
Introduction to Computers and Java

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch

© 2008 W. Savitch, F.M. Carrano, Pearson
Prentice Hall

2 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Objectives

  Overview computer hardware and software
  Introduce program design and object-oriented

programming
  Overview the Java programming language
  Applets and graphics basics

3 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Outline

  Computer Basics
  Designing Programs
  A Sip of Java

Computer Basics: Outline

Hardware and Memory
Programs
Programming Languages and Compilers
Java Byte-Code
(optional) Graphics Supplement

© 2008 W. Savitch, F.M. Carrano, Pearson
Prentice Hall

5

Hardware and Software

  Computer systems consist of hardware and software.
  Hardware includes the tangible parts of computer systems.
  Software includes programs - sets of instructions for the

computer to follow.

  Familiarity with hardware basics helps us understand
software.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

6 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Hardware and Memory

  Most modern computers have similar
components including
  input devices: keyboard, mouse, etc.
  output devices: display screen, printer, etc.
  processor
  two kinds of memory

  main memory and auxiliary memory

7 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Processor

  also called the CPU (central processing unit) or
the chip (e.g. Pentium processor)

  The processor processes a program’s
instructions.

  It can process only very simple instructions.
  The power of computing comes from speed and

program intricacy.

8 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Memory

  Memory holds
  programs
  data for the computer to process
  the results of intermediate processing.

  two kinds of memory
  main memory
  auxiliary memory

9

Main memory

  working memory used to store
  the current program
  the data the program is using
  the results of intermediate calculations

  usually measured in megabytes
  e.g. 256 megabytes of RAM
  RAM is short for random access memory
  a byte is a quantity of memory

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

10

Auxiliary Memory

  also called secondary memory
  disk drives, diskettes, CDs, DVDs, etc.
  more or less permanent (nonvolatile)
  usually measured in gigabytes

  e.g. 50 gigabyte hard drive

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

11 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Bits, Bytes, and Addresses

  A bit is a digit with a value of either 0 or 1.
  A byte consists of 8 bits.
  Each byte in main memory resides at a numbered

location called its address.

12 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Addresses

13 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Storing Data

  Data of all kinds (numbers, letters, strings of characters,
audio, video, even programs) are encoded and stored
using 1s and 0s.

  When more than a single byte is needed, several
adjacent bytes are used.
  The address of the first byte is the address of the unit of bytes.

14 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Files

  Large groups of bytes in auxiliary memory are
called files

  Files have names
  Files are organized into groups called

directories or folders
  Java programs are stored in files
  Programs files are copied from auxiliary

memory to main memory in order to be run

15 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

0 and 1

  Machines with only 2 stable states are easy to
make, but programming using only 0s and 1s is
difficult.

  Fortunately, the conversion of numbers, letters,
strings of characters, audio, video, and
programs is done automatically.

16 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Programs

  A program is a set of instructions for a computer to
follow.

  We use programs almost daily (email, word processors,
video games, bankomat, etc.).

  Following the instructions is called running or executing
the program.

17 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Input and Output

  Normally, a computer received two kinds of input:
  the program
  the data needed by the program.

  The output is the result(s) produced by following the
instructions in the program.

18 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Running a Program

  Sometimes the computer and the program
are considered to be one unit.
  Programmers typically find this view to be more

convenient.

19 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

The Operating System

  The operating system is a supervisory program that
oversees the operation of the computer.

  The operating system retrieves and starts program for
you.

  Well-known operating systems include DOS, Microsoft
Windows, Apple’s Mac OS X, Linux, or UNIX.

20 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Programming Languages

  High-level languages are relatively intuitive to write and
to understand.
  Java, Pascal, FORTRAN, C, C++, C#, BASIC, Visual Basic,

etc.
  Unfortunately, computer hardware does not understand

high-level languages.
  Therefore, a high-level language program must be translated

into a low-level language.

21 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Compilers

  A compiler translates a program from a high-
level language to a low-level language the
computer can run.

  You compile a program by running the
compiler on the high-level-language version of
the program called the source program

  Compilers produce machine- or assembly-
language programs called object programs.

22 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Compilers, cont.

  Most high-level languages need a different
compiler for each type of computer and for each
operating system.

  Most compilers are very large programs that
are expensive to produce.

23 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Java Byte-Code

  The Java compiler does not translate a Java
program into assembly language or machine
language for a particular computer.

  Instead, it translates a Java program into byte-
code
  Byte-code is the machine language for a

hypothetical computer (or interpreter) called the Java
Virtual Machine

24 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Java Byte-Code, cont.

  A byte-code program is easy to translate into
machine language for any particular computer.

  A program called an interpreter translates each
byte-code instruction, executing the resulting
machine-language instructions on the particular
computer before translating the next byte-code
instruction.

25 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Compiling, Interpreting, Running

  Use the compiler to translate the Java program
into byte-code (done using the compile
command).

  Use the byte-code interpreter for your computer
to translate each byte-code instruction into
machine language and to run the resulting
machine-language instructions (done using the
run command).

26 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Portability

  After compiling a Java program into byte-code,
that byte-code can be used on any computer
with a byte-code interpreter and without a need
to recompile.

  Byte-code can be sent over the Internet and
used anywhere in the world.

  This makes Java suitable for Internet
applications.

27 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

28 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Class Loader

  A Java program typically consists of several pieces
called classes.

  Each class may have a separate author and each is
compiled (translated into byte-code) separately.

  A class loader (called a linker in other programming
languages) automatically connects the classes
together.

A Sip of Java: Outline

History of the Java Language
Applications and Applets
A First Java Application Program
Writing, Compiling, and Running a Java Program

© 2008 W. Savitch, F.M. Carrano,
Pearson Prentice Hall

30

History of Java

  In 1991, James Gosling and Sun Microsystems
began designing a language for home
appliances (toasters, TVs, etc.).
  Challenging, because home appliances are

controlled by many different chips (processors)
  Programs were translated first into an intermediate

language common to all appliance processors.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

31

History of Java

  Then the intermediate language was translated into
the machine language for a particular appliance’s
processor.

  Appliance manufacturers weren’t impressed.

  In 1994, Gosling realized that his language
would be ideal for a Web browser that could run
programs over the Internet.
  Sun produced the browser known today as HotJava.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

32

Applications and Applets

  Two kinds of java programs: applications and
applets

  Applications
  Regular programs
  Meant to be run on your computer

  Applets
  Little applications
  Meant to be sent to another location on the internet

and run there

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

33

A First Java Application

  View sample program Listing 1.1
  class FirstProgram

Sample
screen
output

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

34

FirstProgram

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

import java.util.Scanner;	

public class FirstProgram	
{	
 public static void main(String[] args)	
 {	
 System.out.println("Hello out there.");	
 System.out.println("I will add two numbers for you.");	
 System.out.println("Enter two whole numbers on a line:");	

 int n1, n2;	

 Scanner keyboard = new Scanner(System.in);	
 n1 = keyboard.nextInt();	
 n2 = keyboard.nextInt();	

 System.out.println("The sum of those two numbers is");	
 System.out.println(n1 + n2);	
 }	
}

35

Some Terminology

  The person who writes a program is called the
programmer.

  The person who interacts with the program is
called the user.

  A package is a library of classes that have been
defined already.
  import java.util.Scanner;	

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

36

Some Terminology

  The item(s) inside parentheses are called
argument(s) and provide the information
needed by methods.

  A variable is something that can store data.
  An instruction to the computer is called a

statement; it ends with a semicolon.
  The grammar rules for a programming

language are called the syntax of the language.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

37

Printing to the Screen

  System.out.println (“Whatever you want to print”);	
  System.out is an object for sending output to the

screen.
  println is a method to print whatever is in

parentheses to the screen.

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

38

Printing to the Screen

  The object performs an action when you invoke
or call one of its methods

objectName.methodName(argumentsTheMethodNeeds);	

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

39

Compiling a Java Program or Class

  A Java program consists of one or more classes,
which must be compiled before running the
program

  You need not compile classes that accompany
Java (e.g. System and Scanner)

  Each class should be in a separate file
  The name of the file should be the same as the

name of the class

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

40

Compiling and Running

  Use an IDE (integrated development
environment) which combines a text editor with
commands for compiling and running Java
programs

  When a Java program is compiled, the byte-
code version of the program has the same
name, but the ending is changed from .java
to .class

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

41

Compiling and Running

  A Java program can involve any number of
classes.

  The class to run will contain the words

 public static void main(String[] args)	

somewhere in the file

© 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Designing Programs: Outline

Object-Oriented Programming
Encapsulation
Polymorphism
Inheritance
Algorithms
Components
Testing and Debugging

© 2008 W. Savitch, F.M. Carrano,
Pearson Prentice Hall

43 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Programming

  Programming is a creative process
  Programming can be learned by discovering the

techniques used by experienced programmers
  These techniques are applicable to almost

every programming language, including Java

44 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Object-Oriented Programming

  Our world consists of objects (people, trees,
cars, cities, airline reservations, etc.).

  Objects can perform actions which effect
themselves and other objects in the world.

  Object-oriented programming (OOP) treats a
program as a collection of objects that interact
by means of actions.

45 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

OOP Terminology

  Objects, appropriately, are called objects.
  Actions are called methods.
  Objects of the same kind have the same type

and belong to the same class.
  Objects within a class have a common set of

methods and the same kinds of data
  but each object can have it’s own data values.

46 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

OOP Design Principles

  OOP adheres to three primary design
principles:
  encapsulation
  polymorphism
  inheritance

47 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Encapsulation

  The data and methods associated with any
particular class are encapsulated (“put together
in a capsule”), but only part of the contents is
made accessible.
  Encapsulation provides a means of using the class,

but it omits the details of how the class works.
  Encapsulation often is called information hiding.

48 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Accessibility Example

  An automobile consists of several parts and
pieces and is capable of doing many useful
things.
  Awareness of the accelerator pedal, the brake pedal,

and the steering wheel is important to the driver.
  Awareness of the fuel injectors, the automatic

braking control system, and the power steering
pump is not important to the driver.

49 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Polymorphism

  from the Greek meaning “many forms”
  The same program instruction adapts to

mean different things in different contexts.
  A method name, used as an instruction, produces

results that depend on the class of the object that
used the method.

  everyday analogy: “take time to recreate” causes
different people to do different activities

  more about polymorphism in Chapter 7

50 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Inheritance

  Classes can be organized using inheritance.

51 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Introduction to Inheritance, cont.

  A class at lower levels inherits all the
characteristics of classes above it in the
hierarchy.

  At each level, classifications become more
specialized by adding other characteristics.

  Higher classes are more inclusive; lower
classes are less inclusive.

52 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Inheritance in Java

  used to organize classes
  “Inherited” characteristics do not need to be

repeated
  New characteristics are added
  more about inheritance in Chapter 7

53 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Algorithms

  By designing methods, programmers provide
actions for objects to perform.

  An algorithm describes a means of performing
an action.

  Once an algorithm is defined, expressing it in
Java (or in another programming language)
usually is easy.

54 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Algorithms, cont.

  An algorithm is a set of instructions for solving a
problem.

  An algorithm must be expressed completely
and precisely.

  Algorithms usually are expressed in English or
in pseudo code.

55 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Example: Total Cost of All Items

  Write the number 0 on the whiteboard
  For each item on the list

  add the cost of the item to the number on the
whiteboard

  replace the number on the whiteboard with the result
of this addition

  Announce that the answer is the number written
on the whiteboard

56 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Reusable Components

  Most programs are created by combining
components that exist already.

  Reusing components saves time and money.
  Reused components are likely to be better

developed, and more reliable.
  New components should designed to be

reusable by other applications.

57 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Making Components Reusable

  Specify exactly how objects of the class interact
with other objects.

  Design a class so that objects are general,
rather than unique to a particular application.

58 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Testing and Debugging

  Eliminate errors by avoiding them in the first
place
  Carefully design classes, algorithms and methods
  Carefully code everything into Java

  Test your program with appropriate test cases
(some where the answer is known), discover
and fix any errors, then retest

59 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Errors

  An error in a program is called a bug.
  Eliminating errors is called debugging.
  three kinds or errors

  syntax errors
  runtime errors
  logic errors

60 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Syntax Errors

  grammatical mistakes in a program
  the grammatical rules for writing a program are very

strict
  The compiler catches syntax errors and prints

an error message.
  example: using a period where a program

expects a comma

61 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Runtime Errors

  errors that are detected when your program is
running, but not during compilation

  When the computer detects an error, it
terminates the program and prints an error
message.

  example: attempting to divide by 0

62 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Logic Errors

  errors that are not detected during compilation
or while running, but which cause the program
to produce incorrect results

  example: an attempt to calculate a Fahrenheit
temperature from a Celsius temperature by
multiplying by 9/5 and adding 23 instead of 32

63 © 2008 W. Savitch, F.M. Carrano, Pearson Prentice Hall

Summary

  You have completed an overview of computer
hardware and software.

  You have been introduced to program design
and object-oriented programming.

  You have completed an overview of the Java
programming language.

  You have been introduced to applets and
graphics basics.

