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a b s t r a c t

This paper presents low computational-complexity methods for micro-aerial-vehicle localization in GPS-
denied environments. All the presented algorithms rely only on the data provided by a single onboard
camera and an Inertial Measurement Unit (IMU). This paper deals with outlier rejection and relative-
pose estimation. Regarding outlier rejection, we describe two methods. The former only requires the
observation of a single feature in the scene and the knowledge of the angular rates from an IMU, under
the assumption that the local camera motion lies in a plane perpendicular to the gravity vector. The latter
requires the observation of at least two features, but it relaxes the hypothesis on the vehicle motion,
being therefore suitable to tackle the outlier detection problem in the case of a 6DoF motion. We show
also that if the camera is rigidly attached to the vehicle, motion priors from the IMU can be exploited
to discard wrong estimations in the framework of a 2-point-RANSAC-based approach. Thanks to their
inherent efficiency, the proposed methods are very suitable for resource-constrained systems. Regarding
the pose estimation problem, we introduce a simple algorithm that computes the vehicle pose from
the observation of three point features in a single camera image, once that the roll and pitch angles
are estimated from IMU measurements. The proposed algorithm is based on the minimization of a cost
function. The proposedmethod is very simple in terms of computational cost and, therefore, very suitable
for real-time implementation. All the proposed methods are evaluated on both synthetic and real data.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, flying robotics has received significant attention
from the robotics community. The ability to fly allows easily
avoiding obstacles and quickly having an excellent birds eye view.
These navigation facilities make flying robots the ideal platform
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to solve many tasks like exploration, mapping, reconnaissance for
search and rescue, environment monitoring, security surveillance,
inspection etc. In the framework of flying robotics, micro aerial
vehicles (MAV) have a further advantage. Due to the small size
they can also be used in narrow out- and indoor environments
and they represent only a limited risk for the environment and
people living in it. However, for such operations today’s systems
navigating on GPS information only are not sufficient any more.
Fully autonomous operation in cities or other dense environments
requires theMAV to fly at lowaltitude or indoorswhereGPS signals
are often shadowed.

A relevant issue for MAVs is the limited autonomy and payload.
This brings researchers to focus their attention on low computa-
tional complexity algorithms and low-weight sensors.
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Table 1
Number of Ransac iterations.

Number of points (s) 1 2 3 5 8
Number of iterations (N) 7 16 35 145 1177

Recent works on autonomous navigation of micro helicopters
in GPS-denied environments have demonstrated the ability to
perform basic maneuvers using as little as a single camera and an
Inertial Measurement Unit (IMU) onboard the vehicle [1–3]. These
systems rely on well-known theory of Visual Odometry [4], [5]
which consists of incrementally estimating the pose of a vehicle
by examining the changes that motion induces on visually-tracked
interest points. These points consist of salient and repeatable
features that are extracted andmatched across consecutive images
according to their similarity.

One of the primary problems in Visual Odometry is wrong
data associations. Matched features between two different camera
views are usually affected by outliers. This is due to the fact
that changes in viewpoint, occlusions, image noise, illumination
changes and image noise are not modeled by feature-matching
techniques. To perform a robust motion estimation, it is essential
to remove the outliers. The outlier detection task is usually very
expensive from a computational point of view and is based on the
exploitation of the geometric constraints induced by the motion
model.

The standard method for model estimation from a set of data
affected by outliers is RANSAC (RANdom SAmple Consensus) [6].
It consists of randomly selecting a set of data points, computing
the correspondingmodel hypothesis, and verifying this hypothesis
on all the other data points. The solution is the hypothesis with
the highest consensus. The number of iterations (N) necessary to
guarantee a robust outlier removal is [6]:

N =
log(1 − p)

log(1 − (1 − ε)s)
(1)

where s is the number of data points from which the model can
be computed, ε is the percentage of outliers in the dataset, p is
the probability of success requested. Table 1 shows the number of
iterations (N) with respect to the number of points necessary to
estimate the model (s). The values are computed for p = 0.99 and
ϵ = 0.5. Note that N is exponential in the number of data points
s; this means that it is extremely important to look for minimal
parametrizations of the model, in order to reduce the number of
iterations, which is of utmost importance for vehicles equipped
with a computationally-limited embedded computer.

In this paper, which is an extension of our previous works [7,8],
we present low computational complexity algorithms to tackle the
problem of Micro Aerial Vehicle motion estimation in GPS denied
environment and outlier detection between two different views.
All themethods rely on themeasurements provided by an onboard
monocular camera and an IMU. The rest of the paper is organized
as follows. The next section provides the state of the art in outlier
detection and pose estimation respectively. Section 3 describes
the proposed methods to detect outliers between two consecutive
views of a camera rigidly attached to an IMU and presents the
extension of our previous work [8] which consist in relaxing
the hypothesis on the camera motion and making the approach
suitable for any 6DoF motion. The specific case of a camera
mounted onboard a quadrotor is also presented to show that
motion priors provided by the IMU can be used to discard wrong
estimations in the framework of a 2-point RANSAC approach.
Section 4 tackles the problemof pose estimationproviding a simple
algorithm able to estimate the vehicle pose from the observation of
three point features in a single camera image, once that the roll and
pitch angles are obtained by the inertial measurements. Section 5
presents the performance evaluation of the proposed methods
on synthetic and real data. Finally, conclusions are provided in
Section 6.
2. Related works

2.1. Outlier detection

When the camera is calibrated, its six degrees of freedom (DoF)
motion can be inferred from a minimum of five-point correspon-
dences, and the first solution to this problem was given in 1913
by Kruppa [9]. Several five-point minimal solvers were proposed
later in [10–12], but an efficient implementation, based on [11],
was found only in 2003 by Nistér [13] and later revised in [14].
Before that, the six- [15], seven- or eight-point solvers were com-
monly used. However, the five-point solver has the advantage that
it works also for planar scenes. Amore detailed analysis of the state
of the art can be found in [4].

Despite the five-point algorithm represents the minimal solver
for 5DoF motion of calibrated cameras, in the last few decades
there have been several attempts to exploit different cues to re-
duce the number of motion parameters. In [16], the authors pro-
posed a three-point minimal solver for the case of two known
camera-orientation angles. For instance, this can be usedwhen the
camera is rigidly attached to a gravity sensor (in fact, the gravity
vector fixes two camera-orientation angles). Later, thework in [17]
improved on [16] by showing that the three-point minimal solver
can be used in a four-point (three-plus-one) RANSAC scheme. The
three-plus-one stands for the fact that an additional far scene point
(ideally, a point at infinity) is used to fix the two orientation an-
gles. Using their four-point RANSAC, they also showed a successful
6 DoF VO. A two-point minimal solver for 6-DoF Visual Odome-
try was proposed in [18] and further employed in [19] to achieve
high-accuracy localization. This method uses the full rotation ma-
trix from an IMU rigidly attached to the camera. In ourworkwe ex-
ploit motion priors from IMU in order to discard wrong estimates.
In the case of planar motion, the motion model complexity is re-
duced to 3 DoF and can be parameterized with two points as de-
scribed in [20]. For wheeled vehicles, the work in [21,22] showed
that the motion can be locally described as planar and circular,
and, therefore, the motion model complexity is reduced to 2 DoF,
leading to a one-point minimal solver. Additionally, it was shown
that, by using a simple histogram voting technique, outliers can be
found in as little as a single iteration. In [19] the authors propose
a one-point algorithm for RGBD or stereo cameras which relies on
IMUmeasurements to recover the relative rotation. A performance
evaluation of five-, two-, and one-point RANSAC algorithms for Vi-
sual Odometry was finally presented in [23].

2.2. Pose estimation

In [24], inertial and visual sensors are used to perform ego-
motion estimation. The sensor fusion is obtained by an Extended
Kalman Filter (EKF ) and by an Unscented Kalman Filter (UKF ). The
approach proposed in [25] extends the previous one by also esti-
mating the structure of the environment where themotion occurs.
In particular, new landmarks are inserted on line into the estimated
map. This approach has been validated by conducting experiments
in a known environment where a ground truth was available. Also,
in [26] an EKF has been adopted. In this case, the proposed algo-
rithm estimates a state containing the robot speed, position and
attitude, together with the inertial sensor biases and the location
of the features of interest. In the framework of airborne SLAM,
an EKF has been adopted in [27] to perform 3D-SLAM by fusing
inertial and vision measurements. It was observed that any in-
consistent attitude update severely affects any SLAM solution. The
authors proposed to separate attitude update from position and
velocity update. Alternatively, they proposed to use additional ve-
locity observations, such as air velocity observation.More recently,
a vision based navigation approach in unknown and unstructured
environments has been suggested [28].
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Fig. 1. Epipolar constraint. p1 , p2 , T and P lie on the same plane (the epipolar plane).

Recent works investigate the observability properties of the
vision-aided inertial navigation system [29–35]. In particular,
in [33], the observable modes are expressed in closed-form in
terms of the sensor measurements acquired during a short time-
interval.

Visual UAV pose estimation in GPS-denied environments is still
challenging. Many implementations rely on visual markers, such
as patterns or blobs, located in known positions [36–38]. Those ap-
proaches have the drawback that canwork only in structured envi-
ronment. In [39] Visual–Inertial Attitude Estimation is performed
using image line segments for the correction of accumulated errors
in integrated gyro rateswhen an unmanned aerial vehicle operates
in urban areas. The approach will not work in environments that
do not present a strong regularity in structure.

In [40,41] the authors developed a very robust Vision Based
Navigation System for micro helicopters. Their pose estimator is
based on a monocular VSLAM framework (PTAM, Parallel Track-
ing and Mapping [42]). This software was originally developed for
augmented reality and improved with respect to robustness and
computational complexity. The resulting algorithm can be used in
order to make a monocular camera a real-time onboard sensor for
pose estimates. This allowed the first aerial vehicle that uses on-
board monocular vision as a main sensor to navigate through an
unknown GPS denied environment and independently of any ex-
ternal artificial aids [43,41].

Natraj et al. [44] proposed a vision based approach, close to
structured light, for roll, pitch and altitude estimation of UAV. They
use a fisheye camera and a laser circle projector, assuming that
the projected circle belongs to a planar surface. The latter must be
orthogonal to the gravity vector in order to allow the estimation
of the aforementioned quantities. The attitude estimation of the
planar surface becomes crucial in order to extend the operational
environment of UAVs. Shipboard operations, search and rescue
cooperation between ground and aerial robots, low altitude ma-
neuvers, require to attenuate the position error and to track the
platform attitude.

3. Outlier detection

In this section we present two low computational complexity
methods to perform the outlier detection task between two dif-
ferent views of a monocular camera rigidly attached to an iner-
tial measurement unit. The first one only requires the observation
of a single feature in the scene and the knowledge of the angular
rates provided by an inertialmeasurement unit, under the assump-
tion that the local camera motion lies on a plane perpendicular
to the gravity vector. In the second one we relax the hypothesis
on the camera motion. The observation consists of two features in
the scene (instead of only one) and of angular rates from inertial
measurements. We show that if the camera is onboard a quadro-
tor vehicle, motion priors from inertial measurements can be used
to discard wrong data association. Both the methods are evaluated
on synthetic and real data.
3.1. Epipolar geometry

Before proceeding further, we would like to recall some defi-
nitions about epipolar geometry. When a camera is calibrated, it
is always possible to project the feature coordinates onto a unit
sphere. This allows us to make our approach independent of the
camera model.

Let p1 = (x1, y1, z1) and p2 = (x2, y2, z2) be the image
coordinates of a point feature seen from two camera positions and
back projected onto the unit sphere (i.e., ∥p1∥ = ∥p2∥ = 1) (Fig. 1).

The image coordinates of point features relative to two different
unknown camera positions must satisfy the epipolar constraint
(Fig. 1) [45].

pT
2Ep1 = 0 (2)

where E is the essential matrix, defined as E = [T]×R. R and T =
Tx, Ty, Tz

T describe the relative rotation and translation between
the two camera positions, and [T]X is the skew symmetric matrix:

[T]× =

 0 −Tz Ty
Tz 0 −Tx

−Ty Tx 0


. (3)

According to Eq. (2), the essential matrix can be computed given a
set of image coordinate points. E can then be decomposed into R
and T [45].

The minimum number of feature correspondences needed
to estimate the essential matrix is function of the degrees of
freedom of the camera’smotion. In the case of amonocular camera
performing a 6DoF motion (three for the rotation and three for
the translation), considered the impossibility to recover the scale
factor, a minimum of five correspondences is needed.

3.2. 1-point algorithm

In this subsection we propose a novel method to estimate the
relative motion between two consecutive camera views, which
only requires the observation of a single feature in the scene and
the knowledge of the angular rates from an inertial measurement
unit, under the assumption that the local camera motion lies in a
plane perpendicular to the gravity vector. Using this 1-point mo-
tion parametrization, we provide two very efficient algorithms to
remove the outliers of the feature-matching process. Thanks to
their inherent efficiency, the proposed algorithms are very suit-
able for computationally-limited robots. We test the proposed ap-
proaches on both synthetic and real data, using video footage from
a small flying quadrotor. We show that our methods outperform
standard RANSAC-based implementations by up to two orders of
magnitude in speed, while being able to identify the majority of
the inliers.

3.2.1. Parametrization of the camera motion
Considering that the camera is rigidly attached to the vehicle,

two camera orientation angles are known (they correspond to the
Roll and Pitch angles provided by the IMU).

If Rx(γ ), Ry(γ ), Rz(γ ) are the orthonormal rotation matrices for
rotation of γ about the x−, y− and z−axes, the matrices

Cp1RB1 = (Rx(Roll1) · Ry(Pitch1))
T

Cp2RB2 = (Rx(Roll2) · Ry(Pitch2))
T (4)

allow us to virtually rotate the two camera frames into two new
frames {Cp1} and {Cp2} (Fig. 2). Pitchi and Rolli, (i = 1, 2) are the
angles provided by the IMU relative to two consecutive camera
frames.

The two new image planes are parallel to the ground (zCp1 ∥

zCp2 ∥ g).
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Fig. 2. Cp1 and Cp2 are the reference frames attached to the vehicle’s body frame but
which z-axis is parallel to the gravity vector. They correspond to two consecutive
camera views. Cp0 corresponds to the reference frame Cp1 rotated according to
dYaw.

If the vehicle undergoes perfect planar motion, the essential
matrix depends only on 2 parameters. Integrating the gyroscopic
data within the time interval relative to two consecutive camera
frames (i.e. the camera framerate), we can obtain the relative
rotation of the two frames about ZCp-axis. We define a third
reference frame Cp0 , that corresponds to the reference frame Cp1
rotated according to dYaw, in order to have the same orientation of
Cp2 (Fig. 2). Thematrix that describes this rotation is the following:
Cp0RCp1 = Rz(dYaw)T . (5)

To recap we can express the image coordinates into the new
reference frames according to:

pCp0 =
Cp0RCp1 ·

Cp1 RB1 · p1

pCp2 =
Cp2RB2 · p2.

(6)

At this point the transformation between {Cp0} and {Cp2} is a
pure translation:

T = ρ[cos(α) − sin(α) 0]T

R = I3
(7)

and it depends only on α and on ρ (the scale factor). The essential
matrix results therefore notably simplified:

E = [T]×R = ρ

 0 0 − sin(α)
0 0 − cos(α)

sin(α) cos(α) 0


. (8)

At this point, beingpCp0 = [x0 y0 z0]T andpCp2 = [x2 y2 z2]T ,
we impose the epipolar constraint according to (2) and we obtain
the homogeneous equation that must be satisfied by all the point
correspondences.

(x0z2 − z0x2) sin(α)+ (y0z2 − z0y2) cos(α) = 0 (9)
where p0 = [x0 y0 z0]T and p2 = [x2 y2 z2]T are the
directions (or unit-sphere coordinates) of a matched feature in
{Cp0} and {Cp2} respectively. Eq. (9) depends only on one parameter
(α). This means that the relative vehicle motion can be estimated
using only a single image feature correspondence.

At this point we can recover the angle α from Eq. (9):

α = tan−1

z0y2 − y0z2
x0z2 − z0x2


. (10)

3.2.2. 1-point RANSAC
One feature correspondence is randomly selected from the set

of all the matched features. The motion hypothesis is computed
Fig. 3. The reference frames C0 and C2 differ only for the translation vector T .
ρ = |T | and the angles α and β allow us to express the origin of the reference
frame C2 in the reference frame C0 .

according to (13). Without loss of generality we can set ρ = 1.
Inliers are, by definition, the correspondences which satisfy the
model hypothesiswithin a defined threshold. Thenumber of inliers
in each iteration is computed using the reprojection error.We used
an error threshold of 0.5 pixels. Theminimumnumber of iterations
to guarantee a good outlier detection, considering p = 0.99 and
ε = 0.5 is 7 (according to (1)).

3.2.3. Me–RE (Median + Reprojection Error)
The angle α is computed from all the feature correspondences

according to (10). A distribution {αi} with i = 1, 2, . . . ,Nf is
obtained, whereNf is the number of correspondences between the
two consecutive camera images.

The best angle α∗ is computed as the median of the
aforementioned distribution α∗

= median{αi}.
The inliers are then detected by using the reprojection error.

Unlike the 1-point RANSAC, this algorithm is not iterative. Its
computational complexity is linear in Nf .

3.3. 2-point algorithm

In this subsection we present a novel method to perform the
outlier rejection task between two different views of a camera
rigidly attached to an Inertial Measurement Unit (IMU). Only two
feature correspondences and gyroscopic data from IMU measure-
ments are used to compute the motion hypothesis. By exploiting
this 2-point motion parametrization, we propose two algorithms
to removewrongdata associations in the feature-matching process
for case of a 6DoF motion. We show that in the case of a monoc-
ular camera mounted on a quadrotor vehicle, motion priors from
IMU can be used to discard wrong estimations in the framework
of a 2-point-RANSAC based approach. The proposed methods are
evaluated on both synthetic and real data.

3.3.1. Parametrization of the camera motion
Let us consider a camera rigidly attached to an Inertial Mea-

surement Unit (IMU) consisting of three orthogonal accelerome-
ters and three orthogonal gyroscopes. The transformation between
the camera reference frame {C} and the IMU frame {I} can be com-
puted using [46]. Without loss of generality, we can therefore as-
sume that these two frames are coincident ({I} ≡ {C}). The∆φ,∆θ
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Fig. 4. Hough Space in α and β computed with real data.

and ∆ψ angles characterizing the relative rotation between two
consecutive camera frames can be calculated by integrating the
high frequency gyroscopic measurements, provided by the IMU.
This measurement is affected only by a slowly-changing drift term
and can safely be recovered if the system is in motion.

If Rx(∆), Ry(∆), Rz(∆) are the orthonormal rotationmatrices for
rotations of∆ about the x−, y− and z−axes, the matrix
C0RC1 = (Rx(∆φ) · Ry(∆θ) · Rz(∆ψ))

T (11)

allows us to virtually rotate the first camera frame {C1} into a new
frame {C0} (Fig. 3) having the same orientation of the second one
{C2}.

The matrix C0RC1 allows us to express the image coordinates
relative to C1 into the new reference frame C0:

p0 =
C0 RC1 · p1. (12)

At this point, the transformation between {C0} and {C2} is a pure
translation

T = ρ[s(β) · c(α) − s(β) · s(α) c(β)]T

R = I3,
(13)

which depends only on the angles α and β and on the scale factor
ρ. The essential matrix results therefore simplified:

E = [T]×R = ρ

 0 −c(β) −s(β) · s(α)
c(β) 0 −s(β) · c(α)

s(β) · s(α) s(β) · c(α) 0


. (14)

With s(·) and c(·) we denote the sin(·) and cos(·) respectively.
At this point, being p0 = [x0 y0 z0]T and p2 = [x2 y2 z2]T ,
the coordinates of a feature matched between two different cam-
era frames and backprojected onto the unit sphere, we impose the
epipolar constraint according to (2) and we obtain the homoge-
neous equation that must be satisfied by all the point correspon-
dences.

x2(y0c(β)+ z0s(α)s(β))− y2(x0c(β)− z0c(α)s(β))
−z2(y0c(α)s(β)+ x0s(α)s(β)) = 0. (15)

Eq. (15) depends on two parameters (α and β). This means that
the relative vehicle motion can be estimated using only two image
feature correspondences that we will identify as pA and pB, where
pij = [xij yij zij ]

T with i = A, B and j = 0, 2 indicate the
direction of the feature i in the reference frame j.

At this point, we can recover the angles α and β solving (15) for
the features pA and pB:

α = − tan−1

c4c2 − c1c5
c4c3 − c1c6


,

β = − tan−1


c1
c2c(α)+ c3s(α)


,

(16)
where

c1 = xA2yA0 − xA0yA2 ,
c2 = −yA0zA2 + yA2zA0 ,
c3 = −xA0zA2 + xA2zA0 ,
c4 = xB2yB0 − xB0yB2 ,
c5 = −yB0zB2 + yB2zB0 ,
c6 = −xB0zB2 + xB2zB0 .

(17)

Finally, without loss of generality, we can set the scale factor ρ
to 1 and estimate the essential matrix according to (14).

3.3.2. Hough
The angles α and β are computed according to (16) from all the

feature pairsmatched between two consecutive frames anddistant
from each other more than a defined threshold (see Section 5). A
distribution {αi, βi} with i = 1, 2, . . . ,N is obtained, where N is a
function of the position of the features in the environment.

To estimate the best angles α∗ and β∗, we build a Hough Space
(Fig. 4)which bins the values of {αi, βi} into a grid of equally spaced
containers. Considering that the angle β is defined in the interval
[0, π ] and that the angle α is defined in the interval [0, 2π ], we
set 360 bins for the variable α and 180 bins for the variable β . The
number of bins of the Hough Space encodes the resolution of the
estimation.

The angles α∗ and β∗ are therefore computed as

⟨α∗, β∗
⟩ = argmax{H},

where H is the Hough Space.
The factors that influence the distribution are the error on the

estimation of the relative rotation, the image noise, and the per-
centage of outliers in the data. The closer we are to ideal conditions
(no noise on the IMUmeasurements), the narrower will be the dis-
tribution. The wider is the distribution, the more uncertain is the
motion estimate.

To detect the outliers, we calculate the reprojection error rela-
tive to the estimated motion model.

The camera motion estimation can be then refined processing
the remaining subset of inliers with standard algorithms [14,45].

3.3.3. 2-point RANSAC
Using (13) we compute the motion hypothesis that consists of

the translation vector T and the rotation matrix R = I3 by ran-
domly selecting two features from the correspondence set. To have
a good estimation,we check that the distance between the selected
features is below a defined threshold (see Section 5). If it is not the
case, we randomly select another pair of features. Constraints on
the motion of the camera can be exploited to discard wrong esti-
mations. The inliers are then computed using the reprojection er-
ror. The hypothesis that shows the highest consensus is considered
to be the solution.

3.3.4. Quadrotor motion model
We consider a quadrotor equipped with a monocular camera

and an IMU.
The vehicle’s body-fixed coordinate frame {B} has its ZB-axis

pointing downward (following aerospace conventions [47]). The
XB-axis defines the forward direction and the YB-axis follows the
right-hand rule (Fig. 5).

Without loss of generality we can consider the IMU reference
frame {I} coinciding with the vehicle’s body frame {B}.

The modelization of the vehicle rotation in the World frame
{W } follows the Z–Y–X Euler angles convention: being φ, θ , ψ
respectively the Roll, Pitch and Yaw angles of the vehicle, to go from
the World frame to the Body frame, we first rotate about zW axis
by the angle ψ , then rotate about the intermediate y-axis by the
angle θ , and finally rotate about the XB-axis by the angle φ.
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Fig. 5. Notation. Vehicle’s body frame B, camera frame C , world frame W , gravity
vector g .

The transformation between the camera reference frame {C}

and the IMU frame {I} can be computed using [46]. Without loss
of generality, we can therefore assume that also these two frames
are coincident ({I} ≡ {C} ≡ {B}).

A quadrotor has 6DoF, but its translational and angular velocity
are strongly coupled to its attitude due to dynamic constraints. If
we consider a coordinate frame {B0} with the origin coincident
with the one of the vehicle’s body frame {B} and the XB0 and YB0
axes parallel to the ground, we observe that, in order to move in
the XB0 direction, the vehicle must rotate about the y-axis (Pitch
angle), while, in order to move in the YB0 direction, it must rotate
about the x-axis (Roll angle) (Fig. 6).

Thesemotion constraints allowus to discardwrong estimations
in a RANSAC based outlier detection approach. By looking at
the relation between the x and y components of the estimated
translation vector and the ∆φ, ∆θ angles provided by the IMU
measurements (the same used in (11)), we are able to check the
consistency of the motion hypothesis. If the estimated motion
satisfies the condition

((|∆φ| > ϵ)&(∆φ · Ty > 0)) ∥

((|∆θ | > ϵ)&(∆θ · Tx < 0)) ∥

((|∆φ| < ϵ)&(|∆θ | < ϵ)),
(18)

we count the number of inliers (the number of correspondences
that satisfy the motion hypothesis according to a predefined
threshold) by using the reprojection error, otherwise we select
another feature pair. The condition in (18) is satisfied if the x and
y components of the motion hypothesis are coherent with the
orientation of the vehicle. If both the angles∆φ and∆θ are below
the threshold ϵ, we can infer nothing about the motion and we
proceed with the evaluation of the model hypothesis using the
reprojection error.

The value of the threshold ϵ is a function of the vehicle dynamics
and of the controller used.

Using (1) and considering p = 0.99 and ε = 0.5, we calculate
the minimum number of iterations necessary to guarantee a good
performance to our algorithm and we set it to 16.

4. Pose estimation

In this section we propose a new approach to perform MAV
localization by only using the data provided by an Inertial Mea-
surement Unit (IMU) and a monocular camera. The goal of our in-
vestigation is to find a new pose estimator which minimizes the
computational complexity. We focus our attention on the prob-
lem of relative localization, which makes possible the accomplish-
ment of many important tasks (e.g. hovering, autonomous take off
and landing). In this sense, we minimize the number of point fea-
tures which are necessary to perform localization. While 2 point
features is the minimum number which provides full observabil-
ity, by adding an additional feature, the precision is significantly
improved, provided that the so-called planar ground assumption
is honored. This assumption has recently been exploited on vi-
sual odometry with a bundle adjustment based method [48]. The
proposed method does not use any known pattern but only re-
lies on three natural point features belonging to the same horizon-
tal plane. The first step of the approach provides a first estimate
of the roll and pitch (through the IMU data) and then the vehicle
heading by only using two of the three point features and a sin-
gle camera image. In particular, the heading is defined as the angle
between the MAV and the segment made by the two considered
point features. Then, the same procedure is repeated for two ad-
ditional times, i.e., by using the other two pairs of the three point
features. In this way, three different heading angles are evaluated.
On the other hand, these heading angles must satisfy two geomet-
rical constraints, which are fixed by the angles characterizing the
triangle made by the three point features. These angles are esti-
mated in parallel by an independentKalman Filter. The information
contained in the geometrical constraints is then exploited by min-
imizing a suitable cost function. This minimization provides a new
and very precise estimate of the roll and pitch and consequently of
the yaw and the robot position. Note that the minimization of the
cost function does not suffer from an erroneous initialization since
a first estimate of the roll and pitch is provided by the IMU.

4.1. The system

Let us consider an aerial vehicle equipped with a monocular
camera and IMU sensors. We assume that the transformation
among the camera frame and the IMU frame is known (we can
assume that the vehicle frame coincides with the camera frame).

We assume that three reliable point-features are detected on
the ground (i.e. they belong to the same horizontal plane). As we
will see, two is the minimum number of features necessary to
perform localization. Fig. 7 shows our global frame G, which is
defined by only using two features, P1 and P2. First, we define P1
as the origin of the frame. The zG-axis coincides with the gravity
vector but with opposite direction. Finally, P2 defines the xG-axis.1

Then, by applying the method in [33], the distance between
these point features can be roughly determined by only using
visual and inertial data (specifically, at least three consecutive
images containing these points must be acquired).

4.2. The method

The first step of the method consists in estimating the Roll
and the Pitch angles. This is performed by an Extended Kalman
Filter (EKF) which estimates the gravity in the local frame by
only using inertial data. In particular, in this EKF the prediction
is done by using the data from the gyroscopes, while the
perception by using the data from the accelerometers. Note that
the accelerometers alone cannot distinguish the gravity from the
inertial acceleration. In particular to distinguish the gravity from
the inertial acceleration it is necessary to also use vision (see for
instance [33]). However, in the case of micro aerial vehicles, the
inertial acceleration ismuch smaller than the gravity. Additionally,
since we know that the speed is bounded, we know that the

1 Note that the planar assumption is not necessary to define a global frame. It is
sufficient that P1 and P2 do not lie on the same vertical axis (defined by the gravity).
The XG-axis can be defined assuming that P2 belongs to the xG–zG-plane. In other
words, P2 has zero yG coordinate
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Fig. 6. Motion constraints on a quadrotor relative to its orientation. ∆φ > 0 implies a movement along YB0 positive direction, ∆θ < 0 implies a movement along YB0
positive direction.
Fig. 7. Global frame. Two is the minimum number of point features which allows
us to uniquely define a global reference frame. P1 is the origin, the xG-axis is parallel
to the gravity and P2 defines the xG-axis.

Fig. 8. The 2p-algorithm.

inertial acceleration, averaged on a long time interval, is almost
zero and can be considered as a noise in this EKF. Note also that
for micro aerial vehicles this is exactly what has always been done
to estimate the roll and pitch. Finally, in our approach, the roll and
pitch estimated by this EKF are only a first estimate which is then
improved by using also the camera measurements.

Once the direction of the gravity vector in the local frame is
estimated, the Roll and Pitch angles are obtained.

The second step returns the yaw angle and the position of the
vehicle taking as input the Roll and Pitch angles and a single camera
image. This is obtained by running the 3p-algorithm (Section 4.2.2).
This algorithm starts by running three times the 2p-algorithm,
which is described in Section 4.2.1.

4.2.1. 2p-algorithm
This algorithm only uses two point features. Fig. 8 shows the

algorithm’s inputs and outputs.
For each feature, the camera provides its position in the local

frame up to a scale factor. The knowledge of the absolute Roll and
Pitch, allows us to express the position of the features in a new
vehicle frame N , which ZN -axis is parallel to the gravity vector.
Fig. 9 displays all the reference frames: the global frame G, the
vehicle frame (represented by V ) and the new vehicle frame N .
Our goal is to determine the coordinates of the origin of the vehicle
frame in the global frame and the orientation of the XN -axis with
Fig. 9. The three reference frames adopted in our derivation.

respect to the xG-axis (which corresponds to the Yaw angle of the
vehicle in the global frame).

Let us denote with [x1, y1, z1]T and [x2, y2, z2]T the coordinates
of P1 and P2 in the new local frame. The camera provides µ1 =

x1
z1
,

ν1 =
y1
z1
, µ2 =

x2
z2

and ν2 =
y2
z2
. Additionally, the camera also

provides the sign of z1 and z2.2
Since the ZN -axis has the same orientation as the zG-axis, and

the two features P1 and P2 belong to a plane perpendicular to the
gravity vector, z1 = z2 = −z, where z is the position of the origin
of the vehicle frame in the global frame. We obtain:

P1 = −z


µ1
ν1
1


P2 = −z


µ2
ν2
1


. (19)

Let us denote by D the distance between P1 and P2. We have:

z = ±
D

∆µ2
12 +∆ν212

(20)

with∆µ12 ≡ µ2 − µ1 and∆ν12 ≡ ν2 − ν1. In other words, z can
be easily obtained in terms of D. The previous equation provides z
up to a sign. This ambiguity is solved considering that the camera
provides the sign of z1 and z2. Then, we obtain

x1 = −zµ1 y1 = −zν1 x2 = −zµ2 y2 = −zν2. (21)

It is therefore easy to obtain α = arctan 2(∆ν12, ∆µ12)
(Fig. 10). Hence,

Yaw = −α = −atan(∆ν12/∆µ12). (22)

2 For a camera with a field of view smaller than 180 deg the z−component is
always positive in the original camera frame
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Fig. 10. The yaw angle (−α) is the orientation of the XN -axis in the global frame.

Fig. 11. The triangle made by the 3 point features.

Finally we obtain the coordinates of the origin of the vehicle
frame in the global frame,

x = − cos(α) x1 − sin(α) y1
y = sin(α) x1 − cos(α) y1

z = ±
D

∆µ2
12 +∆ν212

.
(23)

Note that the position x, y, z is obtained in function of the dis-
tance D. Specifically, according to Eqs. (21) and (23), the position
scales linearlywithD. As previously said, a rough knowledge of this
distance is provided by using the method in [33] and described in
Section 4.2.3. We remark that a precise knowledge of this distance
is not required to accomplish tasks like hovering on a stable posi-
tion.

4.2.2. 3p-algorithm
The three features form a triangle in the (xG, yG)-plane. For the

sake of clarity, we start our analysis supposing that we know the
angles characterizing the triangle (γ1 and γ2 in Fig. 11). Then, we
will show how we estimate on line these angles (Section 4.2.4).

We run the 2p-algorithm three times, respectively with the sets
of features (P1, P2), (P1, P3) and (P2, P3) as input. We obtain three
different angles. Yaw12 is the Yaw of the vehicle in the global frame
given in (22) while the other expressions are:

Yaw12 = −atan(∆ν12/∆µ12)
Yaw13 = −atan(∆ν13/∆µ13)
Yaw23 = −atan(∆ν23/∆µ23).

(24)
Fig. 12. Flow chart of the proposed pose estimator.

The three above-mentioned angles must satisfy the following
constraints:

γ1 = Yaw13 − Yaw12
γ2 = Yaw23 − Yaw12.

(25)

Note that the angles Yawij are obtained by using Eq. (22). This
equation uses ∆νij and ∆µij which are obtained by rotating the
camera measurements according to the roll and pitch provided by
the IMU. In other words, Yawij can be considered as a function of
the roll and pitch.

Let us denote the known values of these angles with γ 0
1 and γ 0

2 .
We correct the estimation of the roll and pitch angles by exploiting
these constraints. We solved a nonlinear least-squares problem
minimizing the following cost function:

c(ζ ) = [(Yaw13 − Yaw12 − γ 0
1 )

2
+ (Yaw23 − Yaw12 − γ 0

2 )
2
] (26)

in which the variables Yawij are nonlinear functions of ζ = [Roll,
Pitch]T .

Once the least-squares algorithm finds the Roll and Pitch angles
thatminimize the cost function,we can estimate theYawangle and
the coordinates x, y and z as described in 2p-algorithm (Fig. 12).

4.2.3. Scale factor initialization
Recent works on visual–inertial structure from motion have

demonstrated its observability properties [29–35]. It has been
proved that the states that can be determined by fusing inertial
and visual information are: the system velocity, the absolute scale,
the gravity vector in the local frame, and the biases that affect
the inertial measurements. The works in [33,49] express all the
observable modes at a given time Tin in closed-form and only in
function of the visual and inertial measurements registered during
the time interval [Tin, Tfin].

The position r of the system is:

r(t) = r(Tin)+ v(Tin)∆t +

 t

Tin

 τ

Tin
a(ξ)dξdτ (27)

where t ∈ [Tin, Tfin].
Integrating by part we obtain:

r(t) = r(Tin)+ v(Tin)∆t +

 t

Tin
(t − τ)a(τ )dτ (28)

where v ≡
dr
dt , a ≡

dv
dt and∆t ≡ t − Tin.

The accelerometers provide the acceleration in the local frame
and it also perceives the gravitational acceleration. The measure-
ments are also corrupted by a constant term (B) usually called bias.
We can therefore write the accelerometer measurement like this:

Aτ (τ ) ≡ Ai
τ (τ )− Gτ + B (29)

where Ai
τ (τ ) is the inertial acceleration and Gτ is the gravity ac-

celeration in the local frame (depending on time because the lo-
cal frame can rotate). Rewriting Eq. (28) by highlighting the vector
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6)
X ≡ [GT , V T , λ11, . . . , λ
N
1 , . . . , λ

1
ni , . . . , λ

N
ni ]

T

S ≡ [ST
2 , 03, . . . , 03, ST

3 , 03, . . . , 03, . . . , ST
ni , 03, . . . , 03]

T

Ξ ≡



T2 S2 µ1
1 03 03 −µ1

2 03 03 03 03 03
033 033 µ1

1 −µ2
1 03 −µ1

2 µ2
2 03 03 03 03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

033 033 µ1
1 03 −µN

1 −µ1
2 03 µN

2 03 03 03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tni Sni µ1
1 03 03 03 03 03 −µ1

ni 03 03

033 033 µ1
1 −µ2

1 03 03 03 03 −µ1
ni µ2

ni 03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

033 033 µ1
1 03 −µN

1 03 03 03 −µ1
ni 03 µN

ni


(3

where Tj ≡ −
t2j
2 I3, Sj ≡ −tjI3 and I3 is the identity 3 × 3 matrix; 033 is the 3 × 3 zero matrix.

Box I.
Aτ (τ ) provided by the accelerometer and neglecting the bias term
B:

r(t) = r(Tin)+ v(Tin)∆t + g
∆t2

2
+ CTin


STin(t)


(30)

where:

STin(t) ≡

 t

Tin
(t − τ)CτTinAτ (τ )dτ .

The matrix CτTin can be obtained from the angular speed during
the interval [Tin, τ ] provided by the gyroscopes [50]. The vector
STin(t) can be obtained by integrating the data provided by the
gyroscopes and the accelerometers delivered during the interval
[Tin, t].

The visual measurements related to the observation of N point-
features are recorded simultaneously with the inertial measure-
ments. Let us denote the feature position in the physicalworldwith
pi, i = 1, . . . ,N . pi

t(t) denotes their position at time t in the local
frame at time t . We have:

pi
= r(t)+ CTinC t

TinP
i
t(t). (31)

Writing this equation for t = Tin we obtain:

pi
− r(Tin) = CTinP i

Tin(Tin). (32)

By inserting the expression of r(t) provided in (30) into Eq. (31),
by using (32) and by pre multiplying by the rotation matrix
(CTin)−1, we obtain:

C t
TinP

i
t(t) = P i

Tin(Tin)− VTin(Tin)∆t − GTin
∆t2

2
− STin(t) (33)

i = 1, 2, . . . ,N

A single image processed at time t , provides the position of the
N features up to a scale factor, which correspond to the vectors
P i
t(t). The data provided by the gyroscopes during the interval
(Tin, Tfin) allow us to build the matrix C t

Tin
. At this point, having

the vectors P i
t(t) up to a scale, allows us to also know the vectors

C t
Tin

P i
t(t) up to a scale.

We assume that the camera provides ni images of the same N
point-features at consecutive image stamps: t1 = Tin < t2 <
· · · < tni = Tfin. For the sake of simplicity, we adopt the following
notation:

• P i
j ≡ C

tj
Tin

P i
tj(tj), i = 1, 2, . . . , N; j = 1, 2, . . . , ni

• P i
≡ P i

Tin
(Tin), i = 1, 2, . . . , N

• V ≡ VTin(Tin)
• G ≡ GTin
• Sj ≡ STin(tj), j = 1, 2, . . . , ni.

The vectors Pi
j can be written as Pi

j == λijµ
i
j. Without loss of

generality we can set Tin = 0. Eq. (33) can be written as follows:

P i
− V tj − G

t2j
2

− λijµ
i
j = Sj. (34)

The corresponding linear system is:−G
t2j
2

− V tj + λ11µ
1
1 − λ1j µ

1
j = Sj

λ11µ
1
1 − λ1j µ

1
j − λi1µ

i
1 + λijµ

i
j = 03

(35)

where j = 2, . . . , ni, i = 2, . . . ,N and 03 is the 3 × 1 zero vec-
tor. This linear system consists of 3(ni − 1)N equations in Nni + 6
unknowns. The two column vectors X and S and the matrix Ξ are
defined in Box I. The linear system in (35) can be written in a com-
pact format:

ΞX = S. (37)

The linear system in (37) contains completely the sensor infor-
mation. By adding the following equation to the system:

|ΠX |
2

= g2 (38)

whereΠ ≡ [I3, 03 . . . 03], it is possible to exploit the information
related to the fact that the magnitude of the gravitational acceler-
ation is known.

The Visual–Inertial Structure from Motion problem consists in
the determination of the vectors: P i, (i = 1, 2, . . . , N), V , G and
it can be solved by finding the vector X , which satisfies (37) and
(38). The scale factors are the quantities λij for i = 1, 2, . . . , N ,
j = 1, 2, . . . , ni contained in the state vector X.

In our case to initialize the scale factor we need at least three
consecutive images containing the two points P1 and P2. This is
enough considering that we know the gravity magnitude and that
we know in advance wewill not occur in degenerative cases (none
of the camera poses will be aligned along with the two features,
and the three camera poses and the two features will not belong to
the same plane) [49].

4.2.4. Estimation of γ1 and γ2
In order to estimate the angles characterizing the triangle γ1

and γ2 (Fig. 11), we run a Kalman filter. The state that we want
to estimate is Γ = [γ1, γ2]T . During the prediction step the fil-
ter does not update neither the state Γ nor its covariance ma-
trix because the angles are constant in time. For the observation
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Fig. 13. Synthetic scenario for the evaluation of the 1-point algorithm.

step we need the estimated Roll and Pitch (which allow us to vir-
tually rotate the vehicle frame V into the new frame N) and the
observations of the three features in the current camera image
[xi, yi, z]T = z[µi, νi, 1]T for i = 1, 2, 3. At this point the sides of

the triangle can be computed according to: a = z

∆µ2

12 +∆ν212,

b = z

∆µ2

13 +∆ν213, c = z

∆µ2

23 +∆ν223.
Applying the law of cosine we can easily compute the two re-

quired angles:

γ1 = acos

a2 + b2 − c2

2ab


γ2 = π − acos


a2 + c2 − b2

2ac


.

Note that these angles are independent from z. γ1 and γ2 rep-
resent the observation of the state Γ of the Kalman Filter.

5. Performance evaluation

5.1. Outlier detection

To evaluate the performance of our algorithms, we run Monte
Carlo simulations and experiments on real data. We compared
the proposed approaches with the 5-point RANSAC [13] on
synthetic data, and with the 5-point RANSAC [13] and the 8-point
RANSAC [51] on real data.

Experiments on synthetic data. We simulated different trajectories
of a quadrotor moving in indoor scenarios (Figs. 13 and 18). The
simulations have been performed using the Robotics and Machine
Vision Toolbox for Matlab [47].

Tomake our simulations as close as possible to the experiments,
we simulated a quadrotor vehicle moving in indoor environment,
equipped with a downlooking monocular camera. We randomly
generated 1600 features on the ground plane (Fig. 13). Note that
no assumptions are made on the feature’s depth.

We simulated a perspective camera with the same parameters
of the one we used for the experiments and added a Gaussian
noise with zero mean and standard deviation of 0.5 pixels to each
image point. To evaluate the performance of the 1-point algorithm,
we generated a circular trajectory (easily repeatable in our flying
arena) with a diameter of 1.5 m (Fig. 13). The vehicle was flying at
the fix height of 2 m above the ground. The period for one rotation
is 10s. The camera framerate is 15 Hz, its resolution is 752 × 480.
For the 1-point RANSAC and the Me–RE, we set a threshold of 0.5
pixels. For the 5-point RANSACwe set a minimum number of trials
of 145 iterations, and a threshold of 0.5 pixels as well.
Fig. 14. Number of found inliers by Me–RE (red), 1-point RANSAC (cyan), 5-point
RANSAC (black), true number of inliers (blue) for a perfect planar motion. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 15. Number of found inliers by Me–RE (red), 1-point RANSAC (cyan), 5-point
RANSAC (black), true number of inliers (blue) in presence of perturbations on the
Roll and Pitch angles. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

In Fig. 14 we present the results obtained along the aforemen-
tioned trajectory in the case of perfect planar motion (the heli-
copter is flying always at the same height above the ground, and
the Roll and Pitch angles are not affected by noise).

Fig. 15 represents the results when the Roll and Pitch angles are
affected by a Gaussian Noise with standard deviation of 0.3 deg.

We evaluated aswell the case inwhich themeasure of the angle
dYaw is affected by a Gaussian Noise with standard deviation of
0.3 deg. The relative results are shown in Fig. 16

We finally evaluated the case of non perfect planar motion in-
troducing a sinusoidal noise (frequency 4 rad/s andwith amplitude
of 0.02 m) on the zW -component of motion of the vehicle. Fig. 17
represents the relative results.

We can observe that the Median + Reprojection Error (Me–RE)
performs always better than the 1-point RANSAC, and requires no
iterations (its computational complexity is linear in the number of
features).

In the case of perfect planar motion (Fig. 14), the Me–RE algo-
rithm finds more inliers than the 5-point RANSAC. The latter algo-
rithm requires at least 145 iterations according to Table 1 to insure
a good performance.



90 C. Troiani et al. / Robotics and Autonomous Systems 69 (2015) 80–97
Fig. 16. Number of found inliers by Me–RE (red), 1-point RANSAC (cyan), 5-point
RANSAC (black), true number of inliers (blue) in presence of perturbations on the
dYaw angle. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 17. Number of found inliers by Me–RE (red), 1-point RANSAC (cyan), 5-point
RANSAC (black), true number of inliers (blue) for a non-perfect planar motion
(s1 = 0.02 ∗ sin(8 ∗ wc · t)). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

When the variables Roll, Pitch and dYaw are affected by errors
(Figs. 15 and 16), the performance of our algorithmsdrops, but they
can still find almost 50% of inliers.

As expected, if the vehicle’s motion is not perfectly planar
(Fig. 17), the performances of the 1-point RANSAC and the Me–RE
get worse. The oscillations that we can see in the plots are related
to the fact that when the vehicle is approaching the ground, less
features are in the field of view of its onboard camera.

To evaluate the performance of the 2-point algorithm, we
generated a trajectory consisting of a take-off and of a constant-
height maneuver (Fig. 18).

Fig. 19 shows the results of a simulation run along the trajectory
depicted in Fig. 18, in the ideal case of no noisy IMUmeasurements.
The helicopter takes off and performs a constant height maneuver.

In Fig. 20, we present the results related to simulations where
the quantities ∆φ, ∆θ and ∆ψ are affected by a Gaussian noise
with standard deviation of 0.3 deg. Those errors do not affect the
performance of the 5-point algorithm (that does not use IMU
readings to compute the motion hypothesis). In this case, the
Hough and the 2-point RANSAC approaches can still detect more
Fig. 18. Synthetic scenario for the evaluation of the 2-point algorithm. The red line
represents the trajectory and the blue dots represent the simulated features. The
green dots are the features in the current camera view. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 19. The IMU measurements are not affected by noise (ideal conditions).

than half of the inliers. The motion hypothesis can then be com-
puted on the obtained set of correspondences by using standard
approaches [14,45].

In Fig. 21, we present the results related to simulations where
the quantities ∆φ and ∆θ are affected by a Gaussian noise with
standard deviation of 0.3 deg and in Fig. 22 only the angle ∆ψ is
affected by a Gaussian noise with standard deviation of 0.3 deg.
These two plots show that errors on rotations about the camera
optical axis (that in our case coincides with rotations about the
vehicle ZB axis, i.e. errors on∆ψ) affect more the performances of
both the algorithms than errors on∆φ and∆θ .
Experiments on real data.We tested our method on a nano quadro-
tor (Fig. 23)3 equipped with a MicroStrain 3DM-GX3 IMU (250
Hz) and a Matrix Vision mvBlueFOX-MLC200w camera (FOV :

112 deg).
The monocular camera has been calibrated using the Camera

Calibration Toolbox for Matlab [52]. The extrinsic calibration
between the IMU and the camera has been performed using the
Inertial Measurement Unit and Camera Calibration Toolbox [46]. The

3 http://KMelRobotics.com.



C. Troiani et al. / Robotics and Autonomous Systems 69 (2015) 80–97 91
Fig. 20. The angles∆φ,∆θ and∆ψ are affected by noise.

Fig. 21. Only the angles∆φ and∆θ are affected by noise.

Fig. 22. Only the angle∆ψ is affected by noise.

dataset was recorded in our flying arena and ground truth data
have been recordedusing anOptitrackmotion capture systemwith
sub-millimeter accuracy.

The trajectories have been generated using the TeleKyb
Framework [53] (Figs. 24 and 27). The trajectory generated in order
to evaluate the performance of the 1-point algorithm is a circular
Fig. 23. Our nano quadrotor from KMelRobotics: a 150 g and 18 cm sized platform
equipped with an integrated Gumstix Overo board and MatrixVision VGA camera.

Fig. 24. Plot of the real trajectory. The vehicle’s body frame is depicted in black
and the green line is the trajectory followed. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

trajectory (1.5 m of diameter, period of 10 s) with fixed height
above the ground of 1.5 m. We computed SURF features (Speeded
Up Robust Feature). The feature detection and matching tasks has
been performed using theMachine Vision Toolbox from [47].

To evaluate the performance of our methods, we compared the
number of inliers found by the proposedmethodswith the number
of inliers found by the 5-point RANSAC and the 8-point RANSAC
methods.

Fig. 25 presents the result of this comparison for the case of
the 1-point algorithm. We observe that in the interval [380:490]
the Me–RE algorithm has a very good performance (it finds even
more inliers than the 5-points RANSAC). On the contrary the
performance drops in the intervals [350:380] and [490:540]. The
last plot in Fig. 26 shows the height of the vehicle above the ground
during the trajectory. We can notice that in the interval [380:490]
themotion of the vehicle along the z−World axis is smoother than
in the other intervals, therefore it affects less the performance of
the 1-point and of the Me–RE methods.

Table 2 shows the computation time of the compared algo-
rithms, implemented inMatlab and run on an Intel Core i7-3740QM
Processor. According to our experiments, the 5-point RANSAC takes
about 67 times longer than the 8-point. The reason of this is that
for each candidate point set, the 5-point RANSAC returns up to ten
motion solutions and this involves both Singular Value Decom-
position (SVD) and Groebner-basis decompositions. Instead, the
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Fig. 25. Number of found inliers by Me–RE (red), 1-point RANSAC (green), 5-point
RANSAC (black), 8-point RANSAC (blue) along the trajectory depicted in Fig. 24. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

8-point RANSAC only returns 1 solution and has only one SVD, no
Groebner-basis decomposition.

The Me–RE algorithm is not considered as a complete alterna-
tive to the 5-point RANSAC. However, thanks to its negligible com-
putation time (Table 2), it can be run at each frame. If the resulting
number of inliers will be below a defined threshold, it will bemore
suitable to switch to the 5-point algorithm.
Table 2
Computation time.

Algorithm Me–Re 1-point 5-points 8-points
Time(s) 0.0028 0.0190 2.6869 0.0396

To evaluate the performance of the 2-point algorithm, we real-
ized a trajectory consisting of a take-off and a constant-height ma-
neuver above the ground, as shown in Fig. 27 by using the TeleKyb
Framework [53]. We recorded a dataset composed of camera im-
ages, IMU measurements and ground truth data provided by the
Optitrack.

We processed our dataset with SURF features, matching them
in consecutive camera frames.We run the 8-point RANSACmethod
on each correspondences set to have an additional term of
comparison.

To evaluate the performance of our methods, we compared
the number of inliers detected using the Hough and the 2-point
RANSAC methods with 5-point and an 8-point RANSAC. For the 2-
point RANSAC we set ϵ = 0.1 deg. The results of this comparison
are shown in Fig. 28.

Fig. 29 shows the error characterizing the estimated relative
rotation between two consecutive camera frames obtained by IMU
measurements and the ground truth values.

Looking at both Figs. 28 and 29, we can notice that the smaller
are the errors on the angles estimations, the higher is the number
of inliers detected by the Hough and the 2-point RANSAC method.

Our algorithms and the algorithms that we used for the com-
parison, are implemented in Matlab and run on an Intel Core
i7-3740QM Processor. We summarize their computation time in
Table 3. We can notice that the computation time of the 5-point
RANSAC is almost 67 times the computation time of the 8-point
Fig. 26. From the top to the bottom: Roll, Pitch and dYaw angles [deg] estimated with the IMU (red) versus Roll, Pitch and dYaw angles [deg] estimated with the Optitrack
system (blue). The last plot shows the height of the vehicle above the ground (non perfect planarity of motion). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 27. Real scenario. The vehicle’s body frame is represented in blue, while the
red line represents the followed trajectory. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 28. Number of inliers detected with the Hough approach (red), the 2-point
RANSAC (cyan), the 5-point RANSAC (black) and the 8-point RANSAC (blue) along
the trajectory depicted in Fig. 27. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 3
Computation time.

Algorithm Hough 2-points 5-points 8-points
Time(s) 0.498 0.048 2.6869 0.0396

RANSAC. This is due to the fact that the 5-points return up to 10
motion solutions for each candidate set. Singular Value Decompo-
sition (SVD) and Groebner-basis decompositions are involved and
this explains the high computation time.

The computation time of the Hough algorithm is function of the
number of feature pairs used to compute the distribution in Fig. 4.
In our experiments, we choose all the feature pairs distant more
than a defined threshold one to each other. We experimentally set
this threshold to 30 deg on the unit sphere.

5.2. Pose estimation

Experiments on synthetic data. In order to evaluate the perfor-
mance of the presented method, we simulated different 3D trajec-
tories and scenarios.
Fig. 29. Errors between the relative rotations ∆φ (errR), ∆θ (errP ), ∆ψ (errY )
estimated with the IMU and estimated with the Optitrack.

Table 4
Mean error on the estimated states in our simulations. For the position the error is
given in %.

x y z Roll Pitch Yaw

3p-Algorithm 0.26% 0.24% 0.08% 0.07 deg 0.04 deg 0.01 deg
2p-Algorithm 4.08% 5.41% 5.23% 1.63 deg 1.72 deg 1.36 deg

The considered scenarios to test the 2p-Algorithm is shown in
Fig. 7. The features are P1 = [0, 0, 0], P2 = D ∗ [1, 0, 0], where
D = 0.1 m. To compare the 2p-Algorithm with the 3p-Algorithm,
we added a third feature P3 = D ∗ [0.5,

√
3/2, 0] (Fig. 11). The

angles γ1 and γ2 are respectively 60 deg and 120 deg.
The trajectories are generated with a quadrotor simulator that,

given the initial conditions, the desired position and desired Yaw,
performs a hovering task [54]. The initial vehicle position is x =

y = z = 0 m, the initial vehicle speed is vx = vy = vz = 0 m s−1

in the global frame.
Starting from the performed trajectory, the true angular speed

and the linear acceleration are computed at each 0.01 s We
denote with Ωtrue

i and Atrue
vi the true value of the body rates

and linear accelerations at time stamp i. The IMU readings are
generated as follows: Ωi = N


Ωtrue

i − Ωbias, PΩi


and Ai =

N

Atrue
vi − Ag − Abias, PAi


where:

• N indicates the Normal distribution whose first entry is the
mean value and the second one is the covariance matrix;

• PΩi and PAi are the covariance matrices characterizing the
accuracy of the IMU;

• Ag is the gravitational acceleration in the local frame and Abias
is the bias affecting the accelerometer’s data;

• Ωbias is the bias affecting the gyroscope’s data.

In all the simulations we set both the matrices PΩi and PAi di-
agonal and in particular: PΩi = σ 2

gyroI3 and PAi = σ 2
acc I3, where I3

is the identity 3 × 3 matrix. We considered several values for σgyro
and σacc , in particular: σgyro = 1 deg s−1 and σacc = 0.01 m s−2.

The camera is simulated as follows. Knowing the true trajectory
of the vehicle, and the position of the features in the global frame,
the true bearing angles of the features in the camera frame are
computed at each 0.3 s. Then, the camera readings are generated
by adding zero-mean Gaussian errors (whose variance is set to
(1 deg)2) to the true values.

Fig. 30(a) show the results regarding the estimated x, y and z.
Fig. 30(b) show the results regarding the estimated Roll, Pitch and
Yaw. In each figure we represent the ground truth values in blue,
the values estimatedwith the 2p-Algorithm in green and the values
estimated with the 3p-algorithm in red.

Table 4 summarizes these results by providing the mean error
on the estimated position and attitude.
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Fig. 30. Estimated x, y, z (a), and Roll, Pitch, Yaw (b). The blue line indicates the ground truth, the green one the estimation with the 2p-Algorithm and the red one the
estimation with the 3p-Algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 31. AscTec Pelican quadcopter [55] equipped with a monocular camera.

Experiments on real data This section describes our experimental
results. The robot platform is a Pelican from Ascending Technolo-
gies [55] equipped with an Intel Atom processor board (1.6 GHz,
1 GB RAM) (Fig. 31).

Our sensor suite consists of an Inertial Measurement Unit (3-
Axis Gyro, 3-Axis Accelerometer) belonging to the Flight Control
Unit (FCU) AscTec Autopilot, and a monocular camera (Matrix
Vision mvBlueFOX, FOV : 130 deg). The camera is calibrated using
Fig. 32. Our Pelican quadcopter: a system overview.

the Camera Calibration Toolbox for Matlab [52]. The calibration
between the IMU and the camera has been performed using the
InertialMeasurement Unit and Camera Calibration Toolbox in [46].
The IMU provides measurements update at a rate of 100 Hz, while
the camera framerate is 10 Hz.



C. Troiani et al. / Robotics and Autonomous Systems 69 (2015) 80–97 95
Fig. 33. Estimatedposition (a), respectively x, y, z and estimated attitude (b), respectivelyRoll, Pitch,Yaw. The red lines represent the estimated valueswith the 3p-Algorithm,
the blue ones represent the ground truth values.
The Low Level Processor (LLP) of our Pelican is flashed with
the 2012 LLP Firmware [55] and performs attitude data fusion
and attitude control. We flashed the High Level Processor (HLP)
with the asctec_hl_firmware [56]. The onboard computer runs
Linux 10.04 and ROS (Robot Operating System). We implemented
our method using ROS as a middleware for communication and
monitoring. The HLP communicates with the onboard computer
through an FCU–ROS node. The communication between the
camera and the onboard computer is achieved by a ROS node as
well. The presented algorithms are running online and onboard at
10 Hz. (See Fig. 32.)

A motion capture system is used to evaluate the performance
of our approach. Note that the estimations of the camera pose
provided by the motion capture system is not used to perform the
estimation. Three reflective markers are positioned according to
Fig. 11. The three features considered are the center of the three
reflectivemarkers. The use of three blobmarkers instead of natural
features is only related to the need to get a ground truth. The
information related to the pattern composed by the 3 features
(D = 0.25 m, γ1 = 60 deg, γ 2 = 120 deg) is only used to evaluate
the performance of our approach. The algorithm does not require
any information about the features configuration.

Fig. 33a and Fig. 33b show respectively the position and the
attitude estimated by using the proposed approach and compared
with the ground truth obtained with the motion capture system.
FromFig. 33awe see that the difference between our estimates and
the ground truth values is of the order of 2 cm for x and y and less
than 1 cm for z. From Fig. 33b we see that the difference between
our estimates and the ground truth values is of the order of 2deg
for Roll, Pitch and Yaw.

6. Conclusions

This paper provides two main contributions. The former is
the presentation of two methods to perform outlier detection on
computationally-constrainedmicro aerial vehicles. The algorithms
rely on onboard IMU measurements to calculate the relative rota-
tion between two consecutive camera frames and the reprojection
error to detect the inliers. The first method assumes that the vehi-
cle’s motion is locally planar, while the secondmethod generalizes
to unconstrained (i.e., 6DoF)motion. Although the 5-point RANSAC
is the ‘‘golden standard method’’ for 6DoF motion estimation, ex-
perimental results show that the proposed Me–RE and 2-point
RANSAC algorithms can be used as a first choice before committing
to the 5-point RANSAC due to their very low computational com-
plexity. Considering that the Me–RE algorithm relies on the local
planar motion assumption, we remark that it can replace the 5-
point algorithm when the motion of the vehicle is smooth and the
camera framerate is high. The motion can then be refined apply-
ing standardmethods [14,45] to the remaining inliers. Considering
that the parameter α∗ is estimated as the median of the distribu-
tion of the α computed from all the feature correspondences (10),
the standard deviation of this distribution can be considered as a
measure of reliability of theMe–RE algorithm.We show that in the
case of a monocular camera mounted on a quadrotor vehicle, mo-
tion priors from IMU can be used to discard wrong estimations in
the framework of a 2-point-RANSAC-based approach.

The latter contribution is a newapproach to performMAV local-
ization by only using the data provided by an InertialMeasurement
Unit and a monocular camera. The approach exploits the so-called
planar ground assumption and only needs three natural point fea-
tures. It is based on a simple algorithm, which provides the vehicle
pose from a single camera image, once the roll and the pitch angles
are obtained by the inertial measurements. The very low compu-
tational cost of the proposed approach makes it suitable for pose
control in tasks, such as hovering, and autonomous take-off and
landing.
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