Stacks, Queues & Trees

Harald Gall, Prof. Dr.

Institut fur Informatik
Universitat Zurich

http://seal.ifi.uzh.ch

(74 University of Zurich eA aA IA
\»__‘_g_ 7/ Department of Informatics C.

The Stack Interface
Stack

Data structure holding several items.
New items added to the top of the stack.

Pushing

Push items onto the stack
Pop

Pop items off of the stack or extract the topmost item.

Peek

Peek at the top item or check if the stack is empty.

,/ | University of Zurich

&2/ Department of Informatics 2

The Stack Interface

last-in, first-out or LIFO policy
Last item pushed on the stack is next item popped off

the stack
D
push D pop pop
C|l—s|Cc|—s]C|—=
B B retunsD | B returns C B
A A A A

¢4 University of Zurich
<1 =7/ Department of Informatics 3

The Stack Interface

1 /%% A last-in, first-out stack of Objects. */
2 public interface Stack {

3

4 /** Return true if this Stack is empty. */

5 public boolean 1sEmpty();

6

l [*F

8 * Return the top Object on this Stack. Do not modify the Stack.
9 * @throws EmptyStructureException i1f this Stack is empty.

10 %/

11 public Object peek();

12

1) University of Zurich

il Department of Informatics 4

The Stack Interface

]3 /:':‘,':

14 * Remove and return the top Object on this Stack.

15 * @throws EmptyStructureException if this Stack is empty.
16 */

17 public Object pop();

18

19 /** Add target to the top of the Stack. */
20 public void push(Object target);

21

22}

1) University of Zurich

The Stack Interface

Generics

The Stack interface describes a stack of Objects.
s.push(new Die(3));

When we pop a Stack we get back an Object.

We usually cast it to a more specific class so we can
use specific functionality.

((Die)(s.pop())).roll();
This is not only inconvenient, it is slightly unsafe.

We must remember what we put on the Stack, or we

might try to cast something that is not really a Die to
be a Die.

,/ L™ University of Zurich

-7 Department of Informatics

i 5

The Stack Interface

Generic classes and interfaces

Has one or more type parameters.

We have to specify a type for each type of parameter.
Stack<Die> s = new Stack<Die>():

s.push(new Die());
s.pop().roll();

Java won't let us push anything of the wrong type onto
this Stack.

The pop() method's return type is specified by the type
parameter.

|/ %) University of Zurich
\ T 7/ Department of Informatics

B 7

The Stack Interface

/** A last-in, first-out stack. */
public interface Stack<E> {

/** Return true if this Stack is empty. */
public boolean isEmpty();

/ % %
* Return the top item on this Stack, but do not modify the Stack.
* @throws EmptyStructureException if this Stack is empty.
%* /

public E peek();

/ %%
* Remove and return the top i1tem on this Stack.
* @throws EmptyStructureException if this Stack is empty.

% /
public E pop(Q);

/** Add target to the top of the Stack. */
public void push(E target);

N el el cd ol ed sl el el] —
OCVENOCCULABLOUN—OOVENOCULEABWN—

2]

1) University of Zurich

&=t/ Department of Informatics 8

The Stack Interface

In UML diagrams type parameters are shown as
dashed boxes are at the upper right of a class.

1=
<<interface>> -
Stack
II

IsEmpty():boolean
peek():E

pop():E
push(E):void

(£ B 3) Unlvel'Slty of Zurich
57/ Department of Informatics

" The Call Stack

1 /** Compute the hypotenuse of a right triangle. */
2 public class Hypotenuse {

3

4 /** Return the square of the number x. */
5 public static double square(double x) {

6 return x * Xx;
7

8

9

}

/‘.':‘,':
10 * Return the hypotenuse of a right triangle with side lengths x
11 * and vy.
12 */

13 public static double hypotenuse(double x, double y) {

71 University of Zurich

:“-ﬁl %"’,
= Department of Informatics 10

The Call Stack

14 double x2 = square(x);

15 double y2 = square(y);

16 return Math.sqrt(x2 + y2);

17 }

18

19 /** Test the methods. */

20 public static void main(String[] args) {

21 double result = hypotenuse(3, 4);
22 System.out.println(result);

23 }

24

257}

1) University of Zurich

(Z1.57 Department of Informatics

1

The Call Stack

The hypotenuse() method invokes the square()
method twice.

How does Java know where to go when it finishes
an invocation of square()?

Java keeps track of what it was doing before the
iInvocation started by using a stack.

This stack is called a call stack.

ANDN . . .
./ 2 University of Zurich
\ 1=/ Department of Informatics 12

The Call Stack

Every time a method is invoked, a call frame is
created.

The call frame keeps track of the current state of the
method.

It stores any arguments or variables for the method.

It also keeps track of how far along the method has
proceeded.

A1) University of Zurich

&2/ Department of Informatics

13

The Call Stack

' University of Zurich

E / Department of Informatics

square
X=3
line 6
hypotenuse hypotenuse hypotenuse
Xx=3 x=3 X =23
y=4 y=4 y=4
X2 = X2 = X2=9
y2 = y2 = y2 =
line 13 line 13 line 14
main main main main
args = ... args = ... args = ... args = ...
result = result = result = result =
line 20 line 20 line 20 line 20
hypotenuse(3, 4) square(3) return 9

retur 16

return 5

square(4)

Y

Y

square
X =4

line 6

hypotenuse hypotenuse

X=3 X=3

y=4 y=4

X2 =9 X2 =9

y2 = y2 =16

line 14 line 15

main main main
args = ... args = ... args = ...
result = result = result =5
line 20 line 20 line 21

 J

14

The Call Stack

Knowledge of the call stack helps us understand
some of Java's error messages.
The error message shows a stack tfrace (a

snapshot of the call stack) indicating what was
going on when the program crashed.

|/ %) University of Zurich
57/ Department of Informatics 15

The Call

Stack

1 Exception in thread "main"

2 java.lang
at
at
at
at

(o O, Y — g FU

£ University of Zurich

(227 Department of Informatics

.ArrayIndexOutOfBoundsException: -1
Deck.deal (Deck.java:25)
IdiotsDelight.deal(IdiotsDelight.java:24)
IdiotsDelight.play(IdiotsDelight.java:58)
IdiotsDelight.main(IdiotsDelight.java:81)

16

The Queue Interface

Queue
Very similar to a stack.

Items are inserted in one end (the back) and removed
from the other end (the front).

first-in, first-out, or FIFO

E4E University of Zurich

\ I / Department of Informatics 17

The Queue Interface

front A B C

add D i

A B CD

remove \L returns A

B CD

£10%) University of Zurich
"1/ Department of Informatics

back

18

" The Queue Interface

public interface Queue<E> {

1
2
3
4 /** Add target to the back of this Queue. */
5 public void add(E target);
6
7
8

/** Return true 1f this Queue 1s empty. */
public boolean isEmpty();
9
10 /**
11 * Remove and return the front item from this Queue.

12 * @throws EmptyStructureException 1f the Queue 1s empty.

13 */

14 public E remove();
15

16 }

80 University of Zurich

S Department of Informatics

19

Ordered Lists

Since a Set changes size as items are added
and removed, a linked structure seems in order.

An OrderedList is like a LinkedList, except that:

The elements of an OrderedList must implement the
Comparable interfaces

The elements of an OrderedList are kept in order.

The OrderedList class implements the Set interface. It
provides the methods add(), contains(), remove(), and
size(). No duplicate elements are allowed.

,/ ﬁ\ University of Zurich

7/ Department of Informatics 20

Ordered Lists

Extending LinkedList

The problem is that the LinkedList class implements the
List interface, which conflicts with the Set interface.

The add() method from the List interface should add the
argument target to the end of the list, even if it is
already present,

while the add() method from the Set interface may add
target at any position, but not if it is already present.

L) University of Zurich

\"_ 1./ Department of Informatics o1

" Ordered Lists

' E | =
<<interface>>- _1 <<interface>>_ _
List Set
add(T):void add(T):void
2 A
| I_E 1:

LinkedList __

: i

OrderedList'- -

m

1) University of Zurich

¢ ,/ Department of Informatics

— el

" Ordered Lists

1 /%% A Tinked 1ist of Comparable items, in increasing order. */
2 public class OrderedList<E extends Comparable<E>>
implements Set<E>, Predecessor<E> {

/** The first node in the list. */
private ListNode<E> front;

3
4
5
6
7

84 University of Zurich
< i/ Department of Informatics)

Ordered Lists

8 /** An OrderedList is initially empty.
9 public OrderedList() {
10 front = null;

11}

12

13 public ListNode<E> getNext() {

14 return front;

15 1}

16

17 public void setNext(ListNode<E> next) {
18 front = next;

19 }

20

21 public int size() {
22 int tally = O;

23 for (ListNode<E> node = front;
24 hode != null;

25 nhode = node.getNext()) {
26 tal ly++;

27 }

£ University of Zurich

A “ / Department of Informatics

* /

24

Ordered Lists

28 return tally;

29 1}

30

31 public String toString() {

32 String result = "(";

33 for (ListNode<E> node = front;
34 hode != null;

35 hode = node.getNext()) {
36 result += node.getItem() + " ";
37 }

38 return result + ")";

39 }

40

41 }

University of Zurich

215/ Department of Informatics

25

Ordered Lists

To add something to a Set, we must first find where it
belongs, then (if it is not present) put it there.

To remove something, we must first find where it belongs,
then (if it is present) remove it.

Since the final “put it there” and “remove it” operations take
constant time, all three methods have the same order of
running time for a given implementation.

The contains() method for the OrderedList class is a linear
search.

A1) University of Zurich

D 7 Department of Informatics 26

Ordered Lists

1 public boolean contains(E target) {

2 ListNode<E> node = front;

3 while (hode != null) {

4 int comparison = target.compareTo(node.getItem());
5 if (comparison < 0) {

6 return false;

7
8

}

if (comparison == 0) {
9 return true;
10 }
11 node = node.getNext();
12 3}
13 return false;
14 }

“40%) University of Zurich

"\: e -7 Department of Informatics

27

" Ordered Lists

ListNode ListNode ListNode
OrderedList SN N N N
item =17 item = 42 item = 86
ListiNode ListNode ListiNode ListiNode
OrderedList SN SN A N N
item =17 item = 23 item = 42 item = 86

71 University of Zurich

:“-ﬁl %"’,
. Department of Informatics

Ordered Lists

1 public void add(E target) {

2 Predecessor<E> prev = this;

3 ListNode<E> node = front;

4 while (hode != null) {

5 int comparison = target.comparelTo(node.getItem());
6 1f (comparison < 0) {

7 prev.setNext (new ListNode<E>(target, node));
8 return;

9 }

10 1f (comparison == 0) {

11 return;

12 }

13 prev = node;

14 hode = node.getNext();

15 }

16 prev.setNext(new ListNode<E>(target));

17 }

1) University of Zurich

'.\: “ / Department of Informatics

29

Ordered Lists

public void remove(E target) {
Predecessor<E> prev = this;
ListNode<E> node = front;
while (node != null) {
int comparison = target.comparelo(node.getItem());
1t (comparison < 0) {

BEWON—=O0OOVENOCOLRWLWN-—

return;

}

1f (comparison == 0) {
prev. setNext (node.getNext()) ;
return;

}

prev = node;

hode = node.getNext();

}
16 }

“40%) University of Zurich

215/ Department of Informatics

30

Ordered Lists

The OrderedList data structure is easy to

implement, but it requires linear time for search,
iInsertion, and deletion.

|/ %) University of Zurich
&7/ Department of Informatics 31

Binary Search Trees

Binary search tree
More efficient under some circumstances

18 University of Zurich
~=/ Department of Informatics

<

32

Binary Search Trees

BinarySearchTree

E

0..1

:_E_

£10%) University of Zurich
"1/ Department of Informatics

BinaryNode

/I\ 0..2

33

Binary Search Trees

1/** A binary search tree of Comparables. */
2 public class BinarySearchTree<E extends Comparable<E>>

3 1implements Set<E> {

4

5 /** Root node. */

6 private BinaryNode<E> root;
7

8 /** A BinarySearchTree is initially empty. */
9 public BinarySearchTree() {
10 root = null;

11 3}

12

13 public int size() {

14 return size(root);

15 3

16

17 /** Return the size of the subtree rooted at node. */
18 protected int size(BinaryNode<E> node) {
19 if (node == null) {
20 return 0;
21 } else {
22 return 1 + size(node.getlLeft()) + size(node.getRight());
23 }
24 }
25
26 }
1) University of Zurich

e /’ Department of Informatics

34

_Binary Search Trees

= Search

<h D . . .
©14) University of Zurich
< ;/ Department of Informatics

35

Binary Search Trees

1 public boolean contains(E target) {

2 BinaryNode<E> node = root;

3 while (hode !'= null) {

4 int comparison = target.comparelTo(node.getItem());
5 1t (comparison < 0) { // Go left

6 node = node.getLeft();

7

8

} else if (comparison == 0) { // Found it
return true;
9 } else { // Go right
10 node = node.getRight();
11 }
12 }
13 return false;
14 }

£ University of Zurich

< “ :_ -7 Department of Informatics

Binary Search Trees

Searching a binary search tree.

In a perfect tree, this is ®(log n)

In the Anagrams program when the word file is in
alphabetical order, it produces a worst case. Every new
node is a right child.

|/ %) University of Zurich
57/ Department of Informatics 37

_Binary Search Trees

= Insertion

AR .) _
©14) University of Zurich
e e Department of Informatics

38

Binary Search Trees

There are two complications to the code:

Once we reach a null node, we have forgotten how we
got there. Since we need to modify either the left or
right field in the parent of the new leaf, we'll need this
information.

We need to deal with the situation in which the binary
search tree is empty.

A1) University of Zurich

D 7 Department of Informatics 39

Binary Search Trees

1/

2 * Something which has children, such as a BinarySearchTree or a

3 * BinaryNode.

4

5 public interface Parent<E> {

6

l [**

8 * Return the left child if direction < 0, or the right child

9 * otherwise.

10 #y

11 public BinaryNode<E> getChild(int direction);

12

13/

14 * Replace the specified child of this parent with the new child.
15 * If direction < 0, replace the left child. Otherwise, replace
16 * the right child.

17 4

18 public void setChild(int direction, BinaryNode<E> child);
19
20}

L) University of Zurich

o Department of Informatics 40

Binary Search Trees

1 pubTlic BinaryNode<E> getChild(int direction) {
2 1if (direction < 0) {

3 return left;
4 3} else {

5 return right;
6 }

7}

8

9 public void setChild(int direction, BinaryNode<E> child) {

10 1f (direction < 0) {
11 left = child;

12 1} else {

13 right = child;
14 }

153

4 University of Zurich

(227 Department of Informatics

Binary Search Trees

1 pubTic BinaryNode<E> getChild(int direction) {
2 return root;
3}

4
5 public void setChild(int direction, BinaryNode<E> child) {

6 root = child;
7}

L) University of Zurich

<1/ Department of Informatics

42

Binary Search Trees

public void add(E target) {
Parent<E> parent = this;
BinaryNode<E> hode = root;
int comparison = O;
while (nhode != null) {
comparison = target.comparelTo(node.getItem());
1t (comparison < 0) { // Go left
parent = node;
node = node.getlLeft();
10 } else if (comparison == 0) { // It's already here

VCoOONOTOLBEBWLOUN-—

11 return;

12 } else { // Go right

13 parent = node;

14 node = node.getRight();

15 }

16 }

17 parent.setChild(comparison, new BinaryNode<E>(target));
18 }

' University of Zurich
/ Department of Informatics 43

Binary Search Trees

Deletion

The challenge is to make sure the tree is still a binary
search tree when we're done with the deletion.

Deleting a leaf, this is easy.

If the node has only one child, we just splice it out much
as we would a node in a linked list.

|/ %) University of Zurich
N5/ Department of Informatics

44

Binary Search Trees

0 University of Zurich

Department of Informatics

Binary Search Trees

When the node we want to delete has two
children.

We must be very careful about which node we choose

to delete so that the tree will still be a binary search
tree.

It is always safe to choose the inorder successor of
the node we originally wanted to delete.

Find a node's inorder successor by going to the right
child, then going left until we hit a node with no left
child.

It can have a right child.

|/ 2 University of Zurich
& 7/ Department of Informatics

&E: 46

Binary Search Trees

It is safe to replace the node we want to delete
with its inorder successor.

It is therefore larger than anything in the left subtree and
smaller than anything else in the right subtree.

@4 University of Zurich

2./ Department of Informatics 47

Binary Search Trees

1 public void remove(E target) {

2 Parent<E> parent = this;

3 BinaryNode<E> node = root;

4 int direction = 0;

5 while (hode !'= null) {

6 int comparison = target.comparelTo(node.getItem());
7 1t (comparison < 0) { // Go left

8 parent = node;

9 hode = node.getlLeft();

10 } else 1f (comparison == 0) { // Found 1t
11 spliceOut(node, parent, direction);

12 return;

13 } else { // Go right

14 parent = node;

15 node = node.getRight();

16 }

17 direction = comparison;

18 1}

19}

University of Zurich

215/ Department of Informatics

Binary Search Trees

1 /%%

2 * Remove node, which is a child of parent. Direction is positive
3 * if node 1is the right child of parent, negative if it is the
4 * Teft child.

5 %/

6 protected void spliceOut(BinaryNode<E> node,

7 Parent<E> parent,

8 int direction) {

9 1if (node.getLeft() == null) {

10 parent.setChild(direction, node.getRight());

11 } else if (nhode.getRight() == null) {

12 parent.setChild(direction, node.getlLeft());

13 } else {

14 hode.setItem(removeleftmost(node.getRight(), node));

15 }

16 }

£10%) University of Zurich
< / Department of Informatics 49

il

Binary Search Trees

We don't need special code for the case where
node is a leaf, because in this situation
parent.setChild(direction, node.getRight());

Is equivalent to:
parent.setChild(direction, null)

|/ %) University of Zurich
\ 1=/ Department of Informatics

50

Binary Search Trees

] /%%

2 * Remove the leftmost descendant of node and return the
3 * item contained in the removed node.

4

5 protected E removelLeftmost(BinaryNode<E> node, Parent<E> parent) {
6 1nt direction = 1;

7 while (node.getlLeft() != null) {

8 parent = node;

9 direction = -1;

10 hode = node.getLeft();

11 3}

12 E result = node.getItem();

13 spliceOut(node, parent, direction);

14 return result;

15}

40 University of Zurich

/ Department of Informatics 51

il

Binary Search Trees

BinarySearchTrees should not be used in the plain
form explained here.

The worst-case, running time is linear

Worst case are not uncommon.

("5 University of Zurich
N5/ Department of Informatics 52

Tree Traversal

Four meaningful orders in which to traverse a
binary tree.

Preorder

Inorder

Postorder

Level order

E4E University of Zurich

\ 1=/ Department of Informatics

53

Tree Traversal

level O

level 2

level 3

Traversal Order

Order in which Nodes are Visited

Preorder
Inorder
Postorder

Level order

AGEKLHBFICID
GKELAFBHCIJID
KLEGFBJCDIHA
AGHEBIKLFCDJ

U™ University of Zurich

~1-7 Department of Informatics

54

Tree Traversal

1/
2 * Return a String representation of the tree rooted at this node,
3 * traversed preorder.

4 */

5 public String toStringPreorder() {

6 String result = "";

7 result += item;

8 1if (left != null) {

9 result += Teft. toStringPreorder();

10 1}

11 if (right != null) {

12 result += right. toStringPreorder();

13 1}

14 return result;

15}

“40) University of Zurich

& ;/’ Department of Informatics 55

Tree Traversal

~

* Return a String representation of the tree rooted at this node,
* traversed inorder.

* /
public String toStringInorder() {
String result = "";

’

1if (Teft !'= null) {

result += Teft. toStringInorder();
}

10 result += 1tem;
11 if (right != null) {

VWoEONOCTOGLBEBEWLON—

12 result += right. toStringInorder();
13 1}

14 return result;

153

14" University of Zurich

{2/ Department of Informatics

56

Tree Traversal

15}

' University of Zurich

/ Department of Informatics

1/
2 * Return a String representation of the tree rooted at this node,
3 * traversed postorder.

4

5 public String toStringPostorder() {

6 String result = "";

7 1if (left != null) {

8 result += left. toStringPostorder();

9 7

10 1if (right != null) {

11 result += right. toStringPostorder();

12 }

13 result += item;

14 return result;

57

Tree Traversal

1 /%

2 * Return a String representation of the tree rooted at this node,
3 * traversed preorder.

4

5 public String toStringPreorder() {

6 String result = "";

7 Stack<BinaryNode<E>> stack = new ArrayStack<BinaryNode<E>>();
8 stack.push(this);

9 while (!(stack.isEmpty())) {

10 BinaryNode<E> node = stack.pop(Q);

11 result += node. item;

12 if (node.right != null) {

13 stack.push(node.right) ;

14 }

15 1f (node.left != null) {

16 stack.push(node. 1eft) ;

17 }

18 1}

19 return result;
20}

1) University of Zurich

(227 Department of Informatics

58

Tree Traversal

| IV ks

2 * Return a String representation of the tree rooted at this node,
3 * traversed level order.

4

5 public String toStringlLevelOrder() {

6 String result = "";

7 Queue<BinaryNode<E>> g = new ArrayQueue<BinaryNode<E>>();
8 g.add(this);

9 while (!'(g.1sEmpty())) {

10 BinaryNode<E> node = q.remove();

11 result += node.item;

12 1t (node.left !'= null) {

13 q.add(node. left);

14 }

15 1f (node.right !'= null) {

16 q.add(node.right) ;

17 }

18 }

19 return result;

20}

£ University of Zurich

& ; /:’ Department of Informatics 59

Tree Traversal

Level order traversal is sometimes called breadth-
first.

The other traversals are called depth-first.

Traversal takes ®(n) in both breadth-first and
depth-first.

Memory usage in a perfect tree is O(log n) in
depth-first and ®(n) in breadth-first traversal.

AW . . .
./ 2 University of Zurich
\ % / Department of Informatics 60

Tree Traversal

5&3 University of Zurich

Tg— Department of Informatics

61

General Trees

General Tree

General trees differ from binary trees in three ways:
A node in a general tree may have more than two children.

General trees cannot be empty. This restriction is made to
avoid having to distinguish between a node with no subtrees

and a node with several empty subtrees, which would be drawn
identically.

,/ ﬁ\ University of Zurich

-7 Department of Informatics

hes 62

General Trees

A node in a general tree has a (possibly empty)

sequence of children, rather than a certain number
of “slots” to fill.

Binary trees

a tree with a left subtree but no right subtree
a tree with a right subtree but no left subtree.

No such distinction is made for general trees
./ \ University of Zurich

/' Department of Informatics

NS 63

General Trees

Inheritance diagrams showing the relationships
between classes is a general tree.

(1% University of Zurich
! /' Department of Informatics 64

General Trees

Simplest is to represent each node as an item.
Array of children or list of children.
First-child, next-sibling

A less intuitive but more space-efficient representation has
each node keeping track of its first child and its next sibling.

A1) University of Zurich

D 7 Department of Informatics 65

General Trees

TreeNode nextSibling
e

item = A

firstChild

/

TreeNode nextSibling TreeNode nextSibling TreeNode

item = G “litem =E “litem =C
l/firstChiId l ¢

TreeNode TreeNode TreeNode

item = B ¢ item =D “litem=F

l l l

40 University of Zurich

/ Department of Informatics

il

