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Abstract—Collaboration between aerial and ground robots
can benefit from exploiting the complementary capabilities
of each system, thereby improving situational awareness and
environment interaction. For this purpose, we present a lo-
calization method that allows the ground robot to determine
and track its position within a map acquired by a flying
robot. To maintain invariance with respect to differing sensor
choices and viewpoints, the method utilizes elevation maps built
independently by each robot’s onboard sensors. The elevation
maps are then used for global localization: specifically, we
find the relative position and orientation of the ground robot
using the aerial map as a reference. Our work compares four
different similarity measures for computing the congruence of
elevation maps (akin to dense, image-based template matching)
and evaluates their merit. Furthermore, a particle filter is
implemented for each similarity measure to track multiple
location hypotheses and to use the robot motion to converge
to a unique solution. This allows the ground robot to make use
of the extended coverage of the map from the flying robot. The
presented method is demonstrated through the collaboration
of a quadrotor equipped with a downward-facing monocular
camera and a walking robot equipped with a rotating laser
range scanner.

I. INTRODUCTION

Ground robots may carry substantial payloads and can
actively interact with their environment. In a search and
rescue mission they could be sent into settings that are too
dangerous for humans, reducing the time required to reach
victims by removing the need to first secure the area. How-
ever, the operator only receives limited information about the
ground robot’s surroundings due to its low viewpoint. Other
objects at the height of the robot may block the operators
view, increasing the difficulty of navigating within hazardous
environments.

A flying robot, on the other hand, can provide a situational
assessment of the environment by its ability to quickly cover
large areas with its bird’s-eye view. This data enables global
navigation of the ground robot in potentially unknown and
challenging terrain. Therefore, working in a heterogeneous
team of flying and ground robots enhances the capabilities
of robots to support human rescue teams.

In this work we introduce a method for ground robots
to localize within a map created by a flying robot. This is
essential as the map provided by the flying robot is only of
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Fig. 1. Collaborative localization is demonstrated with a quadrotor carrying
a monocular camera and a walking robot equipped with a rotating laser range
sensor. Localization between the robots is achieved by matching elevation
maps generated from the onboard sensors. The proposed method performs
reliably even for different perspectives of the robots and for incomplete maps
due to occlusion from obstacles.

use to the ground robot if its own location within the map is
known. The presented approach assumes sufficient coverage
by the flying robot for use as a reference map in which to
localize. Our method is independent of the viewpoint and the
sensors of both robots, given that they provide an elevation
map of their surroundings. In addition, both elevation maps
may be updated continuously.

A. Related Work

Prior work on the collaboration between aerial and ground
robots often performs the entire perception process on one
robot and guides the other robot through the mission. For
example, a flying robot can track a ground robot using a
QR-code [1], visual markers [2], [3], or edge detection [4].
Other work uses a camera on a ground robot to track LEDs
on a flying robot [5], [6].

Additionally, many approaches exist to collaboratively
navigate in large outdoor environments with at least partial
availability of GPS [7]-[9]. As a consequence, these ap-
proaches are not applicable in indoor scenarios and in GPS
denied locations such as forests or urban street canyons. In
addition, even if a GPS signal is available, the position is
often inaccurate and provides no heading direction.



On the other hand, methods to globally localize planetary
rovers in the absence of GPS exist for space exploration. For
this purpose, visually detectable landmarks [10] or generated
surface elevation maps of the rover surroundings are matched
to a global map. The elevation maps are therefore searched
for topographic peaks [11] or get compared directly by zero-
mean normalized cross-correlation [12].

In [13], a framework for the collaborative navigation of
a flying and a walking robot is described. In the presented
scenario both robots use a camera to perceive the environment
and rely on visual features to find their relative positions. As
a consequence, the approach assumes that the environment
provides appropriate texture, and that each robot has a similar
viewpoint, in order to detect visual correspondences.

In the work of Michael et al. [14] a flying robot comple-
ments the map of a ground robot using an initial guess of
the relative robot position to perform an iterative closest point
(ICP) method. Thereby, the flying robot takes off on top of
the ground robot and both robots use laser range scanners to
detect their environment.

In contrast to these works, we contribute a global lo-
calization and tracking method that is independent of the
observation viewpoint of the robots, external localization
(such as GPS), and textured environments. The method does
not depend on a precise initial guess and can combine
depth sensing from different sensors (e.g. cameras, laser
range sensor, etc.). For the method to succeed, no walls
or ceilings are necessary, which is of high importance for
outdoor applications. After an initialization period of a few
seconds, tracking of the ground robot is performed in real-
time using a particle filter [12], [15].

Similar to the work of Forster et al. [15] on the localization
of a quadrotor within a given map of a ground robot, we use
2.5D elevation maps generated by the robots to compute the
relative position. We extend the work in [15] by evaluating
different similarity metrics. Additionally, we do not make
any assumption on the heading direction since the use of
magnetic north is often unreliable within buildings and can
be distorted by onboard and external electronics.

The congruence of such maps may be determined by pixel-
based methods, by entropy, or Fourier-based methods. In
medical imaging, the entropy-based mutual information is
broadly applied for multimodal image registration [16]. An
example of a Fourier-based method is the Fourier-Mellin
transform, which allows for the estimation of position and
orientation, but needs strong smoothing of the borders [17],
[18].

B. Paper Outline

Our goal is to identify the best method for finding the
relative position of the aerial and ground robot. Therefore, we
compare the merit of the following similarity measures: sum
of absolute differences (SAD), sum of squared differences
(SSD), normalized cross-correlation (NCC), and normalized
mutual information (NMI). In the case of Gaussian noise,
SSD would be optimal. However, we compare these similar-
ity measures on two real datasets of the environments shown

in Fig. 1 and 7, where the assumption of Gaussian noise may
not hold.

We describe the experimental setup in Sec. II. Our eval-
uations show that with all similarity measures presented in
Sec. Il we are able to track the robot’s position in real-
time using a particle filter introduced in Sec. IV. The results
in Sec. V illustrate that the motion of the robot can be
successfully used to converge to a unique solution. Finally,
the work is concluded in Sec. VI.

II. EXPERIMENTAL SETUP

In our experiments we use a lightweight quadrotor
equipped with a monocular downward-facing camera [19]
(Fig. 1). As a ground robot we use a walking robot due to
its superior ability to overcome rough terrain often found in
search and rescue missions. The walking robot StarlETH [20]
uses a laser range scanner that maps the local surroundings
and allows local foothold planning.

The map gathered by the quadrotor is created with the
dense 3D reconstruction pipeline (REMODE) presented in
[19], [21]. In this approach, the quadrotor performs real-time
monocular dense depth estimation for a set of keyframes
that cover the mapped area. These individual depth maps
are integrated into an elevation map based on the quadrotor’s
pose estimate from visual odometry [22]. The metric scale is
guaranteed through initialization with a single-point distance
sensor and inertial measurements. The walking robot fuses
several measurements of its rotating laser range scanner with
the legged state estimation [23]. As a result, the method
[24] allows for the computation of the variance of multiple
measurements.

Although we used this particular setup, our method is
intended to work for any other combination of robots with
depth sensing capability.

III. GLOBAL LOCALIZATION

Without any initial position given, a global search has to
be performed in order to localize the ground robot within the
map of the environment provided by the flying robot.

Objects in the environment, especially taller ones, typically
obstruct the view of the ground robot, causing occlusions
in its map. On the other hand, the flying robot with its
downward-facing camera has difficulties in mapping vertical
surfaces. As a result, the maps may not look alike and each
may contain data that is missing from the other, as can
be seen in Fig. 2. Additionally, the maps may not overlap
fully for all times considered. Due to the challenges caused
by viewpoint differences, occlusions, repetitive structures,
and noisy sensor data, we believe that local feature based
approaches (2D or 3D) cannot be applied in this situation as
pointed out in [15], [25].

Our method is therefore based on comparing 2.5D eleva-
tion maps in a template matching approach. The resulting
template search is performed within the map of the flying
robot. Therefore, we will refer to the map of the flying robot
as the reference and to the map of the ground robot as the
template for the rest of this work.
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(b) Map of the ground robot

(a) Map perceived by the flying
robot

Fig. 2. The two robots perceive their surroundings from a vastly different
viewpoint using two different types of sensors. The black rectangle in (a)
marks the area perceived by the ground robot.

(b) Template (elevation
map of the ground robot)

(a) Reference (elevation map of the flying
robot)

Fig. 3. Using the gravity vector provided by the IMU of the robots, the
maps are projected onto the ground plane. This results in a simple, sensor-
and viewpoint-independent representation.

A. Elevation Maps

Utilizing the fact that both robots use an inertial measure-
ment unit (IMU) for their state estimation, we project the
maps onto the ground plane along the provided gravity vector.
The resulting elevation maps, shown in Fig. 3, are represented
by 2D grids [24], [26]. They are generated in a way that,
if multiple points are projected on the same grid cell, the
highest one is taken. This allows the closest representation
to the downward-facing camera of the flying robot.

The elevation maps shown in Fig. 3 provide a simple
representation of the observed surroundings and allow for
the comparison of different sensors with different viewpoints.
An important property of the elevation maps is that they are
correctly scaled, which is given in our scenario by the use
of a laser range scanner and visual-inertial odometry.

B. Template Matching

In the global localization stage the similarity for all consid-
ered template positions and orientations u = {uy,...,uyn}
are computed. Every state u; = [x;,¥;,0;] describes the
relative position [z, y] and orientation 6 of the ground robot
in the 2D coordinate system of the reference map.

For practical reasons, we aim for a short initialization
time of around 5s for an environment of 5m x 5m. Taking
into account the computation time of one sample of u, we
determine the number of possible samples to calculate. These
samples are then spread evenly over the entire dataset. As
a result, we utilize the center of every 5x5 patch and a 5
degree increment for the global localization. Additionally, the

similarity scores are computed sparsely using the center of
every 5x5 patch.

Given a certain position and orientation u of the template,
the similarity is calculated. For this purpose, the sparsely se-
lected points of the template are projected onto the reference
and compared to the height of the nearest cell. We define all
points used to compute the similarity as X (u) = X; N X, (u)
with X; the sparsely selected points with a defined height in
the template and X,.(u) the points with defined height in the
reference for the given template position and orientation .

To prevent bias in the similarity metrics causing them to
favor areas of low overlap, a threshold of a minimum overlap
between reference and template of 25% is applied. Matches
with an overlap lower than the threshold are discarded.

C. Similarity Calculation

The similarity is computed using different similarity mea-
sures. These are implemented as zero-mean to be indepen-
dent of the z-position of the maps (except for the nor-
malized mutual information, which is independent of the
absolute values). Having found the best similarity, the z-
alignment is recovered by the difference of the mean heights
Az = H, (a) — H, with H, and H, the mean of the heights
of the template H;(x) and of the reference H,(x + @) of all
points x € X (%) and @ being the best position and orientation
found.

To reduce the influence of uncertain and erroneous mea-
surements on the obtained score a weight inversely propor-
tional to the variance of the heights is used [27]. Since
our data only provides the variance for the heights in the
template, we only include these. This could nevertheless be
extended to the reference. Furthermore, to be independent of
the number of points in X, a normalized form is used.

The implemented similarity measures are:

1) Sum of Absolute Differences (SAD): As stated in [28]
the SAD is relatively robust to noise due to its moderate
penalty on height differences. The zero-mean normalized and
weighted SAD is computed by

Hi(x) = ) = (Ho(x +w) — H,(u)
SAD(u) = « z; ) |( )Var((Ht(X)) )}

M
with normalization o = ) _ X(u) Var (H¢(x)). The best
relative position and orientation is then found by

@ = arg min SAD(u) . (2)
2) Sum of Squared Differences (SSD): An unweighted

variant of the SSD is used in in the work of Forster et al. [15].
The zero-mean weighted and normalized SSD is defined as

Hy(x) — Hy) — (Hy(x +u) — Hy(u) 2
SSD(u) = « Z ) <( )Var((Ht(X)) )>
xeX (u

3

. . . 2
w1th. norma.ll%zatlon a = Zx eX(w) Var (H(x))". Thg best
relative position and orientation is then found at the minimum

i = arg min SSD(u) . @)



3) Normalized Cross-Correlation (NCC): In the work of
Wendel et al. [29] a normalized cross-correlation is used
to refine the alignment of two 3D models. Including the
proposed weight, the zero-mean normalized and weighted
NCC [30] is calculated by

(Hi(x) — Hy) - (Hy(x + u) — Hr(u))
NCC(u) = « 6;( ) Var (H, (%))

©)
with normalization
o=

1

D (HiGo—Hy)? 3 (Hr(xtu)—Hyp ()
x€X (u) Var(H¢(x)) x€X (u) Var(H¢(x))

The best relative position and orientation is then found at the
maximum correlation

@ = arg max NCC(u) . (6)

4) Normalized Mutual Information (NMI): We propose
to use the Shannon entropy based Mutual Information (MI)
introduced in [28]. In its basic form the MI is strongly biased
towards the borders of the reference map since in the case of
low numbers of samples the approximate MI value calculated
by the utilized histogram can show a bias to minimizing the
number of samples. Therefore, we provide the same number
of points for every position and orientation of the template
considered (possible due to the sparse similarity calculation).
Additionally, we use the normalized version proposed in [31]
to eliminate the influence of entropy variance in the reference
map. In opposition to the other similarity measures used, no
weight based on the variance of the heights in the template
is included. The normalized mutual information is defined as

_ B(w) + B (w)

NMI(u) Foe () @)
with marginal entropies of the template ¢ and reference r
Ei(u) = —pi (blu) -logy (pi (b)) i€ {t,r} ()

beB

and joint entropy

Bir(u) = > Y =pa (be, brlu) - logy (s (bi,br|w) - )
bteBbreB

Whereas p; describes the probability of all defined heights
being within bin b and p, represents the probability of
the heights in ¢t and r to be within the bins b; and b,
simultaneously for the same physical location. The bins used
have a fixed height of H;, = 0.08 m resulting in the number of
bins Ny = (Himaz — Hmin)/Hp and B = {b1,ba,...,bn, }.
The best relative position and orientation is then found at the
maximum mutual information

@ = arg max NMI(u) . (10)

The resulting scores of the implemented similarity mea-
sures on the dataset with the boxes are shown in Fig. 4 for
robot positions at three different times ¢1, t2, and ¢3. It can
be seen that the minima of the SAD and SSD as well as the
maxima of the NCC and NMI are not unique for the position
at to. However, taking into account the previous iterations,
the reliability of the scores is sufficient to identify the correct
position.
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Fig. 4. The costmaps illustrate the scores of the different similarity measures
at t1: 25%, t2: 50%, and t3: 75% of the trajectory for the best orientation
at every relative position overlayed on the height map. The minima of the
SAD and SSD as well as the maxima of the NCC and NMI are not unique
for all time instances indicated by multiple yellow (SAD, SSD) and blue
(NCC, NMI) peaks (strong minima, respectively maxima are highlighted in
red).

IV. PARTICLE FILTER

To allow us to track multiple hypotheses of relative loca-
tions we propose to use a particle filter, similar to the Monte
Carlo Localization in [15] and introduced in [32]. The motion
of the ground robot is then used to converge to the correct
location.

The set of particles U = {u1,us,...,un, } represents the
belief of the position and orientation of the ground robot
within the reference map. Given that we do not have prior
information about the relative location of the robots, the
particles are for practical reasons initialized as the sparse
global localization presented in Sec. III, which differs from
the random initialization of the standard particle filter. Subse-
quently, we compute the similarity scores for all particles and
identify the best score obtained. If this score is indicating a
good match, the particles are resampled. Otherwise, another
global localization is performed, as shown in Fig. 5.

For the resampling, we want to guarantee that particles
with higher scores are sampled with a higher probability than
others. We achieve this by converting the different similarity
scores into a belief representing probability

p(u) o< exp (%)

where S represents the different similarity scores used. The
parameter pgs depends on the resolution of the particu-
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Fig. 5. The particle filter performs a sparse global localization as initial-
ization, then resamples particles with a dense resolution around the best
similarity scores and shifts them by the motion estimate of the robot. In
the next iteration it computes the similarity of all locations represented by
particles for a given map at the new position.
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Fig. 6. The particles converge to the correct position within 2 iterations
of the particle filter starting from a sparse initialization at iteration k using
NMI.

lar similarity score and is chosen as psap = —0.0025,
pssp = —0.0004, pnyce = 0.025 and pprr = 0.015. The
parameters are chosen to guarantee fast convergence, while
still providing enough robustness to keep track of multiple
hypotheses.

We resample Np particles with probability p for all
iterations of the particle filter. Normally distributed noise
(standard deviations opos = 0.02m and o,r = 2°) is
added to the resampled particles to get to a higher resolution
and increase the robustness. To speed up the computation
performance, we discretize the resampling step with the
resolution of the elevation map for translation and a one
degree increment for rotation. Higher resolutions did not
result in significantly more accurate results but increased the
computation time. After resampling, all duplicate particles
are removed to save computation time in the next iteration
k+1.

When a new map is provided by the ground robot every
particle ¢ is shifted by

Ui b1 = Uik + Au (12)

with Awu the motion estimation of the robot, provided by
the proprioceptive state estimation of the walking robot [23].
Then the process is restarted by computing the similarity
scores for all resampled particles.

To further increase the robustness and the recovery capa-
bility, randomly sampled particles could be added in every
iteration. In our experiments this was not necessary since
the particle filter never lost track of the correct location.
Moreover, the particles converged to the correct location after

Fig. 7.
ramp to its goal position using a map to plan its path, which was previously
created by a flying robot.

In dataset 2 the robot walks around a cardboard box down on a

only two to three iterations given motion of the ground robot,
as can be seen in Fig. 6.

V. RESULTS

The localization method introduced in this work was suc-
cessfully verified within two different environments, shown in
Fig. 1 and 7. The datasets consist of the elevation map of both
robots, of which the one of the ground robot includes variance
information of the heights. The ground truth reference tra-
jectory for the walking robot was acquired by first manually
determining the initial pose of the robot. Subsequently, ICP
localization was applied while deliberately making use of
walls and ceiling to achieve a tracking accuracy of < 0.01 m.

The computation is run on a single core of an Intel Core i7
620-M 2.66 GHz processor. For our experiments the number
of particles is set to Np =4000. It is chosen such that
real-time performance is achieved while densely covering
the space around the best particles. As a consequence, the
particle filter is able to process all map updates from the
walking robot with a refresh rate of 0.5 Hz once initialized.
All similarity measures take roughly the same amount of time
to compute.

Fig. 8 shows the restored trajectory of the location with
the best score for each of the similarity measures in the
environment with the boxes compared to the ground truth.
All similarity measures correctly recover the trajectory of the
walking robot. The initial global localization takes less than
4 s for the dataset of the first environment of approximately
6m x 4m and a resolution of 0.03 m per cell of the elevation
maps.

The results of the restored trajectories in the second
environment used to validate our method are shown in Fig. 9.
The dataset has a resolution of 0.04 m per cell and has a size
of 9m x 6m. The introduced localization method succeeds
in tracking the trajectory with all similarity measures for
this new environment without adapting any parameters. The
initialization takes 10s. For this environment the trajectory
recovered by the NCC starts at the wrong position and is
offset towards the right at the beginning of the trajectory
due to multiple hypotheses. The particle filter handles the
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Fig. 9. For dataset 2 (Fig. 7) the recovered trajectory with the NCC starts at
the wrong position and is offset at the beginning due to multiple hypotheses.
The correct position is identified with all other similarity measures and
subsequently with the NCC by covering the area around the hypotheses
with a higher resolution and taking the motion of the robot into account.

situation by covering the area around the hypotheses with a
higher resolution and considering the motion of the robot.
Therefore, the position is correctly identified in the subse-
quent iterations.

The root-mean-square errors (RMSE) for position and
orientation over the entire recovered trajectories are listed
in Tab. I. Note that in our implementation with a discretized
elevation map and 4000 particles, the results behave nearly
deterministically. We observe that all similarity measures
perform comparably (within the accuracy of the ground truth
reference trajectory) except for the NCC on the second
dataset. We suspect that the ability of the NCC to cope with
other linear dependencies such as offset and scale changes
(which do not occur in the test scenarios) makes the results
more susceptible to noise than the other methods (see the
trajectory offset in Fig. 9). In comparison to the trajectory
restored by odometry, all similarity scores provide much
more accurate results using the proposed method (Tab. I).

of 5 sequential elevation maps registered by the walking
robot of both environments. In Fig. 10 the position error
of the mean of all particles and the standard deviation of
the particles are shown for 5 iterations of the particle filter.
Notice that after 3 iterations the mean of all particles is in at
least 90% of the experiments closer than 0.2 m to the correct
position. Our approach is therefore capable of initializing at
any position along the trajectories and converging qucikly to
the correct result, which proves the high robustness of the
method.

Although the accuracy of the alignment was further in-
creased by reducing the sparsity of the similarity computation
at the cost of higher computation times, the algorithm can
still run in real-time. The standard deviation can then be
considered as a measure for the convergence of the particles.

VI. CONCLUSION

We have presented a localization method based on eleva-
tion maps that allows a ground robot to determine its position
within the reference map of a flying robot, independently
of the sensors used by the robots. The method assumes
some variability of elevation within the environment and is
therefore not applicable in completely flat surroundings.

It was shown that the method is effective in two different
indoor environments using four different similarity scores.



Weighting of the height information with the variance of its
measurements helped to reduce the influence of noisy mea-
surements. The sparsity introduced for the global localization
keeps the computation time in the range of several seconds.
After the initialization step, the particle filter allows real-
time performance. Especially in self-similar environments the
particle filter is essential and uses the motion of the ground
robot for convergence. In our experiments, all similarity
metrics performed similarly and additional work on different
degraded environments is necessary to make a recommenda-
tion on a similarity measure for broader use.

In future work, we intend to evaluate our method in larger
outdoor environments using GPS to focus the initial global
search. Furthermore, we plan to add a measure of certainty
to the resulting localization.
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