— Informatik I —Modul 2: Rechnerarithmetik (1)

© 2010 Burkhard Stiller

M2 - 1

Modul 2: Rechnerarithmetik (1)

- Zahlensysteme
- Zahlendarstellung

Rechnerarithmetik

- Rechnerarithmetik soll als Beispiel vorbereitet werden, wie größere Informationseinheiten verarbeitet werden.
- □ Hierzu werden zunächst die formalen Grundlagen erarbeitet.
- □ Dann werden Schaltnetze und –werke behandelt (Modul 3, 4).
- Danach werden Verfahren und Schaltungen zur Implementierung der vier Grundrechenarten in einem Rechner vorgestellt (Modul 5).
- □ Abschließend wird die Funktion einer arithmetisch logischen Einheit (ALU) eines Rechners besprochen (Modul 5).

© 2010 Burkhard Stiller

M2 - 3

ifi

Formale Grundlagen

- Menschen rechnen gewöhnlich im Dezimalzahlensystem.
- □ Rechner rechnen gewöhnlich im Dualzahlensystem.
- → Eine Konvertierung ist erforderlich
- Daneben werden weitere Zahlensysteme wie Oktalzahlensystem oder Hexadezimalzahlensystem (eigentlich: Sedezimal) zur kompakteren Darstellung der sehr langen Dualzahlen verwendet.
- → Es ist notwendig, die Zusammenhänge und mathematischen Grundlagen dieser Zahlensysteme zu verstehen.

Zahlensysteme (1)

- □ Gängigste Form: Stellenwertsysteme
- □ Zahlendarstellung in Form einer Reihe von Ziffern z_i, wobei das Dezimalkomma (-punkt) rechts von z₀ plaziert sei:

$$z_n z_{n-1} \dots z_1 z_0$$
, $z_{-1} z_{-2} \dots z_{-m}$

- Jeder Position i der Ziffernreihe ist ein Stellenwert zugeordnet, der eine Potenz bi der Basis b des Zahlensystems ist.
- □ Der Wert X_b der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen z_ibⁱ:

$$X_b = z_n b^n + z_{n-1} b^{n-1} + ... + z_1 b + z_0 + z_{-1} b^{-1} + ... + z_{-m} b^{-m} = \sum_{i=-m}^{n} z_i b^i$$

© 2010 Burkhard Stiller

M2 - 5

ifi

Zahlensysteme (2)

Interessante Zahlensysteme in der Informatik

b	Zahlensystem	Zahlenbezeichnung
2	Dualsystem	Dualzahl
8	Oktalsystem	Oktalzahl
10	Dezimalsystem	Dezimalzahl
16	Hexadezimalsystem (Sedezimalsystem)	Hexadezimalzahl (Sedezimalzahl)

- □ Hexadezimalsystem: Die "Ziffern" 10 bis 15 werden mit den Buchstaben A bis F dargestellt.
- Dualsystem: Wichtigstes Zahlensystem im Rechner
- Oktal- und Hexadezimalsystem: Leicht ins Dualsystem umwandelbar, besser zu verstehen als lange 0-1-Kolonnen.

Der Euklidische Algorithmus

- Umwandlung vom Dezimalsystem in ein System zur Basis b
- □ 1. Methode: Euklidischer Algorithmus:

$$Z = z_n 10^n + z_{n-1} 10^{n-1} + ... + z_1 10 + z_0 + z_{-1} 10^{-1} + ... + z_{-m} 10^{-m}$$

$$= y_p b^p + y_{p-1} b^{p-1} + ... + y_1 b + y_0 + y_{-1} b^{-1} + ... + y_{-q} b^{-q}$$
Die Ziffern werden sukzessive, beginnend mit der höchst-

wertigen Ziffer, berechnet.

- 1. Schritt: Berechne p gemäß der Ungleichung b^p ≤ Z < b^{p+1} (setze i = p)
- 2. Schritt: Ermittle y_i und den Rest R_i durch Division von Z_i durch bⁱ: y_i= Z_i div bⁱ; R_i= Z_i mod bⁱ;
- 3. Schritt: Wiederhole 2. Schritt für i = p-1, ... und ersetze dabei nach jedem Schritt Z durch R_i, bis R_i= 0 oder bis bⁱ (und damit der Umrechnungsfehler) gering genug ist.

© 2010 Burkhard Stiller

M2 - 7

ifi

Beispiel

Umwandlung von 15741,233₁₀ ins Hexadezimalsystem:

- 1. Schritt: $16^3 \le 15741,233 < 16^4 \rightarrow \text{höchste Potenz } 16^3$
- 2. Schritt: $15741,233:16^3=3$ Rest 3453,233
- 3. Schritt: $3453,233:16^2 = D$ Rest 125,233
- 4. Schritt: 125,233 : 16 = 7 Rest 13,233
- 5. Schritt: 13,233 : 1 = D Rest 0,233
- 6. Schritt: $0,233:16^{-1}=3$ Rest 0,0455
- 7. Schritt: $0,0455:16^{-2} = B$ Rest 0,00253
- 8. Schritt: $0,00253:16^{-3} = A$ Rest 0,000088593
- 9. Schritt: $0,000088593: 16^{-4} = 5$ Rest 0,000012299 (\rightarrow Fehler)

→ 15741,233₁₀ ≈ 3D7D,3BA5₁₆

Horner Schema

- Umwandlung vom Dezimalsystem in ein Zahlensystem zur Basis b
- □ 2. Methode: Abwandlung des Horner Schemas
- Hierbei müssen der ganzzahlige und der gebrochene Anteil getrennt betrachtet werden:
- Umwandlung des ganzzahligen Anteils:
- □ Eine ganze Zahl $X_b = \sum_{i=0}^{n} z_i b^i$ kann durch fortgesetztes Ausklammern auch in folgender Form geschrieben werden:

$$X_b = ((...(((y_n b + y_{n-1}) b + y_{n-2}) b + y_{n-3}) b ...) b + y_1) b + y_0$$

© 2010 Burkhard Stiller

M2 - 9

ifi

Horner Schema: Beispiel

- Die gegebene Dezimalzahl wird sukzessive durch die Basis b dividiert.
- Die jeweiligen ganzzahligen Reste ergeben die Ziffern der Zahl X_b in der Reihenfolge von der niedrigstwertigen zur höchstwertigen Stelle.

Wandle 15741₁₀ ins Hexadezimalsystem um:

$$15741_{10}$$
: $16 = 983$ Rest 13 (D₁₆)

$$983_{10}$$
: 16 = 61 Rest 7 (7_{16})

$$61_{10}$$
: $16 = 3$ Rest 13 (D_{16})

$$3_{10}$$
: 16 = 0 Rest 3 (3_{16})

$$\rightarrow$$
 15741₁₀ = 3D7D₁₆

Umwandlung: Basis b → **Dezimalsystem**

- Die Werte der einzelnen Stellen der umzuwandelnden Zahl werden in dem Zahlensystem, in das umgewandelt werden soll, dargestellt und nach der Stellenwertgleichung aufsummiert.
- □ Der Wert X_b der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen z_ibⁱ:

$$X_b = z_n b^n + z_{n-1} b^{n-1} + ... + z_1 b + z_0 + z_{-1} b^{-1} + ... + z_{-m} b^{-m} = \sum_{i=-m}^n z_i b^i$$

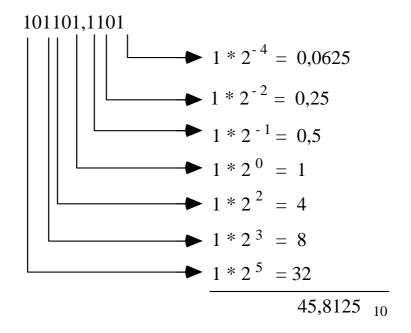
© 2010 Burkhard Stiller

M2 - 11

ifi

Beispiel

Konvertiere 101101,1101₂ ins Dezimalsystem



Umwandlung beliebiger Stellenwertsysteme

- Man wandelt die Zahl ins Dezimalsystem um und führt danach mit Methode 1 oder 2 die Wandlung ins Zielsystem durch.
- □ Spezialfall:
 - Ist eine Basis eine Potenz der anderen Basis, können einfach mehrere Stellen zu einer Ziffer zusammengefasst werden oder eine Stelle kann durch eine Folge von Ziffern ersetzt werden.
- □ Wandlung von 0110100,110101₂ ins Hexadezimalsystem
- □ $2^4 = 16$ ⇒ 4 Dualstellen → 1 Hexadezimalstelle dual 0110100,110101 00110100,110100 Ergänzen von Nullen zur Auffüllung auf Vierergruppen hexadezimal 3 4 . D 4

© 2010 Burkhard Stiller M2 – 13

ifi

Modul 2: Rechnerarithmetik (1)

- Zahlensysteme
- Zahlendarstellung

Darstellung negativer Zahlen

- Für die Darstellung negativer Zahlen in Rechnern werden vier verschiedene Formate benutzt :
- Darstellung mit Betrag und Vorzeichen
- Stellenkomplement-Darstellung (Einerkomplement-Darstellung)
- Zweierkomplement-Darstellung
- Offset-Dual-Darstellung / Exzeß-Darstellung

© 2010 Burkhard Stiller

M2 - 15

Darstellung mit Betrag und Vorzeichen

- □ Eine Stelle wird als Vorzeichenbit benutzt.
- Ist das am weitesten links stehende Bit (MSB, most significant bit):

MSB = 0

→

positive Zahl

MSB = 1

→

negative Zahl

Beispiel:

0001 0010

= +18

1001 0010

= -18

Nachteile:

- Bei Addition und Subtraktion müssen die Vorzeichen der Operanden gesondert betrachtet werden.
- Es gibt zwei Repräsentationen der Zahl 0 (mit positivem und mit negativem Vorzeichen)

Stellenkomplement / Einerkomplement

- □ Stellenkomplement der entsprechenden positiven Zahl.
- Um eine Zahl zu negieren, wird jedes Bit der Zahl komplementiert.
- □ Dies entspricht dem Einerkomplement: Komplementbildung $z_{ek} = (2^n - 1) - z$

Bsp:
$$4 = 0100_2$$
 \rightarrow $-4 = 1011_{ek}$
 $-4 = 2^4 - 1 - 4 = 11_{10} = 1011_2$

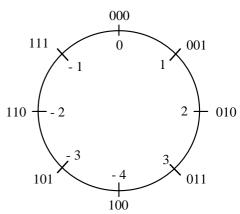
- Negative Zahlen sind wiederum durch ein gesetztes Bit in der ersten Stelle charakterisiert.
- Vorteil gegenüber der Darstellung mit Vorzeichenbit:
 - Erste Stelle bei Addition und Subtraktion muß nicht gesondert betrachtet werden.
 - Aber: Es gibt weiterhin zwei Darstellungen der Null

©2010 Burkhard Stiller

M2 – 17

Zweierkomplement-Darstellung (1)

- Man addiert nach der Stellenkomplementierung noch eine 1
- □ Man erhält so das Zweierkomplement: $z_{zk} = 2^n z$
- 0...0 → Einerkomplement 1...1
 - → Zweierkomplement 0...0
- Nachteil:
 - Unsymmetrischer Zahlenbereich. Die kleinste negative Zahl ist betragsmäßig um 1 größer als die größte positive Zahl



Zweierkomplement-Darstellung (2)

- Alle anderen negativen Zahlen werden um 1 verschoben, das MSB bleibt aber gleich 1.
- Aus der ersten Stelle kann das Vorzeichen der Zahl abgelesen werden
- □ Aus dieser Konstruktion ergibt sich der Stellenwert des MSB einer Zweierkomplementzahl mit *n*+1 Bit zu −2ⁿ:

 $\mathbf{z}_{n} \mathbf{z}_{n-1} \dots \mathbf{z}_{0}$ hat den Wert:

$$Z = -z_n \cdot 2^n + z_{n-1} \cdot 2^{n-1} + ... + z_0$$

© 2010 Burkhard Stiller

M2 - 19

ifi

Beispiel

Die Zahl -77₁₀ soll mit 8 Bit dargestellt werden

$$77_{10} = 0100 1101_2$$

Mit Vorzeichenbit : $-77 = 1100 1101_2$

Einerkomplement: $-77 = 1011 0010_2$

Zweierkomplement: $-77 = 1011 0011_2$

Bitweise komplementieren

Addition von 1

Offset-Dual- (Exzeß-)Darstellung

- Wird hauptsächlich bei der Exponenten-Darstellung von Gleitkommazahlen benutzt.
- □ Die Darstellung einer Zahl erfolgt in Form ihrer Charakteristik.
- □ Der gesamte Zahlenbereich wird durch Addition einer Konstanten (Exzeß, Offset) so nach oben verschoben, daß die kleinste (negative) Zahl die Darstellung 0...0 erhält.
- □ Bei *n* Stellen ist der Offset 2ⁿ⁻¹
- Der Zahlenbereich ist hier auch asymmetrisch.

© 2010 Burkhard Stiller M2 – 21

Zusammenfassung der Möglichkeiten

Darstellung mit						
Dezimalzahl	Betrag + Vorzeichen	Einer- komplement	Zweier- komplement	Charakteristik		
-4			100	000		
-3	111	100	101	0 0 1		
-2	110	101	110	010		
-1	101	110	111	011		
0	100,000	1 1 1, 0 0 0	000	100		
1	0 0 1	0 0 1	0 0 1	101		
2	010	010	010	110		
3	011	0 1 1	011	111		

Fest- und Gleitkommazahlen

Zahlendarstellung auf dem Papier:

Ziffern 0..9

Vorzeichen + -

Komma (Punkt), .

Zahlendarstellung im Rechner:

Binärziffern 0, 1

- → spezielle Vereinbarungen für die Darstellung von Vorzeichen und Komma/Punkt im Rechner sind erforderlich
- □ Darstellung des Vorzeichens:
 - Wurde im vorigen Abschnitt behandelt
- Darstellung des Kommas mit zwei Möglichkeiten:
 - Festkommadarstellung
 - Gleitkommadarstellung

© 2010 Burkhard Stiller M2 – 23

<u>ifi</u>

Festkomma-Zahlen (1)

- Vereinbarung:
 - Das Komma sitzt innerhalb des Maschinenwortes, das eine Dualzahl enthalten soll, an einer festen Stelle.
- □ Meist setzt man das Komma hinter die letzte Stelle.
- Andere Zahlen können durch entsprechende Maßstabsfaktoren in die gewählte Darstellungsform überführt werden.
- Negative Zahlen:
 - Meist Zweierkomplement-Darstellung.
- □ Festkomma-Darstellungen werden heute hardwareseitig nicht mehr verwendet, jedoch bei Ein- oder Ausgabe!

Festkomma-Zahlen (2)

- □ Datentyp "integer" (Ganzzahlen) ist ein spezielles Festkommaformat.
- Manche Programmiersprachen erlauben die Definition von Ganzzahlen unterschiedlicher Länge.
- □ Beispiel "C": "short int", "int", "long int", "unsigned"

	DEC-VAX (einer der Urahnen)		IBM-PC, Apple Macintosh	
Datentyp	Anzahl der Bits	Zahlenbereich	Anzahl der Bits	Zahlenbereich
short int	16	-2 ¹⁵ 2 ¹⁵ -1	16	-2 ¹⁵ 2 ¹⁵ -1
int	32	-2 ³¹ 2 ³¹ -1	16	-2 ¹⁵ 2 ¹⁵ -1
long int	32	-2 ³¹ 2 ³¹ -1	32	-2 ³¹ 2 ³¹ -1

© 2010 Burkhard Stiller

M2 – 25

ifi

Gleitkomma-Darstellung (1)

- Zur Darstellung von Zahlen, die betragsmäßig sehr groß oder sehr klein sind, verwendet man die Gleitkommadarstellung.
- Sie entspricht einer halblogarithmischen Form

$$X = \pm Mantisse \cdot b^{Exponent}$$

- Die Basis b ist für eine bestimmte Gleitkomma-Darstellung fest (meist 2 oder 16) und braucht damit nicht mehr explizit repräsentiert zu werden.
- Gleitkommazahlen werden meist *nicht* im Zweierkomplement, sondern mit Betrag und Vorzeichen dargestellt.

Gleitkomma-Darstellung (2)

- □ Bei der Mantisse ist die Lage des Kommas wieder durch Vereinbarung festgelegt (meist links vom MSB).
- Der Exponent ist eine ganze Zahl, die in Form ihrer Charakteristik dargestellt wird.
- □ Für die Charakteristik und die Mantisse wird im Rechner ein feste Anzahl von Speicherstellen festgelegt.
- □ Die Länge der Charakteristik y-x bestimmt die Größe des Zahlenbereichs.
- Die Länge der Mantisse x legt die Genauigkeit der Darstellung fest.
 V V-1

Dezimalzahl = $(-1)^{Vz}$ * (0,Mantisse) * $b^{Exponent}$ Exponent = Charakteristik – $b^{(y-1)-x}$

© 2010 Burkhard Stiller

M2 - 27

ifi

Normalisierung

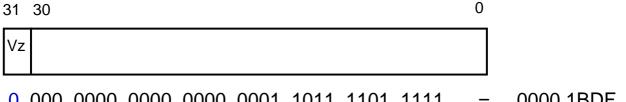
- □ Legt man für die Zahl 0 ein spezielles Bitmuster fest, ist die erste Stelle der Mantisse in normalisierter Form immer gleich 1.
- □ Die erste Stelle der Mantisse braucht im Maschinenformat gar nicht erst dargestellt zu werden, d.h. (0,1)
- Man spart ein Bit bei der Speicherung oder gewinnt bei gleichem Speicherbedarf ein Bit an Genauigkeit.
- □ Bei arithmetischen Operationen und bei der Konversion in andere Darstellungen darf diese Stelle natürlich nicht vergessen werden.

Beispiel (1)

3 verschiedene Maschinenformate mit je 32 Bit und b = 2.

Die Zahl 7135₁₀ wird in jedem dieser Formate dargestellt.

a) Festkommadarstellung mit Zweierkomplement



0 000 0000 0000 0000 0001 1011 1101 1111₂ 0000 1BDF₁₆

© 2010 Burkhard Stiller

M2 - 29

Beispiel (2)

b) Gleitkommadarstellung, normalisiert:

c) Gleitkommadarstellung, normalisiert, erste "1" implizit:

```
23 22
31 30
                                                              0
 Vz Charakteristik
                          Rest-Mantisse
```

Darstellbarer Zahlenbereich (1)

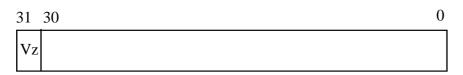
- □ Die Anzahl darstellbarer Zahlen (Bitkombinationen) ist zwar in allen drei Fällen gleich (2³²)
- □ Der Bereich und damit die Dichte darstellbarer Zahlen auf dem Zahlenstrahl ist aber sehr unterschiedlich.

© 2010 Burkhard Stiller

M2 - 31

Darstellbarer Zahlenbereich (2)

□ Format a: Zahlen zwischen -231 und 231-1



□ Format b:

negative Zahlen: -(1-2-23) ·2¹²⁷ ... -0,5·2⁻¹²⁸,

positive Zahlen 0,5·2⁻¹²⁸ ... (1-2⁻²³)·2¹²⁷,

und *Null*

Darstellbarer Zahlenbereich (3)

Format c: normalisierte Gleitkommadarstellung

negative Zahlen: -(1-2-24)-2127 ... -0,5-2-128

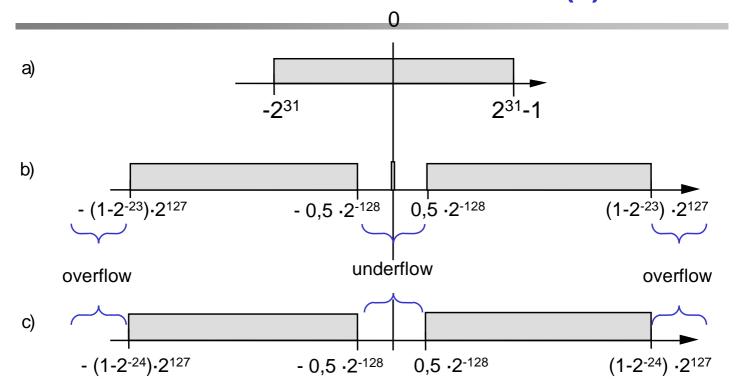
positive Zahlen 0,5-2⁻¹²⁸ ... (1-2⁻²⁴)-2¹²⁷

Die Null kann nicht dargestellt werden!

© 2010 Burkhard Stiller

M2 - 33

Darstellbarer Zahlenbereich (4)



Charakteristische Zahlen

- Um verschiedene Gleitkommadarstellungen miteinander vergleichen zu können, definiert man drei charakteristische Zahlen:
- maxreal ist die größte darstellbare normalisierte positive Zahl
- minreal ist die kleinste darstellbare normalisierte positive Zahl
- smallreal ist die kleinste Zahl, die man zu 1 addieren kann, um einen von 1 verschiedenen Wert zu erhalten.

© 2010 Burkhard Stiller

M2 - 35

<u>ifi</u>

Beispiel

In Format b) im letzten Beispiel

31 30

23 22

0

Vz Charakteristik Mantisse

 \Box maxreal = $(1 - 2^{-23}) \cdot 2^{127}$

minreal = $0.5 \cdot 2^{-128}$

- □ Die Zahl 1 wird normalisiert als 0,5 · 2¹ dargestellt.
- Die nächstgrößere darstellbare Zahl hat in der Mantisse zusätzlich zur 1 in Bit 22 eine 1 in Bit 0.
- □ smallreal = $0,0000000000000000000001_2 \cdot 2^1$, also smallreal = $2^{-23} \cdot 2^1 = 2^{-22}$

Ungenauigkeiten

- Die Differenz zwischen zwei aufeinanderfolgenden Zahlen wächst bei Gleitkomma-Zahlen exponentiell mit der Größe der Zahlen, während sie bei Festkomma-Zahlen konstant ist.
- Bei der Darstellung großer Zahlen ergibt sich damit auch eine hohe Ungenauigkeit.
- Die Gesetzmäßigkeiten, die für reelle Zahlen gelten, werden für Maschinendarstellungen verletzt!

Dies gilt insbesondere auch wenn diese Zahlen in einer höheren Programmiersprache oft real heißen.

© 2010 Burkhard Stiller

M2 - 37

<u>ifi</u>

Beispiel

□ Das Assoziativgesetz (x + y) + z = x + (y + z) gilt selbst dann nicht unbedingt, wenn kein overflow oder underflow auftritt.

z.B.:
$$x = 1$$
; $y = z = \text{smallreal/2}$

$$(x + y) + z = (1 + smallreal/2) + smallreal/2$$

= 1 + smallreal/2

$$x + (y + z) = 1 + (smallreal/2 + smallreal/2)$$

= 1 + smallreal
\(\pm \)

Hinweis: smallreal ist die kleinste Zahl, die man zu 1 addieren kann, um einen von 1 verschiedenen Wert zu erhalten!

Problematik unterschiedlicher Definitionen

- □ Es existieren beliebig viele Möglichkeiten, selbst mit einer festen Wortbreite unterschiedliche Gleitkommaformate zu definieren (unterschiedliche Basis b, Darstellung der Null, Anzahl der Stellen für Charakteristik und Mantisse).
- □ Es existierten (bis Mitte der 80er Jahre) viele verschiedene, herstellerabhängige Formate
- Man konnte mit dem gleichen Programm auf unterschiedlichen Rechnern sehr unterschiedliche Ergebnisse erhalten!
- Normierung erforderlich

© 2010 Burkhard Stiller

M2 - 39

Normierung (IEEE-Standard)

- □ IEEE-P 754-Floating-Point-Standard
- In vielen Programmiersprachen lassen sich Gleitkomma-Zahlen mit verschiedener Genauigkeit darstellen
 - z.B. in C: float, double, long double
- Der IEEE Standard definiert mehrere Darstellungsformen

IEEE single: 32 Bit
IEEE double: 64 Bit
IEEE extended: 80 Bit

 31 30
 23 22
 0

 Vz Charakteristik
 Mantisse

 8 Bit
 23 Bit

 63
 62
 52
 51
 0

 Vz
 Charakteristik
 Mantisse

 11 Bit
 52 Bit