
10/25/10

1

11. Recursion

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2

Objectives

  become familiar with the idea of recursion
  learn to use recursion as a programming tool
  become familiar with the binary search algorithm

as an example of recursion
  become familiar with the merge sort algorithm as

an example of recursion

The Basics of Recursion: Outline

Introduction to Recursion
How Recursion Works
Recursion versus Iteration
Recursive Methods That Return a
Value

10/25/10

2

4

Introduction to Recursion

  A recursive algorithm will have one subtask that is
a small version of the entire algorithm's task

  A Java method definition is recursive if it contains
an invocation of itself.

  The method continues to call itself, with ever
simpler cases, until a base case is reached which
can be resolved without any subsequent recursive
calls.

5 5

Example: Exponent

  Aufgabe: xy berechnen

  xy = 1 * x * x * ... * x (y times)
  wenn y == 0, dann keine weiteren Multiplikationen mehr
  wenn y > 0, dann

  berechne x(y-1) und ermittle das Ergebnis x * x(y-1)

private int power(int x, int y) {	
 // y>=0 returns x**y	

}	

6 6

Exponent /2

private int power(int x, int y) {	
 // y>=0 returns x**y	
 int assistantResult;	

 if (y == 0) 	
 return 1;	
 else {	
 assistantResult = power(x, y-1);	
 return x * assistantResult;	
 }	
}	

10/25/10

3

7 7

Termination

  Es gibt eine Return-Bedingung, die keinen weiteren
rekursiven Aufruf durchführt:

  Der Terminationsschritt ist essenziell für jede rekursive
Funktion!

  Der Terminationscode muss vor dem rekursiven Aufruf
platziert sein!

if (y == 0) 	
 return 1;	
else { ... 	
 // rekursiver Aufruf	
}	

8 8

Methodenaufruf

  Eine Nachricht wird an das Empfänger-Objekt gesendet; der Sender
wartet auf das Ergebnis

  Der Empfänger erzeugt die lokalen Variablen der Methode (Parameter
und andere lokalen Variablen)

  Die Parameter erhalten die Werte der Argumente
  Die Methode wird ausgeführt
  Die Methode terminiert und verwirft die lokalen Variablen; ggf. wird ein

Return-Wert an den Sender retourniert
  Der Sender setzt seine Verarbeitung fort

  Speicher wird alloziert für
  die lokalen Variablen
  die verwendeten Parameter
  die Lokation des Codes vom Methodenaufruf im Sender (i.e. Return-

Adresse)

9 9

Activation records

  f() ruft power() auf:

  Activation record = Speicherblock, der die aktuellen
Parameter und lokalen Variablen mit der Return-Adresse
enthält:

void f(..) {	
 ...	
 int q = power (3,2);	
 ...	
}	

10/25/10

4

10 10

Stack of Activation records /2

  Nach dem Aufruf von power (3,1)	

11 11

Stack of Activation records /3

  Nach dem Aufruf von power (3,0)

12 12

Return

  Ein return-Statement
  evaluiert den Return-Wert (i.e. 1)
  löscht den aktuellen Activation Record
  ersetzt den Ausdruck, der die Methode aufgerufen hat, mit

dem Return-Wert
  setzt die Ausführung des Senders fort

10/25/10

5

13 13

Return /2

14 14

Return /3

15

Example: Digits to Words

  Write a definition that accepts a single integer and
produces words representing its digits.

  example
  input: 223
  output: two two three

  recursive algorithm
  output all but the last digit as words
  output the word for the last digit

10/25/10

6

16

Digit to Words: Specification

  If number has multiple digits, decompose
algorithm into two subtasks
1.  Display all digits but the last as words
2.  Display last digit as a word

  First subtask is smaller version of original problem
  Same as original task, one less digit

17

Case Study

  Algorithm for displayAsWords(number)

1.   displayAsWords (number after deleting last digits)

2.   System.out.print (getWordFromDigit(last
digit of number + " ")

18

Case Study

  class RecursionDemo

Sample
screen
output

10/25/10

7

19

How Recursion Works
  Executing recursive call

20

How Recursion Works
  Executing recursive call

21

How Recursion Works
  Executing recursive call

10/25/10

8

22

How Recursion Works

  Nothing special is required to handle a call to a
recursive method, whether the call to the method
is from outside the method or from within the
method.

  At each call, the needed arguments are provided,
and the code is executed.

  When the method completes, control returns to
the instruction following the call to the method.

23

How Recursion Works, cont.

  Consider several methods m1, m2, …, mn with
method m1 calling method m2, method m2 calling
method m3,…, calling method mn.
  When each method completes, control returns

to the instruction following the call to the
method.

  In recursion, methods m1, m2, …, mn are all
the same method, but each call results in a
distinct execution of the method.

24

How Recursion Works, cont.

  As always, method m1 cannot complete execution
until method m2 completes execution, method m2
cannot complete execution until method m3
completes execution, …, until method mn completes
execution.

  If method mn represents a stopping case, it can
complete execution, …, then method m2 can
complete execution, then method m1 can complete
execution.

10/25/10

9

25

Recursion Guidelines

  The definition of a recursive method typically includes an
if-else statement.
  One branch represents a base case which can be

solved directly (without recursion).
  Another branch includes a recursive call to the method,

but with a “simpler” or “smaller” set of arguments.
  Ultimately, a base case must be reached.

26

Keys to Successful Recursion

  Must have a branching statement that leads to
different cases

  One or more of the branches should have a
recursive call of the method
  Recursive call must us "smaller" version of the original

argument
  One or more branches must include no recursive

call
  This is the base or stopping case

27

Infinite Recursion

  If the recursive invocation inside the method does not use
a “simpler” or “smaller” parameter, a base case may never
be reached.

  Such a method continues to call itself forever (or at least
until the resources of the computer are exhausted as a
consequence of stack overflow)

  This is called infinite recursion

10/25/10

10

28

Infinite Recursion

  Suppose we leave out the stopping case

  Nothing stops the method from repeatedly
invoking itself
  Program will eventually crash when computer exhausts

its resources (stack overflow)

29

Recursive Versus Iterative

  Any method including a recursive call can be
rewritten
  To do the same task
  Done without recursion

  Non recursive algorithm uses iteration
  Method which implements is iterative method

  class IterativeDemo

30

Recursive Versus Iterative

  Recursive method
  Uses more storage space than iterative version
  Due to overhead during runtime
  Also runs slower

  However in some programming tasks, recursion is
a better choice, a more elegant solution

10/25/10

11

31

Recursive Methods that Return a Value

  Follow same design guidelines as stated
previously

  Second guideline also states
  One or more branches includes recursive invocation

that leads to the returned value
  View program with recursive value returning

method, listing 11.3
class RecursionDemo2

32

Recursive Methods that Return a Value

  Note recursive method NumberOfZeros
  Has two recursive calls
  Each returns value assigned to result
  Variable result is what is returned

Sample
screen
output

33

Recursion vs. Iteration, cont.

  A recursive version of a method typically executes
less efficiently than the corresponding iterative
version.

  This is because the computer must keep track of
the recursive calls and the suspended
computations.

  However, it can be much easier to write a
recursive method than it is to write a
corresponding iterative method.

10/25/10

12

34

Overloading is Not Recursion

  If a method name is overloaded and one method calls
another method with the same name but with a different
parameter list, this is not recursion

  Of course, if a method name is overloaded and the
method calls itself, this is recursion

  Overloading and recursion are neither synonymous nor
mutually exclusive

Programming with Recursion: Outline

Programming Example: Insisting that
User Input Be Correct
Case Study: Binary Search
Programming Example: Merge Sort – A
Recursive Sorting Method

36

Programming Example

  Insisting that user input be correct
  Program asks for a input in specific range
  Recursive method makes sure of this range
  Method recursively invokes itself as many times as user

gives incorrect input
  View program, listing 11.4
class CountDown

10/25/10

13

37

Programming Example

Sample
screen
output

38

Example: Search for a Name in a
Phone Book
  Open the phone book to the middle.
  If the name is on this page, you’re done.
  If the name alphabetically precedes the names on

this page, use the same approach to search for
the name in the first half of the phone book.

  Otherwise, use the same approach to search for
the name in the second half of the phone book.

39

Case Study

  Binary Search
  We design a recursive method to tell whether or not a

given number is in an array
  Algorithm assumes array is sorted

  First we look in the middle of the array
  Then look in first half or last half, depending on value

found in middle

10/25/10

14

40

Binary Search

  Draft 1 of algorithm

  Algorithm requires additional parameters

41

Binary Search

  Draft 2 of algorithm to search a[first] through
a[last]

  What if target is not in the array?

42

Binary Search

  Final draft of algorithm to search a[first]
through a[last] to find target

10/25/10

15

43

Binary Search

  Figure 11.2a Binary search example

44

Binary Search

  Figure 11.2b Binary search example

45

Binary Search

  Figure 11.2c Binary search example

10/25/10

16

46

Binary Search

  View final code, listing 11.5
class ArraySearcher

  Note demo program, listing 11.6
class ArraySearcherDemo

47

Binary Search

Sample
screen
output

48

Example: Merge Sort

  Merge sort – A recursive sorting method
  A divide-and-conquer algorithm

  Array to be sorted is divided in half
  The two halves are sorted by recursive calls
  This produces two smaller, sorted arrays which are

merged to a single sorted array

10/25/10

17

49

Merge Sort

  Algorithm to sort array a

  View Java implementation, listing 11.7
class MergeSort

50

Merge Sort

  View demo program, listing 11.8
class MergeSortDemo

Sample
screen
output

51

Merge Sort
  Efficient sorting algorithms often are stated

recursively.
  One such sort, merge sort, can be used to sort an

array of items.
  Merge sort takes a “divide and conquer” approach.

  The array is divided in halves and the halves are
sorted recursively.

  Sorted subarrays are merged to form a larger
sorted array.

10/25/10

18

52

Merge Sort, cont.

  pseudocode
If the array has only one element,

 stop.

Otherwise

 Copy the first half of the elements
 into an array named front.

 Copy the second half of the elements

 into an array named back.

 Sort array front recursively.

 Sort array tail recursively.

 Merge arrays front and tail.

53

Merging Sorted Arrays

  The smallest element in array front is front[0].
  The smallest element in array tail is tail[0].
  The smallest element will be either front[0] or tail

[0].
  Once that element is removed from either array

front or array tail, the smallest remaining element
once again will be at the beginning or array front or
array tail.

54

Merging Sorted Arrays, cont.

  Generalizing, two sorted arrays can be merged by
selectively removing the smaller of the elements from the
beginning of (the remainders) of the two arrays and
placing it in the next available position in a larger
“collector” array.

  When one of the two arrays becomes empty, the
remainder of the other array is copied into the “collector”
array.

10/25/10

19

55

Merging Sorted Arrays, cont.

int frontIndex = 0, tailIndex = 0, aIndex = 0;
while (frontIndex < front.length) &&

 (tailIndex < tail.length))
{

 if(front[frontIndex] < tail[tailIndex]}
 {

 a[aIndex] = front[frontIndex];
 aIndex++;

 frontIndex++;
 }

56

Merging Sorted Arrays, cont.

 else

 {
 a[aIndex] = tail[tailIndex];

 aIndex++;
 tailIndex++
 }

}

57

Merging Sorted Arrays, cont.

  Typically, when either array front or array tail becomes
empty, the other array will have remaining elements which
need to be copied into array a.

  Fortunately, these elements are sorted and are larger than
any elements already in array a.

10/25/10

20

58

Merge Sort, cont.

  class MergeSort

59

Merge Sort, cont.

60

Merge Sort, cont.

10/25/10

21

61

Merge Sort, cont.

62

Merge Sort, cont.

  The merge sort algorithm is much more efficient than the
selection sort algorithm

63

Summary

  Method with self invocation
  Invocation considered a recursive call

  Recursive calls
  Legal in Java
  Can make some method definitions clearer

  Algorithm with one subtask that is smaller version
of entire task
  Algorithm is a recursive method

10/25/10

22

64

Summary

  To avoid infinite recursion recursive method
should contain two kinds of cases
  A recursive call
  A base (stopping) case with no recursive call

  Good examples of recursive algorithms
  Binary search algorithm
  Merge sort algorithm

