11. Recursion

Harald Gall, Prof. Dr.

Institut fur Informatik
Universitat Zurich

http://seal.ifi.uzh.ch/info1

|\ University of Zurich eA aA IA
\& 1/ Department of Informatics C.

Objectives

become familiar with the idea of recursion
learn to use recursion as a programming tool

become familiar with the binary search algorithm
as an example of recursion

become familiar with the merge sort algorithm as
an example of recursion

The Basics of Recursion: Outline

ntroduction to Recursion
How Recursion Works
Recursion versus lteration

Recursive Methods That Return a
Value

‘software evolution & architecture lab

Introduction to Recursion

A recursive algorithm will have one subtask that is
a small version of the entire algorithm's task

A Java method definition is recursive if it contains
an invocation of itself.

The method continues to call itself, with ever
simpler cases, until a base case is reached which
can be resolved without any subsequent recursive
calls.

Example: Exponent

Aufgabe: x’ berechnen

private int power(int x, int y) {
// y>=@ returns x**y

}

*

xX¥=1*x*x*...*x (ytimes)
wenn y == 0, dann keine weiteren Multiplikationen mehr

wenny > 0, dann

(y-1)

berechne x*" "/ und ermittle das Ergebnis x * xV-

Exponent /2

private int power(int x, int y) {
// y>=0 returns x**y
int assistantResult;

if (y == 0)
return 1;
else {

assistantResult = power(x, y-1);
return x * assistantResult;

}

}

A B C

4 (1) hires | 4 (2) hires (3) hires |

0

v

3 2 41 4
(6) returns 16 (5) returns 4 (4) returns 1

(last) returns 64

Termination

Es gibt eine Return-Bedingung, die keinen weiteren
rekursiven Aufruf durchfuhrt:

if (y == 0)
return 1;
else { ...

// rekursiver Aufruf

}

Der Terminationsschritt ist essenziell fur jede rekursive
Funktion!

Der Terminationscode muss vor dem rekursiven Aufruf
platziert sein!

Methodenaufruf

Eine Nachricht wird an das Empfanger-Objekt gesendet; der Sender
wartet auf das Ergebnis

Der Empfanger erzeugt die lokalen Variablen der Methode (Parameter
und andere lokalen Variablen)

Die Parameter erhalten die Werte der Argumente
Die Methode wird ausgefuhrt

Die Methode terminiert und verwirft die lokalen Variablen; ggf. wird ein
Return-Wert an den Sender retourniert

Der Sender setzt seine Verarbeitung fort

Speicher wird alloziert fur
die lokalen Variablen
die verwendeten Parameter

die Lokation des Codes vom Methodenaufruf im Sender (i.e. Return-
Adresse)

8 8

Activation records

f(O ruft power() auf:

}

void f(..) {

int q = power (3,2);

Activation record = Speicherblock, der die aktuellen
Parameter und lokalen Variablen mit der Return-Adresse
enthalt:

Sender: whoever invoked f

X

3

Y

2

Sender: method f, line N

assistantResult

Activation record for f(. . .)

Activation record for power(3,2)
(the current activation record)

9 9

Stack of Activation records /2

Nach dem Aufruf von power (3,1)

Sender: whoever invoked f

X113

Y

2

Sender: method f, line N

\
assistantResult

Activation record for f(. . .)

Activation record for power(3,2)

Sender: method power, line 5

X113

Y

1

assistantResult

Activation record for power(3,1)
(the current activation record)

10 10

Stack of Activation records /3

Nach dem Aufruf von power (3,0)

Sender: whoever invoked f Activation record for f(. .)

Sender: method f, line N

Activation record for power(3,2)

Y| 2 assistantResult
Sender: method power, line 5

Activation record for power(3,1)

Y| 1 assistantResult
Sender: method power, line 5

3

Activation record for power(3,0)
(the current activation record)

assistantResult

Y| O

3

X

11 .

Return

Ein return-Statement
evaluiert den Return-Wert (i.e. 1)

|0scht den aktuellen Activation Record

ersetzt den Ausdruck, der die Methode aufgerufen hat, mit
dem Return-Wert

setzt die Ausfuhrung des Senders fort

Sender: whoever invoked f Activation record for £(. . .)

Sender: method f, line N
. Activation record for power(3,2)

Y| 2 assistantResult

Sender: method power, line 5

Activation record for power(3,1)
(the current activation record)

Yi1l assistantResult

X3

12 12

Return /2

Sender: whoever invoked f

Y| 2

3

Sender: method f, line N

assistantResult

Activation record for f(. . .)

Activation record for power(3,2)

X 1|3 Y

Sender: method power, line 5

1

assistantResult

Activation record for power(3,1)
(the current activation record)

13

13

_Return /3

Sender: whoever invoked

Activation record for f(. . .)

X

3 Y

2

Sender: method f, line N

assistantResult 3

Sender: whoever invoked f

Activation record for f(.

Activation record for power(3,2)
(the current activation record)

-)

(the current activation record)

14

14

Example: Digits to Words

Write a definition that accepts a single integer and
produces words representing its digits.

example
iInput: 223
output: two two three
recursive algorithm
output all but the last digit as words
output the word for the last digit

15

Digit to Words: Specification

If number has multiple digits, decompose
algorithm into two subtasks
Display all digits but the last as words
Display last digit as a word
First subtask is smaller version of original problem
Same as original task, one less digit

16

Case Study

= Algorithm for displayAsWords (number)

1. displayAsWords (number after deleting last digits)

2. System.out.print (getWordFromDigit(last
digit of number + " ")

17

_Case Study

m class RecursionDemo

Enter an integer:
987

The digits in that number are:
nine eight seven

If you add ten to that number,
the digits in the new number are:
nine nine seven

18

How Recursion Works

= Executing recursive call

displayAsWords (987) is equivalent to executing:

{//Code for invocation of displayAsWords(987)
if (987 < 10)
System.out.print(getWordFromDigit(987) + " ");
else //987 has two or more digits Computation waits

{ here for the completion
displayAswWords(987 / 10); / of the recursive call.

System.out.print(getWordFromDigit(987 % 10) + " ");

}

19

How Recursion Works
= Executing recursive call

displayAsWords (987/10) is equivalentto displayAsWords(98), whichis
equivalent to executing:

{//Code for invocation of displayAsWords(98)
1t (98 < 10)
System.out.print(getWordFromDigit(98) + " ");

else //98 has two or more digits Computation waits

{ here for the completion

displayAsWords(98 / 10): / of the recursive call.
System.out.print(getWordFromDigit(98 % 10) + " ");

20

How Recursion Works

= Executing recursive call

displayAsWords(98/10) is equivalentto displayAsWords(9), whichis
equivalent to executing:

{//Code for invocation of displayAsWords(9)
if (9 < 10)
System.out.print(getWordFromDigit(9) + " ");
else //9 has two or more digits
{ Another recursive call
displayAsWords(9 / 10); does notoceur.
System.out.print(getWordFromDigit(9 % 10) + " ");

21

How Recursion Works

Nothing special is required to handle a call to a
recursive method, whether the call to the method
IS from outside the method or from within the

method.

At each call, the needed arguments are provided,
and the code Is executed.

When the method completes, control returns to
the instruction following the call to the method.

22

How Recursion Works, cont.

Consider several methods w1, w2, .., mn Wwith
method m1 calling method m2, method m2 calling
method m3,..., calling method mn.

When each method completes, control returns
to the instruction following the call to the
method.

In recursion, methods m1, m2, .., mn are all
the same method, but each call results in a
distinct execution of the method.

23

How Recursion Works, cont.

As always, method m1 cannot complete execution
until method m2 completes execution, method m?2
cannot complete execution until method m3
completes execution, ..., until method mn completes
execution.

If method mn represents a stopping case, it can
complete execution, ..., then method m2 can

complete execution, then method m1 can complete
execution.

24

Recursion Guidelines

The definition of a recursive method typically includes an
1f-else statement.

One branch represents a base case which can be
solved directly (without recursion).

Another branch includes a recursive call to the method,
but with a “simpler” or “smaller” set of arguments.

Ultimately, a base case must be reached.

25

Keys to Successful Recursion

Must have a branching statement that leads to
different cases

One or more of the branches should have a
recursive call of the method

Recursive call must us "smaller" version of the original
argument

One or more branches must include no recursive
call
This is the base or stopping case

26

Infinite Recursion

If the recursive invocation inside the method does not use
a “simpler” or “smaller” parameter, a base case may never

be reached.

Such a method continues to call itself forever (or at least
until the resources of the computer are exhausted as a
consequence of stack overflow)

This is called infinite recursion

27

Infinite Recursion

= Suppose we leave out the stopping case

public static void displayAsWords(int number)//Not quite right

{
displayAswWords (number / 10);

System.out.print(getWordFromDigit(number % 10) + " ");
}

= Nothing stops the method from repeatedly
iInvoking itself

= Program will eventually crash when computer exhausts
its resources (stack overflow)

28

Recursive Versus lterative

Any method including a recursive call can be
rewritten

To do the same task

Done without recursion

Non recursive algorithm uses iteration
Method which implements is iterative method

class IterativeDemo

29

Recursive Versus lterative

Recursive method
Uses more storage space than iterative version
Due to overhead during runtime
Also runs slower

However in some programming tasks, recursion is
a better choice, a more elegant solution

30

Recursive Methods that Return a Value

Follow same design guidelines as stated
previously

Second guideline also states

One or more branches includes recursive invocation
that leads to the returned value

View program with recursive value returning
method, listing 11.3
class RecursionDemo2

31

Recursive Methods that Return a Value

Enter a nonnegative number:
2008
2008 contains 2 zeros.

= Note recursive method NumberOfZeros

= Has two recursive calls
= Each returns value assigned to result
= Variable result is what is returned

32

Recursion vs. lteration, cont.

A recursive version of a method typically executes

less efficiently than the corresponding iterative
version.

This is because the computer must keep track of
the recursive calls and the suspended
computations.

However, it can be much easier to write a
recursive method than it is to write a
corresponding iterative method.

33

Overloading is Not Recursion

If a method name is overloaded and one method calls
another method with the same name but with a different
parameter list, this is not recursion

Of course, if a method name is overloaded and the
method calls itself, this is recursion

Overloading and recursion are neither synonymous nor
mutually exclusive

34

Programming with Recursion: Outline

Programming Example: Insisting that
User Input Be Correct

Case Study: Binary Search

Programming Example: Merge Sort — A
Recursive Sorting Method

‘software evolution & architecture lab

Programming Example

Insisting that user input be correct
Program asks for a input in specific range
Recursive method makes sure of this range

Method recursively invokes itself as many times as user
gives incorrect input

View program, listing 11.4
class CountDown

36

Programming Example

Enter a positive integer:
0

Input must be positive.
Try again.

Enter a positive integer:
3

Counting down:

3, 2, 1, 0, Blast Off!

37

Example: Search for a Name in a

Phone Book

Open the phone book to the middle.
If the name is on this page, you're done.

If the name alphabetically precedes the names on
this page, use the same approach to search for
the name in the first half of the phone book.

Otherwise, use the same approach to search for
the name in the second half of the phone book.

38

Case Study

Binary Search

We design a recursive method to tell whether or not a
given number is in an array

Algorithm assumes array is sorted

First we look in the middle of the array

Then look in first half or last half, depending on value
found in middle

39

Binary Search

= Draft 1 of algorithm

m = anindex between O and (a.length — 1)
. 1t (target == a[m])
returnm;
. else 1f (target < a[m])
return the result of searching a[0] througha[m — 1]
. else 1f (target > a[m])
return the result of searchinga[m + 1] through ala.length — 1]

NG AN

= Algorithm requires additional parameters

40

Binary Search

= Draft 2 of algorithm to search a[first] through
al[last]

mid = approximate midpoint between firstand last
. if (target == a[mid])
return mid

. else 1f (target < a[mid])

return the result of searching a[f1rst] through a[mid — 1]
. else 1f (target > a[mid])

return the result of searching a[mid + 1] through a[last]

« What if target is not in the array?

41

Binary Search

= Final draft of algorithm to search a[first]
through a[last] tofind target

mid = approximate midpoint between first and last
if (first > last)
return -1
. else if (target == a[mid])

return mid

. else 1f (target < a[mid])

return the result of searching a[first] througha[mid — 1]
. else if (target > a[mid])

return the result of searching a[mid + 1] through a[last]

O OoO~NOUTHEWN —

42

Binary Search

= Figure 11.2a Binary search example

targetis 33

Eliminate half of the array elements:

0 1 2 3 4 5 6 7 8 9

5 7 9 13 32 33 42 54 56 88

1. mid = (0 + 9)/2 (whichis 4).
2. 33>a[mid] (thatis, 33 > a[4]).
3. Soif 33 is in the array, 33 is one of

a[5],a[6],al[7], a[8],a[9].

43

Binary Search

= Figure 11.2b Binary search example

Eliminate half of the remaining array elements:

5 6 7 8 9
33 42 54 56 88

mid = (5 + 9)/2 (whichis 7).
33<a[mid] (thatis,33 <al[7]).
So if 33 is in the array, 33 is one of

a[5], a[6].

L~

44

Binary Search

= Figure 11.2c Binary search example

Eliminate half of the remaining array elements:

mid
5 6
33 42

1. mid = (5 + 6)/2 (whichis5).
2. 33equalsa[mid], sowe found 33 at index 5.

33 found in a[5].

45

Binary Search

= View final code, listing 11.5
class ArraySearcher

= Note demo program, listing 11.6
class ArraySearcherDemo

46

Binary Search

Enter a value to search for:
0

0 is at index 0O

Again?

yes

Enter a value to search for:
2

2 is at index 1

Again?

yes

Enter a value to search for:
13

13 1is not in the array.
Again?

no

May you find what you’re searching for.

47

Example: Merge Sort

Merge sort — A recursive sorting method

A divide-and-conquer algorithm
Array to be sorted is divided in half
The two halves are sorted by recursive calls

This produces two smaller, sorted arrays which are
merged to a single sorted array

48

Merge Sort

= Algorithm to sort array a

1. Ifthe array a has only one element, do nothing (base case).
Otherwise, do the following (recursive case):

Copy the first half of the elements in a to a smaller array named firstHalf.

Copy the rest of the elements in the array a to another smaller array named lastHalf.
Sort the array 1 rstHalf using a recursive call.

Sort the array TastHalf using a recursive call.

Merge the elements in the arrays firstHalf and 1astHalf into the array a.

o ;A w

= View Java implementation, listing 11.7
class MergeSort

49

Merge Sort

= View demo program, listing 11.8
class MergeSortDemo

Array values before sorting:
75112 16 4 18 14 12 30
Array values after sorting:
2457 11 12 14 16 18 30

50

Merge Sort

Efficient sorting algorithms often are stated
recursively.

One such sort, merge sort, can be used to sort an
array of items.

Merge sort takes a “divide and conquer” approach.

The array is divided in halves and the halves are
sorted recursively.

Sorted subarrays are merged to form a larger
sorted array.

51

Merge Sort, cont.

pseudocode

If the array has only one element,
stop.
Otherwise
Copy the first half of the elements
into an array named front.
Copy the second half of the elements
into an array named back.
Sort array front recursively.
Sort array tail recursively.

Merge arrays front and tail.

52

Merging Sorted Arrays

The smallest element in array front IS front [0] .
The smallest element in array tail is tail[0].

The smallest element will be either £ront[0] or tall
[0] .

Once that element is removed from either array
front Or array tail, the smallest remaining element
once again will be at the beginning or array front or
array tail.

53

Merging Sorted Arrays, cont.

Generalizing, two sorted arrays can be merged by
selectively removing the smaller of the elements from the
beginning of (the remainders) of the two arrays and
placing it in the next available position in a larger
“collector” array.

When one of the two arrays becomes empty, the
remainder of the other array is copied into the “collector”
array.

54

Merging Sorted Arrays, cont.

int frontIndex = 0, tailIndex = 0, alIndex = 0;
while (frontlIndex < front.length) &&
(taillIndex < tail.length))

if (front[frontIndex] < tail[taillIndex]}
{
alalndex] = front[frontlIndex];
alndex++;
frontIndex++;

55

Merging Sorted Arrays, cont.

else

{
alalndex] = tail[tailllIndex];

alndex++;
tailIndex++

56

Merging Sorted Arrays, cont.

Typically, when either array front or array tail becomes

empty, the other array will have remaining elements which
need to be copied into array a.

Fortunately, these elements are sorted and are larger than
any elements already in array a.

57

Merge Sort, cont.

m class MergeSort

Class for sorting an array of ints from smallest to Targest,
using the merge sort algorithm.

*%
public class MergeSort
{
/7'.-:'.- /7'\-:'.-
Precondition: Every indexed variable of a has a value. Precondition: a.length = front.length + tail.length.
Action: Sorts a so that a[0] <= a[l] <= ... <= a[a.length - 1]. Postcondition: A1l the elements of a are divided
s between the arrays front and tail.
public static void sort(int[] a) */
{ private static void divide(int[] a, int[] front, int[] tail)
if (a.length >= 2) {
{ int 1i;
int halfLength = a.length/2; for (i = 0; i < front.length; i++)
int[] front = new int[halflLength]; front[i] = a[il;
int[] tail = new int[a.length — halfLength];
for (i = 0; i < tail.length; i++)
divide(a, front, tail); tail[i] = a[front.length + i];
sort(front) ; }
sort(tail);
merge(a, front, tail);
}
//else do nothing. a.length == 1, so a is sorted.
}

Display 11.9
The MergeSort Class

Merge Sort, cont.

/7‘: *
Precondition: Arrays front and tail are sorted from smallest
to Targest, and a.length = front.length + tail.length.
Postcondition: a contains all the values from front and tail,
and a is sorted from smallest to largest.
*/
private static void merge(int[] a, int[] front, int[] tail)
-
int frontIndex = 0, tailIndex = 0, aIndex = 0;
whiTe ((frontIndex < front.length)
&& (taillndex < tail.length))

{
if (front[frontIndex] < tail[tailIndex])
{
alaIndex] = front[frontIndex];
alndex++;
frontIndex++;
3
else
i
alaIndex] = tail[tailIndex];
aIndex++;
tailIndex++;
3
} }

//At Teast one of front and tail has been
//completely copied to a.

while (frontIndex < front.length)//Copy rest of front,

//if any.
{
al[aIndex] = front[frontIndex];
aIndex++;
frontIndex++;
}

while (tailIndex < tail.length)//Copy rest of tail, if any.
{

alaIndex] = tail[tailIndex];

aIndex++;

tailIndex++;

Display 11.9
The MergeSort Class

59

Merge Sort, cont.

public class MergeSortDemo

{

public static void main(String[] args)

{

int[] b = {7, 5, 11, 2, 16, 4, 18, 14, 12, 30};

System.out.printin("Array values before sorting:");

e s

for (i = 0; i < b.length; i++)
System.out.print(b[i] + " ");

System.out.println();

MergeSort.sort(b);

System.out.printin("Array values after sorting:");
for (i = 0; i < b.Tength; i++)

System.out.print(b[i] + " ");
System.out.printin();

Display 11.10

Demonstration of the MergeSort Class

60

Merge Sort, cont.

Screen Output

Array values before sorting:

7511 2 16 4 18 14 12 30

Array values after sorting:
2457 11 12 14 16 18 30

Display 11.10
Demonstration of the MergeSort Class

61

Merge Sort, cont.

The merge sort algorithm is much more efficient than the
selection sort algorithm

62

Summary

Method with self invocation
Invocation considered a recursive call

Recursive calls
Legal in Java
Can make some method definitions clearer

Algorithm with one subtask that is smaller version
of entire task

Algorithm is a recursive method

63

Summary

To avoid infinite recursion recursive method
should contain two kinds of cases

A recursive call

A base (stopping) case with no recursive call

Good examples of recursive algorithms

Binary search algorithm
Merge sort algorithm

64

