
1

Stacks, Queues & Trees

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch

2

The Stack Interface
  Stack

  Data structure holding several items.
  New items added to the top of the stack.

  Pushing
  Push items onto the stack

  Pop
  Pop items off of the stack or extract the topmost item.

  Peek
  Peek at the top item or check if the stack is empty.

3

The Stack Interface

  Iast-in, first-out or LIFO policy
  Last item pushed on the stack is next item popped off

the stack

2

4

The Stack Interface

5

The Stack Interface

6

The Stack Interface

  Generics
  The Stack interface describes a stack of Objects.

  s.push(new Die(3));

  When we pop a Stack we get back an Object.
  We usually cast it to a more specific class so we can

use specific functionality.
  ((Die)(s.pop())).roll();

  This is not only inconvenient, it is slightly unsafe.
  We must remember what we put on the Stack, or we

might try to cast something that is not really a Die to
be a Die.

3

7

The Stack Interface
  Generic classes and interfaces

  Has one or more type parameters.
  We have to specify a type for each type of parameter.

  Stack<Die> s = new Stack<Die>():

  s.push(new Die());
 s.pop().roll();

  Java won't let us push anything of the wrong type onto
this Stack.

  The pop() method's return type is specified by the type
parameter.

8

The Stack Interface

9

The Stack Interface

  In UML diagrams type parameters are shown as
dashed boxes are at the upper right of a class.

4

10

The Call Stack

11

The Call Stack

12

The Call Stack

  The hypotenuse() method invokes the square()
method twice.

  How does Java know where to go when it finishes
an invocation of square()?

  Java keeps track of what it was doing before the
invocation started by using a stack.
  This stack is called a call stack.

5

13

The Call Stack

  Every time a method is invoked, a call frame is
created.
  The call frame keeps track of the current state of the

method.
  It stores any arguments or variables for the method.
  It also keeps track of how far along the method has

proceeded.

14

The Call Stack

15

The Call Stack

  Knowledge of the call stack helps us understand
some of Java's error messages.

  The error message shows a stack trace (a
snapshot of the call stack) indicating what was
going on when the program crashed.

6

16

The Call Stack

17

The Queue Interface

  Queue
  Very similar to a stack.
  Items are inserted in one end (the back) and removed

from the other end (the front).
  first-in, first-out, or FIFO

18

The Queue Interface

7

19

The Queue Interface

20

Ordered Lists
  Since a Set changes size as items are added

and removed, a linked structure seems in order.
  An OrderedList is like a LinkedList, except that:

  The elements of an OrderedList must implement the
Comparable interfaces

  The elements of an OrderedList are kept in order.
  The OrderedList class implements the Set interface. It

provides the methods add(), contains(), remove(), and
size(). No duplicate elements are allowed.

21

Ordered Lists

  Extending LinkedList
  The problem is that the LinkedList class implements the

List interface, which conflicts with the Set interface.
  The add() method from the List interface should add the

argument target to the end of the list, even if it is
already present,
while the add() method from the Set interface may add
target at any position, but not if it is already present.

8

22

Ordered Lists

23

Ordered Lists

24

Ordered Lists

9

25

Ordered Lists

26

Ordered Lists

  To add something to a Set, we must first find where it
belongs, then (if it is not present) put it there.

  To remove something, we must first find where it belongs,
then (if it is present) remove it.

  Since the final “put it there” and “remove it” operations take
constant time, all three methods have the same order of
running time for a given implementation.

  The contains() method for the OrderedList class is a linear
search.

27

Ordered Lists

10

28

Ordered Lists

29

Ordered Lists

30

Ordered Lists

11

31

Ordered Lists

  The OrderedList data structure is easy to
implement, but it requires linear time for search,
insertion, and deletion.

32

Binary Search Trees

  Binary search tree
  More efficient under some circumstances

33

Binary Search Trees

12

34

Binary Search Trees

35

Binary Search Trees

  Search

36

Binary Search Trees

13

37

Binary Search Trees

  Searching a binary search tree.
  In a perfect tree, this is Θ(log n)
  In the Anagrams program when the word file is in

alphabetical order, it produces a worst case. Every new
node is a right child.

38

Binary Search Trees

  Insertion

39

Binary Search Trees

  There are two complications to the code:
  Once we reach a null node, we have forgotten how we

got there. Since we need to modify either the left or
right field in the parent of the new leaf, we'll need this
information.

  We need to deal with the situation in which the binary
search tree is empty.

14

40

Binary Search Trees

41

Binary Search Trees

42

Binary Search Trees

15

43

Binary Search Trees

44

Binary Search Trees

  Deletion
  The challenge is to make sure the tree is still a binary

search tree when we're done with the deletion.
  Deleting a leaf, this is easy.
  If the node has only one child, we just splice it out much

as we would a node in a linked list.

45

Binary Search Trees

16

46

Binary Search Trees

  When the node we want to delete has two
children.
  We must be very careful about which node we choose

to delete so that the tree will still be a binary search
tree.

  It is always safe to choose the inorder successor of
the node we originally wanted to delete.

  Find a node's inorder successor by going to the right
child, then going left until we hit a node with no left
child.

  It can have a right child.

47

Binary Search Trees

  It is safe to replace the node we want to delete
with its inorder successor.
  It is therefore larger than anything in the left subtree and

smaller than anything else in the right subtree.

48

Binary Search Trees

17

49

Binary Search Trees

50

Binary Search Trees

  We don't need special code for the case where
node is a leaf, because in this situation
parent.setChild(direction, node.getRight());

  Is equivalent to:
  parent.setChild(direction, null)

51

Binary Search Trees

18

52

Binary Search Trees

  BinarySearchTrees should not be used in the plain
form explained here.
  The worst-case, running time is linear
  Worst case are not uncommon.

53

Tree Traversal

  Four meaningful orders in which to traverse a
binary tree.
  Preorder
  Inorder
  Postorder
  Level order

54

Tree Traversal

19

55

Tree Traversal

56

Tree Traversal

57

Tree Traversal

20

58

Tree Traversal

59

Tree Traversal

60

Tree Traversal

  Level order traversal is sometimes called breadth-
first.

  The other traversals are called depth-first.
  Traversal takes Θ(n) in both breadth-first and

depth-first.
  Memory usage in a perfect tree is Θ(log n) in

depth-first and Θ(n) in breadth-first traversal.

21

61

Tree Traversal

62

General Trees

  General Tree
  General trees differ from binary trees in three ways:

  A node in a general tree may have more than two children.
  General trees cannot be empty. This restriction is made to

avoid having to distinguish between a node with no subtrees
and a node with several empty subtrees, which would be drawn
identically.

63

General Trees

  A node in a general tree has a (possibly empty)
sequence of children, rather than a certain number
of “slots” to fill.

  Binary trees
  a tree with a left subtree but no right subtree
  a tree with a right subtree but no left subtree.

  No such distinction is made for general trees

22

64

General Trees

  Inheritance diagrams showing the relationships
between classes is a general tree.

65

General Trees

  Simplest is to represent each node as an item.
  Array of children or list of children.
  First-child, next-sibling

  A less intuitive but more space-efficient representation has
each node keeping track of its first child and its next sibling.

66

General Trees

