More About Objects and Methods

Chapter 6

(/'7\\ University of Zurich s.e.a.l.

) Depatmentoffomaics ©2008 W. Savitch, Pearson Prentice Hal

Objectives

learn to define constructor methods

learn about static methods and static variables
learn about packages and import statements
learn about top-down design

learn techniques for testing methods (including
the use of stub methods and driver programs)

versiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 2

Outline

Constructors

Static Methods and Static Variables
Writing Methods

Overloading

Information Hiding Revisited
Packages

versiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 3

Constructors

Defining Constructors
Calling Methods from Constructors
Calling Constructors from other Constructors

s.e.a.l,

©2008 W. Savitch, Pearson Prentice Hall

Constructors

= When you create an object of a class, often you

want certain initializing actions performed such
as giving values to the instance variables.

initializations.

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall

Defining Constructors

= New objects are created using
Class Name Object Name

new Class Name (Parameter (s));
= A constructor is called automatically when a new

object is created.

= Class_Name (Parameter(s)) calls the constructor
and returns a reference.

= It performs any actions written into its definition
including initializing the values of (usually all)
instance variables.

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall

A constructor is a special method that performs

Defining Constructors, cont.

= Each constructor has the same name as its class.

A constructor does not have a return type, not even
void.

Constructors often are overloaded, each with a different
number of parameters or different types of parameters.
Typically, at least one constructor, the default
constructor, has no parameters.

Universiy of Zurich
v s

©2008 W. Savitch, Pearson Prentice Hall 7

Defining Constructors, cont.

= class Pet

Defining Constructors, cont.

* class Pet, contd.

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall s

Defining Constructors, cont.

¢ class PetDemo

Sample SoreenDalog

niversiy of Zurich

pamen o o ©2008 W, Savitch, Pearson Prentice Hall 10

Defining Constructors, cont.

= When a class definition does not have a
constructor definition, Java creates a default
constructor automatically.

= Once you define at least one constructor for the
class, no additional constructor is created
automatically.

niversiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 1

Using Constructors

= A constructor can be called only when you
create a new object.
newborn.Pet (“Fang”, 1, 150.0);

// invalid

= After an object is created, a set method is
needed to change the value(s) of one or more
instance variables.
newBorn.set (“Fang”, 1, 150.0); // valid

niversiy of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall 12

Returning a Reference

PetRecord pet;
Assigns a memory location 1o pet.

ation !
Mumuyr\d'ﬁ ‘pet. pet| 5432
assigne!

pet =

pet = new PetRecord(); assigns a
chunk of memory for an object of the class
PetRecord—that s, memory for aname, an

ight—and places the address of
shis memory chunk in the memary location
assigned 10 pet.

5432

gned 10

| emory GSSETEA
Chunk olm'g_ pe -“f‘.ﬁﬂ e

pe N e might

P v 5432

Display 5.22

Constuetor Returning u Reforence

niversiy of Zurich

pamen o o ©2008 W, Savitch, Pearson Prentice Hall 13

Using Methods in a Constructor

= Other methods in the same class can be used
in the definition of a constructor.
= Calls to one or more set methods are common.
public Class_Name (parameters) {
set(..)

niversiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 1

Wrapper Classes with No Default
Constructor
= The wrapper classes

Byte Float
Short Double
Integer Character
Long Boolean

have no default constructors.
= When creating a new object of one of these
classes, an argument is needed.

Character myMark = new Character(‘Z’);

niversiy of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall 15

Integer, Double, and other
Wrapper Classes

= Sometimes a primitive value needs to be passed as an
argument, but the method definition creates an object
as the corresponding formal parameter.

= Java’'s wrapper classes convert a value of a primitive
type to a corresponding class type.

Integer n = new Integer (42);

The instance variable of the object n has the value 42.

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 1

Integer, Double, and other
Wrapper Classes, cont.

= To retrieve the integer value
Integer n = new Integer(42);
int i = n.intValue();

primitive wrapper extraction

= type class method
int Integer intValue
long Long longValue
float Float floatvalue
double Double doublevValue
char Character charValue

iversity of Zurich

Oxparmartf o ©2008 W. Savitch, Pearson Prentice Hall 17

Shorthand in Java 5.0

= Wrapping is done automatically in Java 5.0
Integer n = 42;
which is equivalent to
Integer n = new Integer (42);
= Similarly
int i = n;
is equivalent to
int i = n.intValue();

iversity of Zurich

©2008 W. Savitch, Pearson Prentice Hall 18

Automatic Boxing and Unboxing

= Converting a value of a primitive type to an object of its
corresponding wrapper class is called boxing.

Integer n = new Integer(42);
= Java 5.0 boxes automatically.
Integer n = 42;

©2008 W, Savitch, Pearson Prentice Hall 19

Automatic Boxing and Unboxing,
cont.
= Converting an object of a wrapper class to a value of
the corresponding primitive type is called unboxing.
int i = n.intValue;
= Java 5.0 unboxes automatically.
int i = n;

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall »

Automatic Boxing and Unboxing,
cont.

= Automatic boxing and unboxing also apply to
parameters.
= A primitive argument can be provided for a
corresponding formal parameter of the associated
wrapper class.
A wrapper class argument can be provided for a
corresponding formal parameter of the associated
primitive type.

©2008 W. Savitch, Pearson Prentice Hall 21

Useful Constants

= Wrapper classes contain several useful constants and
static methods such as

Integer .MAX VALUE
Integer .MIN VALUE
Double.MAX VALUE
Double.MIN VALUE

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall 2

The nul1l Constant

= When the compiler requires an object reference to be
initialized, set it to nu11
String line = null;
= null is not an object, but is instead a constant that
indicates that an object variable references no object.
= ==and != (rather than method equals) are used to
determine if an object variable has the value nu11

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall S

The nul1l Constant, cont.

= An object reference initialized to nu11 cannot be
used to invoke methods in the object’s class

= An attempt to do so results in a null pointer
exception.

Universiy of Zurich
v s

©2008 W. Savitch, Pearson Prentice Hall 2

Static Methods and Static
Variables: Outline

Static Methods
Static Variables
The Math Class

Integer, Double, and Other Wrapper
Classes

(U University of Zurich s.e.a.l.

N vepanment of formatics
- ©2008 W. Savitch, Pearson Prentice Hall

Static Methods and Static
Variables

= Static methods and static variables belong to a
class and do not require any object.

versiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall »

Static Methods

= Some methods have no meaningful connection
to an object. For example,
= finding the maximum of two integers
= computing a square root
= converting a letter from lowercase to uppercase
= generating a random number

= Such methods can be defined as static.

versity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall z

Static Methods, cont.

= A static method is still defined as a member of a
class

= But, the method is invoked using the class name
rather than an object name

= syntax

return Type Variable Name =

Class_Name.Static_Method Name (Parameters);

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall »

Static Methods, cont.

class CircleFirstTry

Class with static methods to perform calculations on circles
public class CircleFirstTry

public static final double PI = 3.14159;

public static double area(double radius)

return (PI*radius*radius);

}
public static double circumference(double radius)
return (PI*(radius + radius));

}
}

Display 5.3
Static Methods

iversity of Zurich

Oxparmartf o ©2008 W, Savitch, Pearson Prentice Hall 29

Static Methods, cont.

« class CircleDemo

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall S

10

Defining a Static Method

= A static method is defined in the same way as
any other method, but includes the keyword
static in the heading.

public static double area (double radius);

Nothing in the definition can refer to a calling
object; no instance variables can be accessed.

niversiy of Zurich

pamen o o ©2008 W, Savitch, Pearson Prentice Hall 31

Mixing Static and Nonstatic
Methods

class PlayCircle

port java.util.+;

ss PlayCircle

static final double PT = 3.14159; <

+ area(dianeter/2));

niversiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 2

Mixing Static and Nonstatic
Methods

* class PlayCircleDemo

pubTic class PlayCircledeno

niversiy of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall ®

11

Using an Object to Call a Static
Method

= An object of the class can be used to call a
static method of the class even though it is
more common to use the class name to call the
static method.

You cannot invoke a nonstatic method within a

static method unless you create and use a
calling object for the nonstatic method.

niversiy of Zurich

pamen o o ©2008 W, Savitch, Pearson Prentice Hall 34

Putting main in Any Class

= A class which contains a method main serves
two purposes:
= It can be run as a program
= It can be used to create objects for other classes

niversiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 3

Putting main in Any Class

* class PlayCircle

atic void main(String(] arg

PlayCircle circle = new PlayCircleO; v shonarea)
ctDianeter 2)

1n("IF circle has o

2 _ Systen.out.printinC’Area is * + area(dianeter/2));

¢ static void areaDialogO)

dianeter - nenDianeter:

niversiy of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall 3

12

Putting main in Any Class, cont.

A program’s main method must be static.

A nonstatic method in the same class cannot be
invoked unless an object of the class is created

and used as a calling object for the nonstatic
method.

In general, don’t provide a method main in a
class definition if the class will be used only to
create objects.

©2008 W, Savitch, Pearson Prentice Hall 37

Static Variables

A class can have static variables and constants as well
as static methods.
public static final double PI = 3.14159;
public static int
numberOfInvocations = 0;
The value of a static variable can be changed by any
method that can access the variable.

jversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 3

Static Variables, cont.

Like instance variables, static variables
generally are declared private.
They should be read only by accessor methods.
They should be changed only by mutator methods.
Every object of the class has access to the

static variable(s) via the (public) accessor and
mutator methods.

jversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall B

13

Static Variables, cont.

class StaticDemo

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall w0

Static Variables, cont.

= Static variables are also called class variables

= The primary purpose of static variables (class
variables) is to store information that relates to
the class as a whole.

Universiy of Zurich
v s

©2008 W. Savitch, Pearson Prentice Hall a1

The Math Class

= The predefined class math provides several standard
mathematical methods.
= All of these methods are static methods.
= You do not need to create an object to call the
methods of the uath class.
= These methods are called by using the class
name (uath) followed by a dot and a method name.

Return Value =
Math.Method Name(Parameters);

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall @2

14

The Math Class, cont.

Name Description Typeof Typeof Example Value
rgument Value Retumed
Retuned
pow Powers double double Math.pow(2.0,3.0) 8.0
abs mbsoute int, Sameasthe Math.abs(7) 7
value long, ftypeofthe Math.abs(7) 7
Float,or argument Math.abs(3.5) 3.5
double
max Madmum int, Sameasthe Math.max(5, 6) 6
long, tpeoithe Math.max(5.5,5.3) 5.5
Float,or arguments
double
min Miimm int, Sameasthe Math.min(s, 6) 5
Tong, tpeofthe Math.min(5.5,5.3) 5.3
float, or arguments
double
round Rounding Floator intor Math.round(6.2) 6
double long, Math.round(6.8) 7
respectively
ceil Celing double double Math.ceil(3.2) 4.0
Math. cei1(3.9) 4.0
Floor Floor double double Math.floor(3.2) 3.0
Math.floor(3.9) 3.0
sart Suaeroot double double sqrt(4.0) 2.0

University of Zu Display 59
Cowtmat i
Static Methods in the Class Math

The Math Class, cont.

= Method round returns a number as the nearest whole
number.
= If its argument is of type doub1e, it returns a whole
number of type 1ong.
= Method ficor (ceil) returns the largest (smallest) whole
number that is less (greater) than or equal to its
argument.

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall “

The Math Class, cont.

= To store a value returned by either ficor Or ceil in a
variable of type int, a cast must be used.
double start = 3.56;
int lowerBound = (int)Math.floor (start);
int upperBound =
(int)Math.ceil (start);

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall s

15

The Math Class, cont.

= The vatn class has two predefined constants, £ and r1.

= example
area = Math.PI * radius * radius;

) University of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall %

The Math Class, cont.

¢ class Circle

public
{

le areacd

ble radius)

urn (Math.PI*radiusradius);

P
¢

}

public static double circunference(double radius)
t

eturn (Math.PI*(radius + radius));

}

}

Circlepens,

niversiy of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall @

Type Conversions

= Static methods in the wrapper classes can be
used to convert a string to the corresponding
number of type int, long, float, or double.

String theString = “199.98";
double doubleSample =

Double.parseDouble (theString) ;
or

Double.parseDouble (theString.trim());
if the string has leading or trailing whitespace.

©2008 W. Savitch, Pearson Prentice Hall 48

16

Type Conversions, cont.

= Methods for converting strings to the corresponding

numbers
Integer.parselnt (“42”)
Long.parseLong (“42”)
Float.parseFloat (*199.98")
Double.parseDouble (*199.98")

Universiy of Zurich

©2008 . Savich, Poarson Prnics Hal 0
Type Conversions, cont.
= Methods for converting strings to the corresponding
numbers
Integer.toString (42)
Long.toString (42)
Float.toString(199.98)
Double.toString(199.98)
University of Zurich
©2008 . Savich, Poarson Prnics Hal 5
Character
2 3
University of Zurich

17

Static Constants in Class Boolean

= The constants in wrapper class Boolean include
Boolean.TRUE
and
Boolean.False

but the keywords true and false are much easier to
use.

versity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 52

Designing Methods: Outline

Formatting Output
Top-Down Design
Testing Methods

s.e.a.l,

vers
‘fn,s,‘,t,yh,?ié"”(h ©2008 W. Savitch, Pearson Prentice Hall

Case Study: Formatting Output

= System.out.println with a parameter of type
double might print
= Your cost is $19.981123576432
= when what you really want is
= Your cost is $19.98

= Java provides classes for formatting output, but
it is instructive, and perhaps even easier, to
program them ourselves.

versity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall s

18

Defining Methods write and
writeln

= Methods write and writeln should

add the dollar sign

output exactly two digits after the decimal place
round the least significant digit in the output
correspond to their print and println
counterparts.

©2008 W, Savitch, Pearson Prentice Hall 55

Defining Methods write and
writeln, cont.

= The “dollars” and the “cents” need to be output
separately, preceded by the dollar sign and with a dot
between them.
first attempt

System.out.print (‘$’);

System.out.print (dollars);
System.out.print(‘.’);

Output cents, properly formatted

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall s

Defining Methods write and
writeln, cont.

= To get rid of the decimal point

= convert the amount to all cents by multiplying by
100, and then round.

int allCents =
(int)Math.round (amount * 100);
= To find the value of do11ars

int dollars = allCents/100;

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall s

19

Defining Methods write and
writeln, cont.

= To find the value of cents
int cents = allCents%100;
= To provide a leading zero when cents has a value less
than 10
if (cents < 10)
System.out.print (‘0’);

System.out.print (cents);

niversiy of Zurich

pamen o o ©2008 W. Savitch, Pearson Prentice Hall 58

Defining Methods write and
writeln, cont.

= class DollarsFirstTry

b ass DoTlarsFirstry

& anount) ic static void writeln(double amount)

¢
1, round(asount+100)); e
Sriten ovt pHnInO
Spstan.cut. prime(cents3;
niversiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall s

Defining Methods write and
writeln, cont.

* class DollarsFirstTryDriver

niversiy of Zurich
) e s ©2008 W. Savitch, Pearson Prertics Hall o0

20

Defining Methods write and
writeln, cont.

» A program used to test a method or class
under development is called a driver program.

Universiy of Zurich
oy ©2008 W. Savitch, Pearson Prertics Hall o1

Defining Methods write and
writeln, cont.

= Negative numbers are not handled properly by class
DollarsFirstTry:
s-1.0-20 instead of -s1.20, for example

= To handle negative amounts, convert the amount to a
positive number, output a minus sign, and output the
properly formatted amount.

niversiy of Zurich
oy ©2008 W. Savitch, Pearson Prertics Hall 6

Defining Methods write and
writeln, cont.

¢ class Dollars

+ Retest after changing the definition.

ersity of Zurich
oy

©2008 W. Savitch, Pearson Prentice Hall 63

21

Top-Down Design

Pseudocode can be written to decompose a
larger task into a collection of smaller tasks.
Any of these smaller tasks can be decomposed
as needed into even smaller tasks.

Several smaller tasks often are easier to code
than a single larger task.

Universiy of Zurich
oy ©2008 W. Savitch, Pearson Prertics Hall o

Top-Down Design, cont.

A collection of smaller tasks working together
can accomplish the larger task.

Typically, subtasks are implemented as private
“helping” methods.

This technique is called top-down design or
divide and conquer.

niversiy of Zurich
oy ©2008 W. Savitch, Pearson Prertics Hall o

Testing Methods

A driver program is useful for testing one
method or class under development.

A driver program does not require the usual
attention to detail.

Its job is to invoke and test one developing method
or class.

Atfter the method or class is tested adequately, the
driver program can be discarded.

©2008 W. Savitch, Pearson Prentice Hall 66

22

Bottom-Up Testing

If method A uses method B, then method B
should be tested fully before testing method A.
Testing all the “lower level” methods invoked by
an “upper level” method before the “upper level”
method is tested is called bottom-up testing.

versity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall o

Stubs

Sometimes a general approach needs to be
tested before all the methods can be written.

A stub is a simplified version of a method that is
good enough for testing purposes, even though
it is not good enough for the final class
definition.

It might, for example, return an arbitrary value, but
this can be sufficient for testing the general
approach.

versiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall o

Overloading

We've seen that different classes can have
methods with the same names.

Two or more methods in the same class class
can be defined with the same name if the
parameter list can be used to determine which
method is being invoked.

This useful ability is called overloading.

versiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall o

23

Overloading, cont.

class Statistician

©2008 W, Savitch, Pearson Prentice Hall 70

Overloading, cont.

» The number of arguments and the types of
the arguments determines which method
average is invoked.

— If there is no match, Java attempts simple
type conversions of the kinds discussed
earlier.

— If there is still no match, an error message
is produced.

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall n

Overloading, cont.

= Overloading can be applied to all kinds of
methods.
= void methods
= methods that return a value
« static methods
= nonstatic methods
= or any combination

iversity of Zurich
e s

©2008 W. Savitch, Pearson Prentice Hall 72

24

Overloading, cont.

= We've been using overloading, perhaps without
recognizing it.
= examples
= method nax (from the watn class)
= method printin
= the / operator

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall n

Programming Example

Pet

— name: String
age: int
weight: double

writeOutput(): void

set(String newName): void

set(int newAge): void

set(double newWeight): void

+ set(String newName, int newAge, double newWeight): void
+ getName(): String

+ getAge(): int

+ getWeight(): double

Display 5.16

Class Diag

for Pet Class

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall &

Programming Example, cont.

= class Pet

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall 7s

25

Programming Example, cont.

* class Pet, contd.

©2008 W, Savitch, Pearson Prentice Hall 76

Overloading and Automatic Type
Conversion

= Overloading can be helpful.
= Automatic type conversion of arguments can be
helpful.

= But, overloading and automatic type conversion
can interfere with each other.

©2008 W. Savitch, Pearson Prentice Hall I

Overloading and Automatic Type
Conversion, cont

- Example

Suppose method set is overloaded; one
method has an int as its formal parameter
and the other has a double as its formal
parameter.

©2008 W. Savitch, Pearson Prentice Hall 78

26

Overloading and Automatic Type
Conversion, cont.

= example, cont.

« If an int is provided as the argument and
type conversion to a double is relied
upon, the type conversion will not occur.

= second example

= Suppose a method expects an int as its
first formal parameter, and a double as its
second.

= If two int are provided, but their order is

reversed, the error will go undetected by
Java.

versity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall 7

Overloading and Automatic Type
Conversion, cont.

= Sometimes a method invocation can be
resolved in two different ways, depending on
how overloading and type conversion interact.
= Since such ambiguities are not allowed, Java will

produce a run-time error message (or sometimes a
compiler error message).

versiy of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall w0

Overloading and Automatic Type
Conversion, cont.

= 3rd example

public static void oops (double nl, int n2);

public static void oops (int nl, double n2);

= This will compile, but the invocation
sample.oops (5,10)
will produce an error message.

versity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall a1

27

Overloading and the Return Type

= You cannot overload a method name by
providing two definitions with headings that
differ only in the return type.

©2008 W, Savitch, Pearson Prentice Hall 82

Programming Example

= The “person on the street” thinks about “money” as
consisting of “dollars” and “cents,” not int Or double, OF
any other Java primitive type.

= Further, approximate amounts (such as are produced
by doubies) produce dissatisfied customers, and
sometimes legal consequences.

iversity of Zurich
e s ©2008 W. Savitch, Pearson Prertics Hall ©

Programming Example, cont.

= Integers are suitable for exact quantities.
. ints are suitable for $2 billion, but are unsuitable for
$3 billion, and some computer scientists are rich, so
let’'s use 1ongs, one for do11ars and one for cents.

= To keep it simple, we'll allow only nonnegative amounts
of money.

iversity of Zurich
e s

©2008 W. Savitch, Pearson Prentice Hall 84

28

Programming Example, cont.

= We can verify that the first character of a string such as
“$12.75” is a dollar sign, and we can remove the dollar
sign using
if (amountString.charAt (0) == ‘$’)
amountSting =
amountString.substring (1) ;
= We can find the position of the decimal point using

int pointLocation = amountString.indexOf (“.”)

Universiy of Zurich

Oxparmanf Homatis

©2008 W, Savitch, Pearson Prentice Hall 85

Programming Example, cont.

= We can capture the dollars and cents substrings using
dollarsString =
amountString.substring (0, pointLocation) ;
centsString = amountString.substring
(pointLocation + 1);

Universiy of Zurich

Oxparmanf Hlomatis

©2008 W. Savitch, Pearson Prentice Hall 86

Programming Example, cont.

= We can convert the dollars and cents substrings to
values of type 1ong Using
dollars = Long.parselong(dollarsString);
cents =

Long.parselong (centsString) ;

Universiy of Zurich

Oxparmanf Hlomatis

©2008 W. Savitch, Pearson Prentice Hall

29

Programming Example, cont.

* class Money

versity of Zurich
e s

©2008 W, Savitch, Pearson Prentice Hall 88

Programming Example, cont.

+ class Money, contd.

versiy of Zurich
e s

©2008 W. Savitch, Pearson Prentice Hall 89

Information Hiding Revisited

= A class can have instance variables of any
type, including any class type.

= Variables of a class type contain the memory
address of the associated object.

= Any change made using an instance variable of
a class type indirectly, and sometimes
unintentionally, affects all other references to
the associated object.

versity of Zurich
e s

©2008 W. Savitch, Pearson Prentice Hall %

30

Information Hiding Revisited, cont.

= If an alias can be created, the otherwise private
methods of the class can be accessed.

Universiy of Zurich

Oxparmanf Homatis

©2008 W. Savitch, Pearson Prentice Hall

Information Hiding Revisited, cont.

class CadetClass

Example of a class that does NOT correctly
hide its private instance variable

public class CadetClass
{

A reaii
e class
private PetRecord pet; Lavemore meoped
'eS€ are all e gy o

public CadetClass() U demonspggies "
1

pet =

new PetRecord("Faithful Guard Dog", 5, 75);

3
pubic void writeOutput()
{

System.out.printin("Here's the pet:");

pet.writeutput);
}

public PetRecord getPet()

return pet;

Universiy of Zurich Disply .23

Oxparmanf Hlomatis

R 'Y MY TR —

Information Hiding Revisited,
cont.

¢ class Hacker

Screen Output
4 main(String() args)
starfleet0fficer contains
new CadetClassO) Herebs the pet
tarflectofficer contains: ™).
PetRecord badGuy n
badGus

starFleetOfficer.getpetO):
baduy. set("Dominion Spy”, 1200, 500)

ut.printInC"Looks Tike a security breach:™)
ut_printInCstarFleetOfficer now contains:™)
StarFleet0fficer.uritedutput()

System.out.printin("The pet wasn't so private!™)

ioh ounds
The pet wasndt so private

Universiy of Zurich

Oxparmanf Hlomatis

©2008 W. Savitch, Pearson Prentice Hall

31

Avoiding the Problem

An easy solution is to use only instance
variables of a primitive type or of type String,
which has no methods than can change its
data.

A harder (and better) solution produces an
exact copy of the object called a clone.

A reference to the clone is returned instead of a
reference to the object.

See Appendix 8 for details.

of Zurich

©2008 W, Savitch, Pearson Prentice Hall o4

Packages: Outline

Packages and Importing
Package Names and Directories
Name Clashes

jversity of Zurich

©2008 W. Savitch, Pearson Prentice Hall 95

Packages

A package groups and names a collection of
related classes.
It can serve as a library of classes for any program.
The collection of classes need not reside in the
same directory as a program that uses them.
The classes are grouped together in a directory
and are given a package name.

jversity of Zurich
e s

©2008 W. Savitch, Pearson Prentice Hall %

32

Packages, cont.

The classes in a package are placed in separate files.
A file name is the same as the name of the class except
that each that each file contains the following at the
start of the file

package Package Name;

example

package general.utilities;

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall o

Directories

Directories are called folders in some operating
systems.

To understand packages, you need to know about path
names for directories, and you need to know how your
operating system uses a path variable.

These are operating system topics and their details
depend on the operating system.

University of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall %

Importing

A program or class definition can use all the classes in
a package by placing a suitable import statement at
the start of the file containing the program or class
definition.

import Package_Name;

This is sufficient even if the program or class
definition is not in the same directory as the
classes in the package.

University of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall o

33

Package Names and Directories

= The package name must tell the compiler
where to find the classes in the package.

= This is, it must provide the compiler with the path

name for the directory containing the classes in the
package.

= To find the directory, Java needs
= the name of the package

«» the directories listed in the value of the class path
variable.

Universiy of Zurich
oy ©2008 W. Savitch, Pearson Prertics Hall 100

Package Names and Directories

= The value of the class path variable tells Java
where to begin its search for the package.

= The class path variable is part of the operating
system, not part of Java.

= It contains path names and a list of directories,
called the class path base directories.

niversiy of Zurich
oy ©2008 W. Savitch, Pearson Prertics Hall

Package Names and Directories

= The package name is a relative path name that
assumes you start in a class path base directory and

follow the path of subdirectories given by the package
name.

= example class path base directory:
\javastuff\libraries
= example package classes

\javastuff\libraries\general\utilities

©2008 W. Savitch, Pearson Prentice Hall 102

34

Package Names and Directories

= Example (required) package name

general.utilities

myjavastuff\libraries

Xy wriavastuff

Yy Vibraries
\ lutilities

{7 oeneral
Ty uitities

AClass. java

Classes in the package AnotherClass. java

Univers
cesan

103

Package Names and Directories

= The class path variable allows you to list more than one
base directory, typically separating them with a
semicolon

\javastuff\libraries;f:\morejavastuff

= When you set or change the class path variable,
include the current directory (where your program or
other class is located) as one of the alternatives
Typically, the current directory is indicated by a dot

\javastuff\libraries;f:\morejavastuff;.

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall 104

Name Clashes

= Packages can help deal with name clashes which are
situations in which two classes have the same name.

= Ambiguities can be resolved by using the package
name.

= examples
mystuff.CoolClass objectl;
yourstuff.CoolClass object2;

Universiy of Zurich
v s ©2008 W. Savitch, Pearson Prertics Hall 105

35

Summary

You have learned more techniques for
programming with classes and objects.

You have learned about static methods and
static variables.

You have learned to define constructor
methods.

You have learned about packages and import
statements.

versity of Zurich
e s

©2008 W, Savitch, Pearson Prentice Hall 106

36

