
1

More About Objects and Methods

Chapter 6

© 2008 W. Savitch, Pearson Prentice Hall

2

Objectives

  learn to define constructor methods
  learn about static methods and static variables
  learn about packages and import statements
  learn about top-down design
  learn techniques for testing methods (including

the use of stub methods and driver programs)

© 2008 W. Savitch, Pearson Prentice Hall

3

Outline

  Constructors
  Static Methods and Static Variables
  Writing Methods
  Overloading
  Information Hiding Revisited
  Packages

© 2008 W. Savitch, Pearson Prentice Hall

2

Constructors

Defining Constructors
Calling Methods from Constructors
Calling Constructors from other Constructors

© 2008 W. Savitch, Pearson Prentice Hall

5

Constructors

  When you create an object of a class, often you
want certain initializing actions performed such
as giving values to the instance variables.

  A constructor is a special method that performs
initializations.

© 2008 W. Savitch, Pearson Prentice Hall

6

Defining Constructors
  New objects are created using

Class_Name Object_Name =

 new Class_Name (Parameter(s));

  A constructor is called automatically when a new
object is created.
  Class_Name (Parameter(s)) calls the constructor

and returns a reference.
  It performs any actions written into its definition

including initializing the values of (usually all)
instance variables.

© 2008 W. Savitch, Pearson Prentice Hall

3

7

Defining Constructors, cont.

  Each constructor has the same name as its class.
  A constructor does not have a return type, not even

void.
  Constructors often are overloaded, each with a different

number of parameters or different types of parameters.
  Typically, at least one constructor, the default

constructor, has no parameters.

© 2008 W. Savitch, Pearson Prentice Hall

8

Defining Constructors, cont.
  class Pet

© 2008 W. Savitch, Pearson Prentice Hall

9 © 2008 W. Savitch, Pearson Prentice Hall

Defining Constructors, cont.
•  class Pet, contd.

4

10 © 2008 W. Savitch, Pearson Prentice Hall

Defining Constructors, cont.
•  class PetDemo

11

Defining Constructors, cont.

  When a class definition does not have a
constructor definition, Java creates a default
constructor automatically.

  Once you define at least one constructor for the
class, no additional constructor is created
automatically.

© 2008 W. Savitch, Pearson Prentice Hall

12

Using Constructors

  A constructor can be called only when you
create a new object.
newborn.Pet(“Fang”, 1, 150.0);
 // invalid

  After an object is created, a set method is
needed to change the value(s) of one or more
instance variables.
newBorn.set(“Fang”, 1, 150.0); // valid

© 2008 W. Savitch, Pearson Prentice Hall

5

13

Returning a Reference

© 2008 W. Savitch, Pearson Prentice Hall

14

Using Methods in a Constructor

  Other methods in the same class can be used
in the definition of a constructor.

  Calls to one or more set methods are common.
public Class_Name(parameters){
 set(…)
}

© 2008 W. Savitch, Pearson Prentice Hall

15

Wrapper Classes with No Default
Constructor
  The wrapper classes

Byte Float
Short Double
Integer Character
Long Boolean
have no default constructors.

  When creating a new object of one of these
classes, an argument is needed.
Character myMark = new Character(‘Z’);

© 2008 W. Savitch, Pearson Prentice Hall

6

16

Integer, Double, and other
Wrapper Classes

  Sometimes a primitive value needs to be passed as an
argument, but the method definition creates an object
as the corresponding formal parameter.

  Java’s wrapper classes convert a value of a primitive
type to a corresponding class type.

 Integer n = new Integer(42);

The instance variable of the object n has the value 42.

© 2008 W. Savitch, Pearson Prentice Hall

17

Integer, Double, and other
Wrapper Classes, cont.
  To retrieve the integer value

Integer n = new Integer(42);
int i = n.intValue();
primitive wrapper extraction

  type class method
int Integer intValue

long Long longValue

float Float floatValue

double Double doubleValue

char Character charValue

© 2008 W. Savitch, Pearson Prentice Hall

18

Shorthand in Java 5.0

  Wrapping is done automatically in Java 5.0
Integer n = 42;

which is equivalent to
Integer n = new Integer(42);

  Similarly
int i = n;

is equivalent to
int i = n.intValue();

© 2008 W. Savitch, Pearson Prentice Hall

7

19

Automatic Boxing and Unboxing

  Converting a value of a primitive type to an object of its
corresponding wrapper class is called boxing.

 Integer n = new Integer(42);
  Java 5.0 boxes automatically.
 Integer n = 42;

© 2008 W. Savitch, Pearson Prentice Hall

20

Automatic Boxing and Unboxing,
cont.
  Converting an object of a wrapper class to a value of

the corresponding primitive type is called unboxing.
int i = n.intValue;

  Java 5.0 unboxes automatically.
int i = n;

© 2008 W. Savitch, Pearson Prentice Hall

21

Automatic Boxing and Unboxing,
cont.
  Automatic boxing and unboxing also apply to

parameters.
  A primitive argument can be provided for a

corresponding formal parameter of the associated
wrapper class.

  A wrapper class argument can be provided for a
corresponding formal parameter of the associated
primitive type.

© 2008 W. Savitch, Pearson Prentice Hall

8

22

Useful Constants

  Wrapper classes contain several useful constants and
static methods such as
Integer.MAX_VALUE
Integer.MIN_VALUE
Double.MAX_VALUE
Double.MIN_VALUE

© 2008 W. Savitch, Pearson Prentice Hall

23

The null Constant

  When the compiler requires an object reference to be
initialized, set it to null
String line = null;

  null is not an object, but is instead a constant that
indicates that an object variable references no object.

  == and != (rather than method equals) are used to
determine if an object variable has the value null

© 2008 W. Savitch, Pearson Prentice Hall

24

The null Constant, cont.

  An object reference initialized to null cannot be
used to invoke methods in the object’s class
  An attempt to do so results in a null pointer

exception.

© 2008 W. Savitch, Pearson Prentice Hall

9

Static Methods and Static
Variables: Outline

Static Methods
Static Variables
The Math Class
Integer, Double, and Other Wrapper
Classes

© 2008 W. Savitch, Pearson Prentice Hall

26

Static Methods and Static
Variables
  Static methods and static variables belong to a

class and do not require any object.

© 2008 W. Savitch, Pearson Prentice Hall

27

Static Methods

  Some methods have no meaningful connection
to an object. For example,
  finding the maximum of two integers
  computing a square root
  converting a letter from lowercase to uppercase
  generating a random number

  Such methods can be defined as static.

© 2008 W. Savitch, Pearson Prentice Hall

10

28

Static Methods, cont.

  A static method is still defined as a member of a
class

  But, the method is invoked using the class name
rather than an object name

  syntax

return_Type Variable_Name =

Class_Name.Static_Method_Name (Parameters);

© 2008 W. Savitch, Pearson Prentice Hall

29

Static Methods, cont.

© 2008 W. Savitch, Pearson Prentice Hall

  class CircleFirstTry

30

Static Methods, cont.

© 2008 W. Savitch, Pearson Prentice Hall

•  class CircleDemo

11

31

Defining a Static Method

  A static method is defined in the same way as
any other method, but includes the keyword
static in the heading.

public static double area (double radius);

  Nothing in the definition can refer to a calling
object; no instance variables can be accessed.

© 2008 W. Savitch, Pearson Prentice Hall

32

Mixing Static and Nonstatic
Methods

© 2008 W. Savitch, Pearson Prentice Hall

  class PlayCircle

33

Mixing Static and Nonstatic
Methods

© 2008 W. Savitch, Pearson Prentice Hall

•  class PlayCircleDemo

12

34

Using an Object to Call a Static
Method

  An object of the class can be used to call a
static method of the class even though it is
more common to use the class name to call the
static method.

  You cannot invoke a nonstatic method within a
static method unless you create and use a
calling object for the nonstatic method.

© 2008 W. Savitch, Pearson Prentice Hall

35

Putting main in Any Class

  A class which contains a method main serves
two purposes:
  It can be run as a program
  It can be used to create objects for other classes

© 2008 W. Savitch, Pearson Prentice Hall

36

Putting main in Any Class

© 2008 W. Savitch, Pearson Prentice Hall

•  class PlayCircle

13

37

Putting main in Any Class, cont.

  A program’s main method must be static.
  A nonstatic method in the same class cannot be

invoked unless an object of the class is created
and used as a calling object for the nonstatic
method.

  In general, don’t provide a method main in a
class definition if the class will be used only to
create objects.

© 2008 W. Savitch, Pearson Prentice Hall

38

Static Variables

  A class can have static variables and constants as well
as static methods.
public static final double PI = 3.14159;

public static int
 numberOfInvocations = 0;

  The value of a static variable can be changed by any
method that can access the variable.

© 2008 W. Savitch, Pearson Prentice Hall

39

Static Variables, cont.

  Like instance variables, static variables
generally are declared private.
  They should be read only by accessor methods.
  They should be changed only by mutator methods.

  Every object of the class has access to the
static variable(s) via the (public) accessor and
mutator methods.

© 2008 W. Savitch, Pearson Prentice Hall

14

40

Static Variables, cont.

© 2008 W. Savitch, Pearson Prentice Hall

  class StaticDemo

41

Static Variables, cont.

  Static variables are also called class variables
  The primary purpose of static variables (class

variables) is to store information that relates to
the class as a whole.

© 2008 W. Savitch, Pearson Prentice Hall

42

The Math Class

  The predefined class Math provides several standard
mathematical methods.
  All of these methods are static methods.
  You do not need to create an object to call the

methods of the Math class.
  These methods are called by using the class

name (Math) followed by a dot and a method name.
 Return_Value =
 Math.Method_Name(Parameters);

© 2008 W. Savitch, Pearson Prentice Hall

15

43

The Math Class, cont.

© 2008 W. Savitch, Pearson Prentice Hall

44

The Math Class, cont.

  Method round returns a number as the nearest whole
number.
  If its argument is of type double, it returns a whole

number of type long.
  Method floor (ceil) returns the largest (smallest) whole

number that is less (greater) than or equal to its
argument.

© 2008 W. Savitch, Pearson Prentice Hall

45

The Math Class, cont.

  To store a value returned by either floor or ceil in a
variable of type int, a cast must be used.
double start = 3.56;

int lowerBound = (int)Math.floor(start);
int upperBound =

 (int)Math.ceil(start);

© 2008 W. Savitch, Pearson Prentice Hall

16

46

The Math Class, cont.

  The Math class has two predefined constants, E and PI.
  example
area = Math.PI * radius * radius;

© 2008 W. Savitch, Pearson Prentice Hall

47 © 2008 W. Savitch, Pearson Prentice Hall

The Math Class, cont.
•  class Circle

48

Type Conversions

  Static methods in the wrapper classes can be
used to convert a string to the corresponding
number of type int, long, float, or double.
String theString = “199.98”;
double doubleSample =

 Double.parseDouble(theString);
or
 Double.parseDouble(theString.trim());

if the string has leading or trailing whitespace.

© 2008 W. Savitch, Pearson Prentice Hall

17

49

Type Conversions, cont.

  Methods for converting strings to the corresponding
numbers
Integer.parseInt(“42”)

Long.parseLong(“42”)
Float.parseFloat(“199.98”)

Double.parseDouble(“199.98”)

© 2008 W. Savitch, Pearson Prentice Hall

50

Type Conversions, cont.

  Methods for converting strings to the corresponding
numbers
Integer.toString(42)

Long.toString(42)
Float.toString(199.98)

Double.toString(199.98)

© 2008 W. Savitch, Pearson Prentice Hall

51

Static Methods in Class
Character

© 2008 W. Savitch, Pearson Prentice Hall

18

52

Static Constants in Class Boolean
  The constants in wrapper class Boolean include

Boolean.TRUE
and
Boolean.False
but the keywords true and false are much easier to
use.

© 2008 W. Savitch, Pearson Prentice Hall

Designing Methods: Outline

Formatting Output
Top-Down Design
Testing Methods

© 2008 W. Savitch, Pearson Prentice Hall

54

Case Study: Formatting Output

  System.out.println with a parameter of type
double might print
  Your cost is $19.981123576432
  when what you really want is
  Your cost is $19.98

  Java provides classes for formatting output, but
it is instructive, and perhaps even easier, to
program them ourselves.

© 2008 W. Savitch, Pearson Prentice Hall

19

55

Defining Methods write and
writeln

  Methods write and writeln should
  add the dollar sign
  output exactly two digits after the decimal place
  round the least significant digit in the output
  correspond to their print and println

counterparts.

© 2008 W. Savitch, Pearson Prentice Hall

56

Defining Methods write and
writeln, cont.
  The “dollars” and the “cents” need to be output

separately, preceded by the dollar sign and with a dot
between them.

  first attempt
System.out.print(‘$’);

System.out.print(dollars);

System.out.print(‘.’);

Output cents, properly formatted

© 2008 W. Savitch, Pearson Prentice Hall

57

Defining Methods write and
writeln, cont.

  To get rid of the decimal point
  convert the amount to all cents by multiplying by

100, and then round.
 int allCents =
 (int)Math.round(amount * 100);

  To find the value of dollars
 int dollars = allCents/100;

© 2008 W. Savitch, Pearson Prentice Hall

20

58

Defining Methods write and
writeln, cont.
  To find the value of cents

 int cents = allCents%100;

  To provide a leading zero when cents has a value less
than 10

 if (cents < 10)
 System.out.print(‘0’);

 System.out.print(cents);

© 2008 W. Savitch, Pearson Prentice Hall

59

Defining Methods write and
writeln, cont.
  class DollarsFirstTry

© 2008 W. Savitch, Pearson Prentice Hall

60 © 2008 W. Savitch, Pearson Prentice Hall

Defining Methods write and
writeln, cont.

•  class DollarsFirstTryDriver

21

61 © 2008 W. Savitch, Pearson Prentice Hall

Defining Methods write and
writeln, cont.

•  A program used to test a method or class
under development is called a driver program.

62

Defining Methods write and
writeln, cont.
  Negative numbers are not handled properly by class

DollarsFirstTry:

$-1.0-20 instead of -$1.20, for example
  To handle negative amounts, convert the amount to a

positive number, output a minus sign, and output the
properly formatted amount.

© 2008 W. Savitch, Pearson Prentice Hall

63 © 2008 W. Savitch, Pearson Prentice Hall

Defining Methods write and
writeln, cont.

•  class Dollars

•  Retest after changing the definition.

22

64

Top-Down Design

  Pseudocode can be written to decompose a
larger task into a collection of smaller tasks.

  Any of these smaller tasks can be decomposed
as needed into even smaller tasks.

  Several smaller tasks often are easier to code
than a single larger task.

© 2008 W. Savitch, Pearson Prentice Hall

65

Top-Down Design, cont.

  A collection of smaller tasks working together
can accomplish the larger task.

  Typically, subtasks are implemented as private
“helping” methods.

  This technique is called top-down design or
divide and conquer.

© 2008 W. Savitch, Pearson Prentice Hall

66

Testing Methods

  A driver program is useful for testing one
method or class under development.

  A driver program does not require the usual
attention to detail.
  Its job is to invoke and test one developing method

or class.
  After the method or class is tested adequately, the

driver program can be discarded.

© 2008 W. Savitch, Pearson Prentice Hall

23

67

Bottom-Up Testing

  If method A uses method B, then method B
should be tested fully before testing method A.

  Testing all the “lower level” methods invoked by
an “upper level” method before the “upper level”
method is tested is called bottom-up testing.

© 2008 W. Savitch, Pearson Prentice Hall

68

Stubs

  Sometimes a general approach needs to be
tested before all the methods can be written.

  A stub is a simplified version of a method that is
good enough for testing purposes, even though
it is not good enough for the final class
definition.
  It might, for example, return an arbitrary value, but

this can be sufficient for testing the general
approach.

© 2008 W. Savitch, Pearson Prentice Hall

69

Overloading

  We’ve seen that different classes can have
methods with the same names.

  Two or more methods in the same class class
can be defined with the same name if the
parameter list can be used to determine which
method is being invoked.

  This useful ability is called overloading.

© 2008 W. Savitch, Pearson Prentice Hall

24

70

  class Statistician

© 2008 W. Savitch, Pearson Prentice Hall

Overloading, cont.

71 © 2008 W. Savitch, Pearson Prentice Hall

Overloading, cont.

•  The number of arguments and the types of
the arguments determines which method
average is invoked.
–  If there is no match, Java attempts simple

type conversions of the kinds discussed
earlier.

–  If there is still no match, an error message
is produced.

72

Overloading, cont.

  Overloading can be applied to all kinds of
methods.
  void methods
  methods that return a value
  static methods
  nonstatic methods
  or any combination

© 2008 W. Savitch, Pearson Prentice Hall

25

73

Overloading, cont.

  We’ve been using overloading, perhaps without
recognizing it.

  examples
  method max (from the Math class)
  method println
  the / operator

© 2008 W. Savitch, Pearson Prentice Hall

74

Programming Example

© 2008 W. Savitch, Pearson Prentice Hall

75

Programming Example, cont.
  class Pet

© 2008 W. Savitch, Pearson Prentice Hall

26

76 © 2008 W. Savitch, Pearson Prentice Hall

Programming Example, cont.
•  class Pet, contd.

77

Overloading and Automatic Type
Conversion

  Overloading can be helpful.
  Automatic type conversion of arguments can be

helpful.
  But, overloading and automatic type conversion

can interfere with each other.

© 2008 W. Savitch, Pearson Prentice Hall

78

Overloading and Automatic Type
Conversion, cont

•  Example
–  Suppose method set is overloaded; one

method has an int as its formal parameter
and the other has a double as its formal
parameter.

© 2008 W. Savitch, Pearson Prentice Hall

27

79

Overloading and Automatic Type
Conversion, cont.
  example, cont.

  If an int is provided as the argument and
type conversion to a double is relied
upon, the type conversion will not occur.

  second example
  Suppose a method expects an int as its

first formal parameter, and a double as its
second.

  If two int are provided, but their order is
reversed, the error will go undetected by
Java.

© 2008 W. Savitch, Pearson Prentice Hall

80

Overloading and Automatic Type
Conversion, cont.

  Sometimes a method invocation can be
resolved in two different ways, depending on
how overloading and type conversion interact.
  Since such ambiguities are not allowed, Java will

produce a run-time error message (or sometimes a
compiler error message).

© 2008 W. Savitch, Pearson Prentice Hall

81

Overloading and Automatic Type
Conversion, cont.
  3rd example

public static void oops (double n1, int n2);
…
public static void oops (int n1, double n2);

  This will compile, but the invocation
 sample.oops(5,10)

will produce an error message.

© 2008 W. Savitch, Pearson Prentice Hall

28

82

Overloading and the Return Type

  You cannot overload a method name by
providing two definitions with headings that
differ only in the return type.

© 2008 W. Savitch, Pearson Prentice Hall

83

Programming Example

  The “person on the street” thinks about “money” as
consisting of “dollars” and “cents,” not int or double, or
any other Java primitive type.

  Further, approximate amounts (such as are produced
by doubles) produce dissatisfied customers, and
sometimes legal consequences.

© 2008 W. Savitch, Pearson Prentice Hall

84

Programming Example, cont.

  Integers are suitable for exact quantities.
  ints are suitable for $2 billion, but are unsuitable for

$3 billion, and some computer scientists are rich, so
let’s use longs, one for dollars and one for cents.

  To keep it simple, we’ll allow only nonnegative amounts
of money.

© 2008 W. Savitch, Pearson Prentice Hall

29

85

Programming Example, cont.

  We can verify that the first character of a string such as
“$12.75” is a dollar sign, and we can remove the dollar
sign using
if (amountString.charAt(0) == ‘$’)

 amountSting =
 amountString.substring(1);

  We can find the position of the decimal point using
int pointLocation = amountString.indexOf(“.”)

© 2008 W. Savitch, Pearson Prentice Hall

86

Programming Example, cont.

  We can capture the dollars and cents substrings using
dollarsString =

 amountString.substring(0, pointLocation);
centsString = amountString.substring

 (pointLocation + 1);

© 2008 W. Savitch, Pearson Prentice Hall

87

Programming Example, cont.

  We can convert the dollars and cents substrings to
values of type long using
dollars = Long.parseLong(dollarsString);

cents =
 Long.parseLong(centsString);

© 2008 W. Savitch, Pearson Prentice Hall

30

88 © 2008 W. Savitch, Pearson Prentice Hall

Programming Example, cont.
•  class Money

89 © 2008 W. Savitch, Pearson Prentice Hall

Programming Example, cont.
•  class Money, contd.

90

Information Hiding Revisited

  A class can have instance variables of any
type, including any class type.

  Variables of a class type contain the memory
address of the associated object.

  Any change made using an instance variable of
a class type indirectly, and sometimes
unintentionally, affects all other references to
the associated object.

© 2008 W. Savitch, Pearson Prentice Hall

31

91

Information Hiding Revisited, cont.

  If an alias can be created, the otherwise private
methods of the class can be accessed.

© 2008 W. Savitch, Pearson Prentice Hall

92

Information Hiding Revisited, cont.

© 2008 W. Savitch, Pearson Prentice Hall

•  class CadetClass

93 © 2008 W. Savitch, Pearson Prentice Hall

Information Hiding Revisited,
cont.

•  class Hacker

32

94

Avoiding the Problem

  An easy solution is to use only instance
variables of a primitive type or of type String,
which has no methods than can change its
data.

  A harder (and better) solution produces an
exact copy of the object called a clone.
  A reference to the clone is returned instead of a

reference to the object.
  See Appendix 8 for details.

© 2008 W. Savitch, Pearson Prentice Hall

95

Packages: Outline

  Packages and Importing
  Package Names and Directories
  Name Clashes

© 2008 W. Savitch, Pearson Prentice Hall

96

Packages

  A package groups and names a collection of
related classes.
  It can serve as a library of classes for any program.
  The collection of classes need not reside in the

same directory as a program that uses them.
  The classes are grouped together in a directory

and are given a package name.

© 2008 W. Savitch, Pearson Prentice Hall

33

97

Packages, cont.

  The classes in a package are placed in separate files.
  A file name is the same as the name of the class except

that each that each file contains the following at the
start of the file
package Package_Name;

  example
package general.utilities;

© 2008 W. Savitch, Pearson Prentice Hall

98

Directories

  Directories are called folders in some operating
systems.

  To understand packages, you need to know about path
names for directories, and you need to know how your
operating system uses a path variable.

  These are operating system topics and their details
depend on the operating system.

© 2008 W. Savitch, Pearson Prentice Hall

99

Importing

  A program or class definition can use all the classes in
a package by placing a suitable import statement at
the start of the file containing the program or class
definition.
import Package_Name;

  This is sufficient even if the program or class
definition is not in the same directory as the
classes in the package.

© 2008 W. Savitch, Pearson Prentice Hall

34

100

Package Names and Directories

  The package name must tell the compiler
where to find the classes in the package.
  This is, it must provide the compiler with the path

name for the directory containing the classes in the
package.

  To find the directory, Java needs
  the name of the package
  the directories listed in the value of the class path

variable.

© 2008 W. Savitch, Pearson Prentice Hall

101

Package Names and Directories

  The value of the class path variable tells Java
where to begin its search for the package.

  The class path variable is part of the operating
system, not part of Java.
  It contains path names and a list of directories,

called the class path base directories.

© 2008 W. Savitch, Pearson Prentice Hall

102

Package Names and Directories

  The package name is a relative path name that
assumes you start in a class path base directory and
follow the path of subdirectories given by the package
name.
  example class path base directory:
\javastuff\libraries
  example package classes
\javastuff\libraries\general\utilities

© 2008 W. Savitch, Pearson Prentice Hall

35

103

Package Names and Directories

© 2008 W. Savitch, Pearson Prentice Hall

  Example (required) package name
general.utilities

104

Package Names and Directories
  The class path variable allows you to list more than one

base directory, typically separating them with a
semicolon
\javastuff\libraries;f:\morejavastuff

  When you set or change the class path variable,
include the current directory (where your program or
other class is located) as one of the alternatives

  Typically, the current directory is indicated by a dot

\javastuff\libraries;f:\morejavastuff;.

© 2008 W. Savitch, Pearson Prentice Hall

105

Name Clashes

  Packages can help deal with name clashes which are
situations in which two classes have the same name.
  Ambiguities can be resolved by using the package

name.
  examples

 mystuff.CoolClass object1;
 yourstuff.CoolClass object2;

© 2008 W. Savitch, Pearson Prentice Hall

36

106

Summary

  You have learned more techniques for
programming with classes and objects.

  You have learned about static methods and
static variables.

  You have learned to define constructor
methods.

  You have learned about packages and import
statements.

© 2008 W. Savitch, Pearson Prentice Hall

