.998 187.5693675

(a) Parallelism of 1
Grid Size Mean Running Time Median Running Time Mean Time for one record

32 4085.97328 4048.45939 0.40859733
64 4144.76954 4033.77275 0.41447695

128 5426.98434 5446.6667 0.54269843
256 10352.6889 10122.6981 1.03526889
512 27048.8749 26810.08 2.70488749

1024 90399.7504 90324.0165 9.03997504
2048 353510.491 352237.221 35.3510491
4096 1861801.179 1862878.082 186.1801179

(b) Parallelism of 2

Grid Size Mean Running Time Median Running Time Mean Time for one record
32 3707.93107 3732.46348 0.37079311
64 4479.06623 4450.05659 0.44790662

128 5698.08133 5602.07678 0.56980813
256 9786.97422 9621.34588 0.97869742
512 26048.0055 26019.7405 2.60480055

1024 92546.8154 93949.1715 9.25468154
2048 345590.425 348657.094 34.5590425
4096 1856966.512 1847328.082 185.6966512

(c) Parallelism of 4

Table A.2.: DFT with rotation results
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Grid Size Mean Running Time Median Running Time Mean Time for one record
32 3705.78683 3702.87597 0.37057868
64 4092.3037 3788.72801 0.40923037

128 5751.10938 5827.1325 0.57511094
256 5646.15491 5345.2206 0.56461549
512 10747.1106 11035.4118 1.07471106

1024 48233.9416 45236.4681 4.82339416
2048 284571.323 284786.323 28.4571323
4096 1760642.268 1669198.484 176.0642268

(a) Window of 1 Second
Grid Size Mean Running Time Median Running Time Mean Time for one record

32 4325.11508 4266.47084 0.43251151
64 4428.50672 4384.1828 0.44285067

128 4624.1195 4620.38569 0.46241195
256 4975.5717 4964.14812 0.49755717
512 6837.92085 6268.83238 0.68379209

1024 18928.7245 22613.3962 1.89287245
2048 177283.32 186215.641 17.728332
4096 1433764.544 1417721.828 143.3764544

(b) Window of 5 Second

Grid Size Mean Running Time Median Running Time Mean Time for one record
32 3745.31403 3693.59793 0.3745314
64 4853.6401 4778.14609 0.48536401

128 4447.03168 4083.60318 0.44470317
256 4637.02773 4558.86479 0.46370277
512 5605.10155 5451.12371 0.56051015

1024 11773.5315 9001.44105 1.17735315
2048 55431.5831 59191.5831 5.54315831
4096 841038.6781 792712.7601 84.10386781

(c) Window of 10 Second

Table A.3.: DFT with rotation and window functions results
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Grid Size Mean Running Time Median Running Time Mean Time for one record
32 3923.07624 3898.73394 0.39230762
64 3840.7794 3808.51495 0.38407794

128 5187.00331 5159.68501 0.51870033
256 9049.81903 9042.40482 0.9049819
512 26084.0635 26506.1302 2.60840635

1024 85447.5594 85413.6733 8.54475594
2048 337222.158 325700.696 33.7222158
4096 1851801.179 1852878.082 185.1801179

(a) Parallelism of 1
Grid Size Mean Running Time Median Running Time Mean Time for one record

32 4060.84767 3994.89442 0.40608477
64 4285.1733 4247.87508 0.42851733

128 5523.90716 5444.49125 0.55239072
256 9958.11166 9780.59186 0.99581117
512 25386.6875 24082.0054 2.53866875

1024 85858.0007 85602.8528 8.58580007
2048 355143.812 350169.714 35.5143812
4096 1916437.376 1833924.316 191.6437376

(b) Parallelism of 2

Grid Size Mean Running Time Median Running Time Mean Time for one record
32 4143.86973 4111.99913 0.41438697
64 4392.11484 4349.12792 0.43921148

128 5839.60354 5705.02722 0.58396035
256 10730.0365 10916.0444 1.07300365
512 27883.9713 27692.2457 2.78839713

1024 102765.458 97404.0039 10.2765458
2048 403657.764 419939.233 40.3657764
4096 2102232.158 2099898.825 210.2232158

(c) Parallelism of 4

Table A.4.: DFT with rotation and twiddle factor precomputation results
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Grid Size Mean Running Time Median Running Time Mean Time for one record
32 4174.85544 4153.64587 0.41748554
64 4248.66991 4201.59961 0.42486699

128 4185.89422 4141.91118 0.41858942
256 4625.36345 4591.51868 0.46253634
512 5481.485 5500.42667 0.5481485

1024 11499.6276 9002.29273 1.14996276
2048 123687.836 133629.645 12.3687836
4096 1101319.311 1208856.182 110.1319311

Table A.5.: DFT with rotation, twiddle factor precomputation and use of window functions
results
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