
© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

5. Defining Classes and Methods

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Objectives

  Describe and define concepts of class, class
object

  Describe use of parameters in a method
  Use modifiers public, private
  Define accessor, mutator class methods
  Write method pre- and postconditions
  Describe purpose of javadoc
  Describe references, variables, parameters of

a class type

3 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class and Method Definitions

  Figure 5.1 A class as a blueprint

4 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class and Method Definitions

  Figure 5.1 ctd.

Objects that are
instantiations of the

class Automobile

5 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class and Method Definitions

  Figure 5.2 A class outline as a UML class
diagram

6 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Instance Variable

  View sample program, listing 5.1
class SpeciesFirstTry

  Note class has
  Three pieces of data (instance variables)
  Three behaviors

  Each instance of this type has its own copies
of the data items

  Use of public
  No restrictions on how variables used

7 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Using a Class and Its Methods

  class SpeciesFirstTryDemo

8 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods

  When you use a method you "invoke" or "call"
it

  Two kinds of Java methods
  Return a single item

  Perform some other action: a void method

  The method main is a void method
  Invoked by the system
  Not by the application program

9 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods

  Calling a method that returns a value

  Calling a void method
  Write the invocation followed by a semicolon
  Resulting statement performs the action defined by

the method

10 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Defining void Methods

  Consider method writeOutput

  Method definitions appear inside class
definition
  Can be used only with objects of that class

11 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Defining void Methods

  Most method definitions we will see as
public

  Method does not return a value
  Specified as a void method

  Heading includes parameters
  Body enclosed in braces { }
  Think of method as defining an action to be

taken

12 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods That Return a Value

  Consider method getPopulationIn10()

  Heading declares type of value to be returned

  Last statement executed is return

. . .

13 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The keyword this

  Referring to instance variables outside the class
must use
  Name of an object of the class
  Followed by a dot
  Name of instance variable

  Inside the class
  Use name of variable alone
  The object (unnamed) is understood to be there

14 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The Keyword this

  Inside the class the unnamed object can be
referred to with the name this

  Example
 this.name = keyboard.nextLine();

  The keyword this stands for the receiving
object

  We will seem some situations later that
require the this

15 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Local Variables

  Note beginning of
class in listing 5.1

  Variables declared inside the class are
considered local variables
  May be used only inside this class

  Variable with same name inside a different class
is considered a different variable

  All variables declared in method main are local
to main

16 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Local Variables

  class BankAccount
  class LocalVariablesDemoProgram
  Note two different variables newAmount

  Note different values output

17 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Blocks and scope

  Recall compound statements
  Enclosed in braces { }

  When you declare a variable within a compound
statement
  The compound statement is called a block
  The scope of the variable is from its declaration to the

end of the block
  Variable declared outside the block usable both

outside and inside the block

18 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of Primitive Type

  Recall method
declaration
in listing 5.1
  Note it only works for 10 years
  We can make it more versatile by giving the

method a parameter to specify how many years
  class SpeciesSecondTry

19 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of Primitive Type
  Note the declaration
public int predictPopulation(int years)
  The formal parameter is years

  Calling the method
int futurePopulation =
 speciesOfTheMonth.predictPopulation(10);
  The actual parameter is the integer 10

  class SpeciesSecondClassDemo

20 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of Primitive Type

  Parameter names are local to the method
  When method invoked

  Each parameter initialized to value in
corresponding actual parameter

  Primitive actual parameter cannot be altered by
invocation of the method

  Automatic type conversion performed
byte -> short -> int ->
 long -> float -> double

21 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Information Hiding,
Encapsulation: Outline

  Information Hiding
  Pre- and Postcondition Comments
  The public and private Modifiers
  Methods Calling Methods
  Encapsulation
  Automatic Documentation with javadoc
  UML Class Diagrams

22 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Information Hiding

  Programmer using a class method need not
know details of implementation
  Only needs to know what the method does

  Information hiding:
  Designing a method so it can be used without

knowing details
  Also referred to as abstraction
  Method design should separate what from

how

23 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Pre- and Postcondition Comments

  Precondition comment
  States conditions that must be true before method

is invoked
  Example

24 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Pre- and Postcondition Comments

  Postcondition comment
  Tells what will be true after method executed

  Example

25 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The public and private Modifiers

  Type specified as public
  Any other class can directly access that object by

name

  Classes generally specified as public
  Instance variables usually not public

  Instead specify as private
  class SpeciesThirdTry

26 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

  Demonstration of need for private variables
  View sample code, listing 5.7
  Statement such as

 box.width = 6;
is illegal since width is private
  Keeps remaining elements of the class consistent

in this example

27 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

  Another implementation of a Rectangle class
  View sample code, listing 5.8
class Rectangle2

  Note setDimensions method
  This is the only way the width and height may

be altered outside the class

28 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Accessor and Mutator Methods

  When instance variables are private must
provide methods to access values stored
there
  Typically named getSomeValue
  Referred to as an accessor method

  Must also provide methods to change the
values of the private instance variable
  Typically named setSomeValue
  Referred to as a mutator method

29 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Accessor and Mutator Methods

  Consider an example class with accessor and
mutator methods

  View sample code, listing 5.9
class SpeciesFourthTry

  Note the mutator method
  setSpecies

  Note accessor methods
  getName, getPopulation,
getGrowthRate

30 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Accessor and Mutator Methods

  Using a mutator method
  classSpeciesFourthTryDemo

31 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

  A Purchase class
  View sample code, listing 5.11
class Purchase
  Note use of private instance variables
  Note also how mutator methods check for invalid

values
  View demo program, listing 5.12
class purchaseDemo

32 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

Sample
screen
output

33 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods Calling Methods

  A method body may call any other method
  If the invoked method is within the same class

  Need not use prefix of receiving object
  View sample code, listing 5.13

class Oracle
  View demo program, listing 5.14

class OracleDemo

34 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods Calling Methods

Sample
screen
output

35 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation

  Consider example of driving a car
  We see and use break pedal, accelerator pedal,

steering wheel – know what they do
  We do not see mechanical details of how they do

their jobs
  Encapsulation divides class definition into

  Class interface
  Class implementation

36 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation

  A class interface
  Tells what the class does
  Gives headings for public methods and comments

about them
  A class implementation

  Contains private variables
  Includes definitions of public and private methods

37 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation
  Figure 5.3 A well encapsulated class definition

Programmer who
uses the class

38 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation

  Preface class definition with comment on how to use
class

  Declare all instance variables in the class as private
  Provide public accessor methods to retrieve data

Provide public methods manipulating data
  Such methods could include public mutator methods.

  Place a comment before each public method heading
that fully specifies how to use method.

  Make any helping methods private.
  Write comments within class definition to describe

implementation details.

39 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Automatic Documentation javadoc

  Generates documentation for class interface
  Comments in source code must be enclosed

in /** */
  Utility javadoc will include

  These comments
  Headings of public methods

  Output of javadoc is HTML format

40 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Class Diagrams

  Recall Figure 5.2 A class outline as a UML
class diagram

41 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Class Diagrams

  Note
Figure 5.4
for the
Purchase
class

Plus signs imply
public methods

Minus signs imply
private methods

42 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Class Diagrams

  Contains more than interface, less than full
implementation

  Usually written before class is defined
  Used by the programmer defining the class

  Contrast with the interface used by programmer
who uses the class

43 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Objects and References: Outline

  Variables of a Class Type
  Defining an equals Method for a Class
  Boolean-Valued Methods
  Parameters of a Class Type

44 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  All variables are implemented as a memory
location

  Data of primitive type stored in the memory
location assigned to the variable

  Variable of class type contains memory
address of object named by the variable

45 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Object itself not stored in the variable
  Stored elsewhere in memory
  Variable contains address of where it is stored

  Address called the reference to the variable
  A reference type variable holds references

(memory addresses)
  This makes memory management of class types

more efficient

46 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Behavior
of class
variables

47 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Behavior
of class
variables

48 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Behavior
of class
variables

49 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Behavior
of class
variables

50 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Dangers of
using ==
with objects

51 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

  Dangers of
using ==
with objects

52 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Defining an equals Method

  As demonstrated by previous figures
  We cannot use == to compare two objects
  We must write a method for a given class which

will make the comparison as needed

  View sample code
class Species

  The equals for this class method used same
way as equals method for String

53 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Demonstrating an equals Method

  View sample program, listing 5.16
class SpeciesEqualsDemo

  Note difference in the two comparison
methods == versus .equals()

Sample
screen
output

54 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

  View sample code
class Species

  Figure 5.7
Class Diagram
for the class
Species
in listing 5.17

55 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Boolean-Valued Methods

  Methods can return a value of type boolean
  Use a boolean value in the return statement
  Note method from listing 5.17

56 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of a Class Type

  When assignment operator used with objects
of class type
  Only memory address is copied

  Similar to use of parameter of class type
  Memory address of actual parameter passed to

formal parameter
  Formal parameter may access public elements of

the class
  Actual parameter thus can be changed by class

methods

57 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

  View sample code, listing 5.18
class DemoSpecies
  Note different parameter types and results

  View sample program, listing 5.19
  Parameters of a class type versus parameters of a

primitive type
class ParametersDemo

58 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

Sample
screen
output

59 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

  Classes have
  Instance variables to store data
  Method definitions to perform actions

  Instance variables should be private
  Class needs accessor, mutator methods
  Methods may be

  Value returning methods
  Void methods that do not return a value

60 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

  Keyword this used within method definition
represents invoking object

  Local variables defined within method definition
  Formal arguments must match actual

parameters with respect to number, order, and
data type

  Formal parameters act like local variables

61 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

  Parameter of primitive type initialized with
value of actual parameter
  Value of actual parameter not altered by method

  Parameter of class type initialized with
address of actual parameter object
  Value of actual parameter may be altered by

method calls
  A method definition can include call to another

method in same or different class

62 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

  Precondition comment states conditions that must
be true before method invoked

  Postcondition comment describes resulting effects
of method execution

  Utility program javadoc creates documentation
  Class designers use UML notation to describe

classes
  Operators = and == behave differently with

objects of class types (vs. primitive types)

