
1

More About Objects and Methods

Chapter 6

© 2008 W. Savitch, Pearson Prentice Hall

2

Objectives

  learn to define constructor methods
  learn about static methods and static variables
  learn about packages and import statements
  learn about top-down design
  learn techniques for testing methods (including

the use of stub methods and driver programs)

© 2008 W. Savitch, Pearson Prentice Hall

3

Outline

  Constructors
  Static Methods and Static Variables
  Writing Methods
  Overloading
  Information Hiding Revisited
  Packages

© 2008 W. Savitch, Pearson Prentice Hall

2

Constructors

Defining Constructors
Calling Methods from Constructors
Calling Constructors from other Constructors

© 2008 W. Savitch, Pearson Prentice Hall

5

Constructors

  When you create an object of a class, often you
want certain initializing actions performed such
as giving values to the instance variables.

  A constructor is a special method that performs
initializations.

© 2008 W. Savitch, Pearson Prentice Hall

6

Defining Constructors
  New objects are created using

Class_Name Object_Name =

 new Class_Name (Parameter(s));

  A constructor is called automatically when a new
object is created.
  Class_Name (Parameter(s)) calls the constructor

and returns a reference.
  It performs any actions written into its definition

including initializing the values of (usually all)
instance variables.

© 2008 W. Savitch, Pearson Prentice Hall

3

7

Defining Constructors, cont.

  Each constructor has the same name as its class.
  A constructor does not have a return type, not even

void.
  Constructors often are overloaded, each with a different

number of parameters or different types of parameters.
  Typically, at least one constructor, the default

constructor, has no parameters.

© 2008 W. Savitch, Pearson Prentice Hall

8

Defining Constructors, cont.
  class Pet

© 2008 W. Savitch, Pearson Prentice Hall

9 © 2008 W. Savitch, Pearson Prentice Hall

Defining Constructors, cont.
•  class Pet, contd.

4

10 © 2008 W. Savitch, Pearson Prentice Hall

Defining Constructors, cont.
•  class PetDemo

11

Defining Constructors, cont.

  When a class definition does not have a
constructor definition, Java creates a default
constructor automatically.

  Once you define at least one constructor for the
class, no additional constructor is created
automatically.

© 2008 W. Savitch, Pearson Prentice Hall

12

Using Constructors

  A constructor can be called only when you
create a new object.
newborn.Pet(“Fang”, 1, 150.0);
 // invalid

  After an object is created, a set method is
needed to change the value(s) of one or more
instance variables.
newBorn.set(“Fang”, 1, 150.0); // valid

© 2008 W. Savitch, Pearson Prentice Hall

5

13

Returning a Reference

© 2008 W. Savitch, Pearson Prentice Hall

14

Using Methods in a Constructor

  Other methods in the same class can be used
in the definition of a constructor.

  Calls to one or more set methods are common.
public Class_Name(parameters){
 set(…)
}

© 2008 W. Savitch, Pearson Prentice Hall

15

Wrapper Classes with No Default
Constructor
  The wrapper classes

Byte Float
Short Double
Integer Character
Long Boolean
have no default constructors.

  When creating a new object of one of these
classes, an argument is needed.
Character myMark = new Character(‘Z’);

© 2008 W. Savitch, Pearson Prentice Hall

6

16

Integer, Double, and other
Wrapper Classes

  Sometimes a primitive value needs to be passed as an
argument, but the method definition creates an object
as the corresponding formal parameter.

  Java’s wrapper classes convert a value of a primitive
type to a corresponding class type.

 Integer n = new Integer(42);

The instance variable of the object n has the value 42.

© 2008 W. Savitch, Pearson Prentice Hall

17

Integer, Double, and other
Wrapper Classes, cont.
  To retrieve the integer value

Integer n = new Integer(42);
int i = n.intValue();
primitive wrapper extraction

  type class method
int Integer intValue

long Long longValue

float Float floatValue

double Double doubleValue

char Character charValue

© 2008 W. Savitch, Pearson Prentice Hall

18

Shorthand in Java 5.0

  Wrapping is done automatically in Java 5.0
Integer n = 42;

which is equivalent to
Integer n = new Integer(42);

  Similarly
int i = n;

is equivalent to
int i = n.intValue();

© 2008 W. Savitch, Pearson Prentice Hall

7

19

Automatic Boxing and Unboxing

  Converting a value of a primitive type to an object of its
corresponding wrapper class is called boxing.

 Integer n = new Integer(42);
  Java 5.0 boxes automatically.
 Integer n = 42;

© 2008 W. Savitch, Pearson Prentice Hall

20

Automatic Boxing and Unboxing,
cont.
  Converting an object of a wrapper class to a value of

the corresponding primitive type is called unboxing.
int i = n.intValue;

  Java 5.0 unboxes automatically.
int i = n;

© 2008 W. Savitch, Pearson Prentice Hall

21

Automatic Boxing and Unboxing,
cont.
  Automatic boxing and unboxing also apply to

parameters.
  A primitive argument can be provided for a

corresponding formal parameter of the associated
wrapper class.

  A wrapper class argument can be provided for a
corresponding formal parameter of the associated
primitive type.

© 2008 W. Savitch, Pearson Prentice Hall

8

22

Useful Constants

  Wrapper classes contain several useful constants and
static methods such as
Integer.MAX_VALUE
Integer.MIN_VALUE
Double.MAX_VALUE
Double.MIN_VALUE

© 2008 W. Savitch, Pearson Prentice Hall

23

The null Constant

  When the compiler requires an object reference to be
initialized, set it to null
String line = null;

  null is not an object, but is instead a constant that
indicates that an object variable references no object.

  == and != (rather than method equals) are used to
determine if an object variable has the value null

© 2008 W. Savitch, Pearson Prentice Hall

24

The null Constant, cont.

  An object reference initialized to null cannot be
used to invoke methods in the object’s class
  An attempt to do so results in a null pointer

exception.

© 2008 W. Savitch, Pearson Prentice Hall

9

Static Methods and Static
Variables: Outline

Static Methods
Static Variables
The Math Class
Integer, Double, and Other Wrapper
Classes

© 2008 W. Savitch, Pearson Prentice Hall

26

Static Methods and Static
Variables
  Static methods and static variables belong to a

class and do not require any object.

© 2008 W. Savitch, Pearson Prentice Hall

27

Static Methods

  Some methods have no meaningful connection
to an object. For example,
  finding the maximum of two integers
  computing a square root
  converting a letter from lowercase to uppercase
  generating a random number

  Such methods can be defined as static.

© 2008 W. Savitch, Pearson Prentice Hall

10

28

Static Methods, cont.

  A static method is still defined as a member of a
class

  But, the method is invoked using the class name
rather than an object name

  syntax

return_Type Variable_Name =

Class_Name.Static_Method_Name (Parameters);

© 2008 W. Savitch, Pearson Prentice Hall

29

Static Methods, cont.

© 2008 W. Savitch, Pearson Prentice Hall

  class CircleFirstTry

30

Static Methods, cont.

© 2008 W. Savitch, Pearson Prentice Hall

•  class CircleDemo

11

31

Defining a Static Method

  A static method is defined in the same way as
any other method, but includes the keyword
static in the heading.

public static double area (double radius);

  Nothing in the definition can refer to a calling
object; no instance variables can be accessed.

© 2008 W. Savitch, Pearson Prentice Hall

32

Mixing Static and Nonstatic
Methods

© 2008 W. Savitch, Pearson Prentice Hall

  class PlayCircle

33

Mixing Static and Nonstatic
Methods

© 2008 W. Savitch, Pearson Prentice Hall

•  class PlayCircleDemo

12

34

Using an Object to Call a Static
Method

  An object of the class can be used to call a
static method of the class even though it is
more common to use the class name to call the
static method.

  You cannot invoke a nonstatic method within a
static method unless you create and use a
calling object for the nonstatic method.

© 2008 W. Savitch, Pearson Prentice Hall

35

Putting main in Any Class

  A class which contains a method main serves
two purposes:
  It can be run as a program
  It can be used to create objects for other classes

© 2008 W. Savitch, Pearson Prentice Hall

36

Putting main in Any Class

© 2008 W. Savitch, Pearson Prentice Hall

•  class PlayCircle

13

37

Putting main in Any Class, cont.

  A program’s main method must be static.
  A nonstatic method in the same class cannot be

invoked unless an object of the class is created
and used as a calling object for the nonstatic
method.

  In general, don’t provide a method main in a
class definition if the class will be used only to
create objects.

© 2008 W. Savitch, Pearson Prentice Hall

38

Static Variables

  A class can have static variables and constants as well
as static methods.
public static final double PI = 3.14159;

public static int
 numberOfInvocations = 0;

  The value of a static variable can be changed by any
method that can access the variable.

© 2008 W. Savitch, Pearson Prentice Hall

39

Static Variables, cont.

  Like instance variables, static variables
generally are declared private.
  They should be read only by accessor methods.
  They should be changed only by mutator methods.

  Every object of the class has access to the
static variable(s) via the (public) accessor and
mutator methods.

© 2008 W. Savitch, Pearson Prentice Hall

14

40

Static Variables, cont.

© 2008 W. Savitch, Pearson Prentice Hall

  class StaticDemo

41

Static Variables, cont.

  Static variables are also called class variables
  The primary purpose of static variables (class

variables) is to store information that relates to
the class as a whole.

© 2008 W. Savitch, Pearson Prentice Hall

42

The Math Class

  The predefined class Math provides several standard
mathematical methods.
  All of these methods are static methods.
  You do not need to create an object to call the

methods of the Math class.
  These methods are called by using the class

name (Math) followed by a dot and a method name.
 Return_Value =
 Math.Method_Name(Parameters);

© 2008 W. Savitch, Pearson Prentice Hall

15

43

The Math Class, cont.

© 2008 W. Savitch, Pearson Prentice Hall

44

The Math Class, cont.

  Method round returns a number as the nearest whole
number.
  If its argument is of type double, it returns a whole

number of type long.
  Method floor (ceil) returns the largest (smallest) whole

number that is less (greater) than or equal to its
argument.

© 2008 W. Savitch, Pearson Prentice Hall

45

The Math Class, cont.

  To store a value returned by either floor or ceil in a
variable of type int, a cast must be used.
double start = 3.56;

int lowerBound = (int)Math.floor(start);
int upperBound =

 (int)Math.ceil(start);

© 2008 W. Savitch, Pearson Prentice Hall

16

46

The Math Class, cont.

  The Math class has two predefined constants, E and PI.
  example
area = Math.PI * radius * radius;

© 2008 W. Savitch, Pearson Prentice Hall

47 © 2008 W. Savitch, Pearson Prentice Hall

The Math Class, cont.
•  class Circle

48

Type Conversions

  Static methods in the wrapper classes can be
used to convert a string to the corresponding
number of type int, long, float, or double.
String theString = “199.98”;
double doubleSample =

 Double.parseDouble(theString);
or
 Double.parseDouble(theString.trim());

if the string has leading or trailing whitespace.

© 2008 W. Savitch, Pearson Prentice Hall

17

49

Type Conversions, cont.

  Methods for converting strings to the corresponding
numbers
Integer.parseInt(“42”)

Long.parseLong(“42”)
Float.parseFloat(“199.98”)

Double.parseDouble(“199.98”)

© 2008 W. Savitch, Pearson Prentice Hall

50

Type Conversions, cont.

  Methods for converting strings to the corresponding
numbers
Integer.toString(42)

Long.toString(42)
Float.toString(199.98)

Double.toString(199.98)

© 2008 W. Savitch, Pearson Prentice Hall

51

Static Methods in Class
Character

© 2008 W. Savitch, Pearson Prentice Hall

18

52

Static Constants in Class Boolean
  The constants in wrapper class Boolean include

Boolean.TRUE
and
Boolean.False
but the keywords true and false are much easier to
use.

© 2008 W. Savitch, Pearson Prentice Hall

Designing Methods: Outline

Formatting Output
Top-Down Design
Testing Methods

© 2008 W. Savitch, Pearson Prentice Hall

54

Case Study: Formatting Output

  System.out.println with a parameter of type
double might print
  Your cost is $19.981123576432
  when what you really want is
  Your cost is $19.98

  Java provides classes for formatting output, but
it is instructive, and perhaps even easier, to
program them ourselves.

© 2008 W. Savitch, Pearson Prentice Hall

19

55

Defining Methods write and
writeln

  Methods write and writeln should
  add the dollar sign
  output exactly two digits after the decimal place
  round the least significant digit in the output
  correspond to their print and println

counterparts.

© 2008 W. Savitch, Pearson Prentice Hall

56

Defining Methods write and
writeln, cont.
  The “dollars” and the “cents” need to be output

separately, preceded by the dollar sign and with a dot
between them.

  first attempt
System.out.print(‘$’);

System.out.print(dollars);

System.out.print(‘.’);

Output cents, properly formatted

© 2008 W. Savitch, Pearson Prentice Hall

57

Defining Methods write and
writeln, cont.

  To get rid of the decimal point
  convert the amount to all cents by multiplying by

100, and then round.
 int allCents =
 (int)Math.round(amount * 100);

  To find the value of dollars
 int dollars = allCents/100;

© 2008 W. Savitch, Pearson Prentice Hall

20

58

Defining Methods write and
writeln, cont.
  To find the value of cents

 int cents = allCents%100;

  To provide a leading zero when cents has a value less
than 10

 if (cents < 10)
 System.out.print(‘0’);

 System.out.print(cents);

© 2008 W. Savitch, Pearson Prentice Hall

59

Defining Methods write and
writeln, cont.
  class DollarsFirstTry

© 2008 W. Savitch, Pearson Prentice Hall

60 © 2008 W. Savitch, Pearson Prentice Hall

Defining Methods write and
writeln, cont.

•  class DollarsFirstTryDriver

21

61 © 2008 W. Savitch, Pearson Prentice Hall

Defining Methods write and
writeln, cont.

•  A program used to test a method or class
under development is called a driver program.

62

Defining Methods write and
writeln, cont.
  Negative numbers are not handled properly by class

DollarsFirstTry:

$-1.0-20 instead of -$1.20, for example
  To handle negative amounts, convert the amount to a

positive number, output a minus sign, and output the
properly formatted amount.

© 2008 W. Savitch, Pearson Prentice Hall

63 © 2008 W. Savitch, Pearson Prentice Hall

Defining Methods write and
writeln, cont.

•  class Dollars

•  Retest after changing the definition.

22

64

Top-Down Design

  Pseudocode can be written to decompose a
larger task into a collection of smaller tasks.

  Any of these smaller tasks can be decomposed
as needed into even smaller tasks.

  Several smaller tasks often are easier to code
than a single larger task.

© 2008 W. Savitch, Pearson Prentice Hall

65

Top-Down Design, cont.

  A collection of smaller tasks working together
can accomplish the larger task.

  Typically, subtasks are implemented as private
“helping” methods.

  This technique is called top-down design or
divide and conquer.

© 2008 W. Savitch, Pearson Prentice Hall

66

Testing Methods

  A driver program is useful for testing one
method or class under development.

  A driver program does not require the usual
attention to detail.
  Its job is to invoke and test one developing method

or class.
  After the method or class is tested adequately, the

driver program can be discarded.

© 2008 W. Savitch, Pearson Prentice Hall

23

67

Bottom-Up Testing

  If method A uses method B, then method B
should be tested fully before testing method A.

  Testing all the “lower level” methods invoked by
an “upper level” method before the “upper level”
method is tested is called bottom-up testing.

© 2008 W. Savitch, Pearson Prentice Hall

68

Stubs

  Sometimes a general approach needs to be
tested before all the methods can be written.

  A stub is a simplified version of a method that is
good enough for testing purposes, even though
it is not good enough for the final class
definition.
  It might, for example, return an arbitrary value, but

this can be sufficient for testing the general
approach.

© 2008 W. Savitch, Pearson Prentice Hall

69

Overloading

  We’ve seen that different classes can have
methods with the same names.

  Two or more methods in the same class class
can be defined with the same name if the
parameter list can be used to determine which
method is being invoked.

  This useful ability is called overloading.

© 2008 W. Savitch, Pearson Prentice Hall

24

70

  class Statistician

© 2008 W. Savitch, Pearson Prentice Hall

Overloading, cont.

71 © 2008 W. Savitch, Pearson Prentice Hall

Overloading, cont.

•  The number of arguments and the types of
the arguments determines which method
average is invoked.
–  If there is no match, Java attempts simple

type conversions of the kinds discussed
earlier.

–  If there is still no match, an error message
is produced.

72

Overloading, cont.

  Overloading can be applied to all kinds of
methods.
  void methods
  methods that return a value
  static methods
  nonstatic methods
  or any combination

© 2008 W. Savitch, Pearson Prentice Hall

25

73

Overloading, cont.

  We’ve been using overloading, perhaps without
recognizing it.

  examples
  method max (from the Math class)
  method println
  the / operator

© 2008 W. Savitch, Pearson Prentice Hall

74

Programming Example

© 2008 W. Savitch, Pearson Prentice Hall

75

Programming Example, cont.
  class Pet

© 2008 W. Savitch, Pearson Prentice Hall

26

76 © 2008 W. Savitch, Pearson Prentice Hall

Programming Example, cont.
•  class Pet, contd.

77

Overloading and Automatic Type
Conversion

  Overloading can be helpful.
  Automatic type conversion of arguments can be

helpful.
  But, overloading and automatic type conversion

can interfere with each other.

© 2008 W. Savitch, Pearson Prentice Hall

78

Overloading and Automatic Type
Conversion, cont

•  Example
–  Suppose method set is overloaded; one

method has an int as its formal parameter
and the other has a double as its formal
parameter.

© 2008 W. Savitch, Pearson Prentice Hall

27

79

Overloading and Automatic Type
Conversion, cont.
  example, cont.

  If an int is provided as the argument and
type conversion to a double is relied
upon, the type conversion will not occur.

  second example
  Suppose a method expects an int as its

first formal parameter, and a double as its
second.

  If two int are provided, but their order is
reversed, the error will go undetected by
Java.

© 2008 W. Savitch, Pearson Prentice Hall

80

Overloading and Automatic Type
Conversion, cont.

  Sometimes a method invocation can be
resolved in two different ways, depending on
how overloading and type conversion interact.
  Since such ambiguities are not allowed, Java will

produce a run-time error message (or sometimes a
compiler error message).

© 2008 W. Savitch, Pearson Prentice Hall

81

Overloading and Automatic Type
Conversion, cont.
  3rd example

public static void oops (double n1, int n2);
…
public static void oops (int n1, double n2);

  This will compile, but the invocation
 sample.oops(5,10)

will produce an error message.

© 2008 W. Savitch, Pearson Prentice Hall

28

82

Overloading and the Return Type

  You cannot overload a method name by
providing two definitions with headings that
differ only in the return type.

© 2008 W. Savitch, Pearson Prentice Hall

83

Programming Example

  The “person on the street” thinks about “money” as
consisting of “dollars” and “cents,” not int or double, or
any other Java primitive type.

  Further, approximate amounts (such as are produced
by doubles) produce dissatisfied customers, and
sometimes legal consequences.

© 2008 W. Savitch, Pearson Prentice Hall

84

Programming Example, cont.

  Integers are suitable for exact quantities.
  ints are suitable for $2 billion, but are unsuitable for

$3 billion, and some computer scientists are rich, so
let’s use longs, one for dollars and one for cents.

  To keep it simple, we’ll allow only nonnegative amounts
of money.

© 2008 W. Savitch, Pearson Prentice Hall

29

85

Programming Example, cont.

  We can verify that the first character of a string such as
“$12.75” is a dollar sign, and we can remove the dollar
sign using
if (amountString.charAt(0) == ‘$’)

 amountSting =
 amountString.substring(1);

  We can find the position of the decimal point using
int pointLocation = amountString.indexOf(“.”)

© 2008 W. Savitch, Pearson Prentice Hall

86

Programming Example, cont.

  We can capture the dollars and cents substrings using
dollarsString =

 amountString.substring(0, pointLocation);
centsString = amountString.substring

 (pointLocation + 1);

© 2008 W. Savitch, Pearson Prentice Hall

87

Programming Example, cont.

  We can convert the dollars and cents substrings to
values of type long using
dollars = Long.parseLong(dollarsString);

cents =
 Long.parseLong(centsString);

© 2008 W. Savitch, Pearson Prentice Hall

30

88 © 2008 W. Savitch, Pearson Prentice Hall

Programming Example, cont.
•  class Money

89 © 2008 W. Savitch, Pearson Prentice Hall

Programming Example, cont.
•  class Money, contd.

90

Information Hiding Revisited

  A class can have instance variables of any
type, including any class type.

  Variables of a class type contain the memory
address of the associated object.

  Any change made using an instance variable of
a class type indirectly, and sometimes
unintentionally, affects all other references to
the associated object.

© 2008 W. Savitch, Pearson Prentice Hall

31

91

Information Hiding Revisited, cont.

  If an alias can be created, the otherwise private
methods of the class can be accessed.

© 2008 W. Savitch, Pearson Prentice Hall

92

Information Hiding Revisited, cont.

© 2008 W. Savitch, Pearson Prentice Hall

•  class CadetClass

93 © 2008 W. Savitch, Pearson Prentice Hall

Information Hiding Revisited,
cont.

•  class Hacker

32

94

Avoiding the Problem

  An easy solution is to use only instance
variables of a primitive type or of type String,
which has no methods than can change its
data.

  A harder (and better) solution produces an
exact copy of the object called a clone.
  A reference to the clone is returned instead of a

reference to the object.
  See Appendix 8 for details.

© 2008 W. Savitch, Pearson Prentice Hall

95

Packages: Outline

  Packages and Importing
  Package Names and Directories
  Name Clashes

© 2008 W. Savitch, Pearson Prentice Hall

96

Packages

  A package groups and names a collection of
related classes.
  It can serve as a library of classes for any program.
  The collection of classes need not reside in the

same directory as a program that uses them.
  The classes are grouped together in a directory

and are given a package name.

© 2008 W. Savitch, Pearson Prentice Hall

33

97

Packages, cont.

  The classes in a package are placed in separate files.
  A file name is the same as the name of the class except

that each that each file contains the following at the
start of the file
package Package_Name;

  example
package general.utilities;

© 2008 W. Savitch, Pearson Prentice Hall

98

Directories

  Directories are called folders in some operating
systems.

  To understand packages, you need to know about path
names for directories, and you need to know how your
operating system uses a path variable.

  These are operating system topics and their details
depend on the operating system.

© 2008 W. Savitch, Pearson Prentice Hall

99

Importing

  A program or class definition can use all the classes in
a package by placing a suitable import statement at
the start of the file containing the program or class
definition.
import Package_Name;

  This is sufficient even if the program or class
definition is not in the same directory as the
classes in the package.

© 2008 W. Savitch, Pearson Prentice Hall

34

100

Package Names and Directories

  The package name must tell the compiler
where to find the classes in the package.
  This is, it must provide the compiler with the path

name for the directory containing the classes in the
package.

  To find the directory, Java needs
  the name of the package
  the directories listed in the value of the class path

variable.

© 2008 W. Savitch, Pearson Prentice Hall

101

Package Names and Directories

  The value of the class path variable tells Java
where to begin its search for the package.

  The class path variable is part of the operating
system, not part of Java.
  It contains path names and a list of directories,

called the class path base directories.

© 2008 W. Savitch, Pearson Prentice Hall

102

Package Names and Directories

  The package name is a relative path name that
assumes you start in a class path base directory and
follow the path of subdirectories given by the package
name.
  example class path base directory:
\javastuff\libraries
  example package classes
\javastuff\libraries\general\utilities

© 2008 W. Savitch, Pearson Prentice Hall

35

103

Package Names and Directories

© 2008 W. Savitch, Pearson Prentice Hall

  Example (required) package name
general.utilities

104

Package Names and Directories
  The class path variable allows you to list more than one

base directory, typically separating them with a
semicolon
\javastuff\libraries;f:\morejavastuff

  When you set or change the class path variable,
include the current directory (where your program or
other class is located) as one of the alternatives

  Typically, the current directory is indicated by a dot

\javastuff\libraries;f:\morejavastuff;.

© 2008 W. Savitch, Pearson Prentice Hall

105

Name Clashes

  Packages can help deal with name clashes which are
situations in which two classes have the same name.
  Ambiguities can be resolved by using the package

name.
  examples

 mystuff.CoolClass object1;
 yourstuff.CoolClass object2;

© 2008 W. Savitch, Pearson Prentice Hall

36

106

Summary

  You have learned more techniques for
programming with classes and objects.

  You have learned about static methods and
static variables.

  You have learned to define constructor
methods.

  You have learned about packages and import
statements.

© 2008 W. Savitch, Pearson Prentice Hall

