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First case of a bug Anecdotal story from 1947 related to the 
Mark II computer 



“...then that 'Bugs' - as such little faults 
and difficulties are called - show 

themselves...”
Noise in communication infrastructure



Why are bugs in our 
software? The Path of a Bug

if(a <=b){
a.foo(); //.....

}

Code contains a 
defect

Mistake

Error (Infection) 
may occur

System failure 
may result



Trace a failure back to identify 
its root causes

Go the path backwards: Failure - Error - 
Defect - Mistake

Find causes & fix the defect:
Debugging



Stages of Debugging

• Locate cause

• Find a solution to fix it

• Implement to solution

• Execute tests to verify the correctness of the 
fix



Bug Facts

• “Software Errors Cost U.S. 
Economy $59.5 Billion Annually”1

• ~36% of the IT-Budget is spend 
on bug fixing1 

• Massive power blackout in 
North-East US: Race Condition

• Therac-25 Medical Accelerator: 
Race Condition

• Ariane 5 Explosion: Erroneous 
floating point conversion

12002, US National Institute of 
Standards & technology

2iX Studie 01/2006,
Software-Testmanagement 

http://www.heise.de/kiosk/special/ixstudie/06/01/
http://www.heise.de/kiosk/special/ixstudie/06/01/


Quality control: Find defects 
as early as possible

Prevent defects from being shipped to 
their productive environment



...is limited by time and money

Quality Assurance (QA)...
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...is limited by time and money

Quality Assurance (QA)...

Spend resources with maximum efficiency!
Focus on the components that fail the most!
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Defect Prediction

Identify those components of 
your system that are most 

critical with respect to defects

11

Build forecast (prediction) 
models to identify bug-prone 

parts in advance



Defect Prediction

Combines methods & 
techniques of data mining, 
machine learning, statistics
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Defect Prediction

13

Input Data Machine Learning 
Algorithm

Knowledge, 
Forecast-Model, ...

Decision Trees, Support Vector Machines,
Neural Network, Bayesian Network, ... 



Crime Fighting, Richmond, 
VA

• 2005, Massive amount of crime data

• Data mining to connect various data sources

• Input: Crime reports, weather, traffic, sports events 
and paydays for large employers

• Analyzed 3 times per day

• Output: Forecast where crime was most likely to 
occur, crime pikes, crime patterns

• Deploy police forces efficiently in advance
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Defect Prediction

Problem: Garbage In - Garbage Out
Defect Prediction Research:

What is the best input to build the most 
efficient defect prediction models?
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Defect Prediction

Defect Prediction Research:
How can we minimize the amount of 

required input data but still get accurate 
prediction models?
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Defect Prediction

Defect Prediction Research:
How can we turn prediction models into 

actionable tools for practitioners?
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Code Metrics
Directly calculated on the code itself

Different metrics to measure various aspects of the size and complexity 

Larger and more complex modules are harder to understand and change
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Larger and more complex modules are harder to understand and change
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McCabe

Dependency

Inheritance

Lines of Code



Bug Prediction Setup

Eclipse
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Eclipse Code Metrics & 
Bug Data
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Bug Prediction Setup

Bug-Prone

Not Bug-Prone

Eclipse

Random Forest

Code Metrics & 
Bug Data
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Data Mining Static Code Attributes
to Learn Defect Predictors

Tim Menzies, Member, IEEE, Jeremy Greenwald, and Art Frank

Abstract—The value of using static code attributes to learn defect predictors has been widely debated. Prior work has explored issues

like the merits of “McCabes versus Halstead versus lines of code counts” for generating defect predictors. We show here that such

debates are irrelevant since how the attributes are used to build predictors is much more important than which particular attributes are
used. Also, contrary to prior pessimism, we show that such defect predictors are demonstrably useful and, on the data studied here,

yield predictors with a mean probability of detection of 71 percent and mean false alarms rates of 25 percent. These predictors would
be useful for prioritizing a resource-bound exploration of code that has yet to be inspected.

Index Terms—Data mining detect prediction, McCabe, Halstead, artifical intelligence, empirical, naive Bayes.

Ç

1 INTRODUCTION

GIVEN recent research in artificial intelligence, it is now
practical to use data miners to automatically learn

predictors for software quality. When budget does not
allow for complete testing of an entire system, software
managers can use such predictors to focus the testing on
parts of the system that seem defect-prone. These potential
defect-prone trouble spots can then be examined in more
detail by, say, model checking, intensive testing, etc.

The value of static code attributes as defect predictors
has been widely debated. Some researchers endorse them
([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]) while others vehemently
oppose them ([21], [22]).

Prior studies may have reached different conclusions
because they were based on different data. This potential
conflation can now be removed since it is now possible to
define a baseline experiment using public-domain data sets1

which different researchers can use to compare their
techniques.

This paper defines and motivates such a baseline. The
baseline definition draws from standard practices in the data
mining community [23], [24]. To motivate others to use our
definition of a baseline experiment, we must demonstrate
that it can yield interesting results. The baseline experiment
of this article shows that the rule-based or decision-tree
learning methods used in prior work [4], [13], [15], [16], [25]
are clearly outperformed by a naive Bayes data miner with a

log-filtering preprocessor on the numeric data (the terms in
italics are defined later in this paper).

Further, the experiment can explain why our preferred
Bayesian method performs best. That explanation is quite
technical and comes from information theory. In this
introduction, we need only say that the space of “best”
predictors is “brittle,” i.e., minor changes in the data (such
as a slightly different sample used to learn a predictor) can
make different attributes appear most useful for defect
prediction.

This brittleness result offers a new insight on prior work.
Prior results about defect predictors were so contradictory
since they were drawn from a large space of competing
conclusions with similar but distinct properties. Different
studies could conclude that, say, lines of code are a better/
worse predictor for defects than the McCabes complexity
attribute, just because of small variations to the data.
Bayesian methods smooth over the brittleness problem by
polling numerous Gaussian approximations to the nu-
merics distributions. Hence, Bayesian methods do not get
confused by minor details about candidate predictors.

Our conclusion is that, contrary to prior pessimism [21],
[22], data mining static code attributes to learn defect
predictors is useful. Given our new results on naive Bayes
and log-filtering, these predictors are much better than
previously demonstrated. Also, prior contradictory results
on the merits of defect predictors can be explained in terms
of the brittleness of the space of “best” predictors. Further,
our baseline experiment clearly shows that it is a misdir-
ected discussion to debate, e.g., “lines of code versus
McCabe” for predicting defects. As we shall see, the choice of
learning method is far more important than which subset of the
available data is used for learning.

2 BACKGROUND

For this study, we learn defect predictors from static code
attributes defined by McCabe [2] and Halstead [1]. McCabe
and Halstead are “module”-based metrics, where a module

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1, JANUARY 2007

. T. Menzies is with the Lane Department of Computer Science and
Electrical Engineering, West Virginia University, Morgantown, WV
26506-610. E-mail: tim@menzies.us.

. J. Greenwald and A. Frank are with the Department of Computer Science,
Portland State University, PO Box 751, Portland, OR 97207-0751.
E-mail: jegreen@cecs.pdx.edu, arf@cs.pdx.edu.
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1. http://mdp.ivv.nasa.gov and http://promise.site.uottawa.ca/
SERepository.
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Size and complexity are indicators of defects
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Change Metrics

• Process Metrics

• Reflect the development activities

• Basic assumptions: The modules with many 
defects in the past will most likely be defect-
prone in the future as well.

• Modules that change often have inherently a 
higher chance to be affected by defects.

23



Code Changes

Commits to version control 
systems

Coarse-grained

Files are the units of change

Revisions
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Revisions

There is more than just a file revision
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Code Changes

Textual UnixDiff
between 2 File Versions

Code Churn

Ignores the structure of code

No change type information

Includes textual changes

Commits to version control 
systems

Coarse-grained

Files are the units of change

Revisions
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Code Churn

Does not reflect the type and the 
semantics of source code changes
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Code Changes

Textual UnixDiff
between 2 File Versions

Code Churn

Ignores the structure of code

No change type information

Includes textual changes

Compares 2 versions
of the AST of source code

Fine-Grained Changes1

Very fine-grained

Change type information

Captures all changes

Commits to version control 
systems

Coarse-grained

Files are the units of change

Revisions
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Code Changes

Textual UnixDiff
between 2 File Versions

Code Churn

Ignores the structure of code

No change type information

Includes textual changes

Compares 2 versions
of the AST of source code

Fine-Grained Changes1

Very fine-grained

Change type information

Captures all changes

Commits to version control 
systems

Coarse-grained

Files are the units of change

Revisions

1[Fluri et al. 2007, TSE] 28



Fine-grained Changes

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5
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Fine-grained Changes

1x condition change, 1x else-part insert, 1x invocation statement insert

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

THEN

MI

IF

"balance > 0 && amount <= balance"

"withDraw(amount);"

ELSE

MI

notify();

Account.java 1.6

30

More accurate representation
of the change history



Method-Level Bug Prediction

class 1 class 2 class 3 class n...
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11 methods on average

class 1 class 2 class 3 class n...class 2

4 are bug prone

Retrieving bug-prone methods saves manual 
inspection steps and improves testing effort allocation
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Saves more than half of all manual 

inspection steps
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Using the Gini Coefficient for 
Bug Prediction



Organizational Metrics

Basic Assumption: Organizational structure 
and regulations influence the quality of a 

software system.

33



Gini Coefficient

• The Lorenz curve plots the cumulative % of the 
total participation against the cumulative % of the 
population

• Gini Coefficient summarizes the curve in a number

34



Income Distribution

1CIA - The World Factbook, DISTRIBUTION OF FAMILY INCOME - GINI INDEX,
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html

Gini Coefficients are reported in %

35

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html


Income Distribution

Botswana 63.0

Namibia 70.7

Switzerland 33.7

European Union 30.4
Germany 27.0

New Zealand 36.2

USA 45.5

Chile 52.4

1CIA - The World Factbook, DISTRIBUTION OF FAMILY INCOME - GINI INDEX,
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html

Gini Coefficients are reported in %
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What about Software?

36



What about Software?

Developers = Population

36



What about Software?

Files = Assets

Developers = Population

36



What about Software?

Files = Assets

Changing a file = “being owner”

Developers = Population

36



What about Software?

How are changes of a file distributed among the 
developers and how does this relate to bugs?

Files = Assets

Changing a file = “being owner”

Developers = Population

36



Eclipse Resource
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Study

• Eclipse Dataset
• Avg. Gini coefficient is 0.9
• Namibia has a coefficient of 0.7
• Negative Correlation of ~-0.55
• Can be used to identify bug-prone files
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Study

• Eclipse Dataset
• Avg. Gini coefficient is 0.9
• Namibia has a coefficient of 0.7
• Negative Correlation of ~-0.55
• Can be used to identify bug-prone files

The more changes of a file are done by a few dedicated 
developers the less likely it will be bug-prone!

38



Economic Phenomena

• Economic phenomena of code 
ownership 

• Economies of Scale (Skaleneffekte)
• I’m an expert (in-depth knowledge)
• Profit from knowledge
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Costs to acquire knowledge can be split, e.g., among 
several releases if you stay with a certain component



Diseconomies of Scale

• Negative of effect of code ownership?
• Loss of direction and co-ordination
• Are we working for the same product?

40



Another Phenomena

• Economies of Scope (Verbundseffekte)
• Profiting from breadth-knowledge
• Knowledge of different components 

helps in co-ordinating
• Danger of bottlenecks!

41

http://dict.leo.org/ende?lp=ende&p=_xpAA&search=breadth&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=_xpAA&search=breadth&trestr=0x8001


Implications & Conclusions

• How much code ownership & expertise?
• What is your bus number?
• What is better? In-depth- or breadth-

knowledge?
• What’ is the optimal team size?

42



Promises & Perils of Defect Prediction

• There are many excellent approaches that reliably 
locate defects

• Deepens our understanding how certain properties 
of software are (statistically) related to defects

• X-project defect prediction is an open issue
• Much of it is pure number crunching, i.e., 

correlation != causality
• Assess practical relevance of defect prediction 

approaches

43
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ABSTRACT 
Prediction of software defects works well within projects as long 
as there is a sufficient amount of data available to train any mod-
els. However, this is rarely the case for new software projects and 
for many companies. So far, only a few have studies focused on 
transferring prediction models from one project to another. In this 
paper, we study cross-project defect prediction models on a large 
scale. For 12 real-world applications, we ran 622 cross-project 
predictions. Our results indicate that cross-project prediction is a 
serious challenge, i.e., simply using models from projects in the 
same domain or with the same process does not lead to accurate 
predictions. To help software engineers choose models wisely, we 
identified factors that do influence the success of cross-project 
predictions. We also derived decision trees that can provide early 
estimates for precision, recall, and accuracy before a prediction is 
attempted. 

Categories and Subject Descriptors. D.2.8 [Software Engineer-
ing]: Metrics—Performance measures, Process metrics, Product 
metrics. D.2.9 [Software Engineering]: Management—Software 
quality assurance (SQA) 

General Terms. Management, Measurement, Reliability. 

1. INTRODUCTION 
Defect prediction works well if models are trained with a suffi-
ciently large amount of data and applied to a single software 
project [26]. In practice, however, training data is often not avail-
able, either because a company is too small or it is the first release 
of a product, for which no past data exists. Making automated 
predictions is impossible in these situations. In effort estimation 
when no or little data is available, engineers often use data from 
other projects or companies [16]. Ideally the same scenario would 
be possible for defect prediction as well and engineers would take 
a model from another project to successfully predict defects in 
their own project; we call this cross-project defect prediction.  
However, there has been only little evidence that defect prediction 

works across projects [32]—in this paper, we will systematically 
investigate when cross-project defect prediction does work. 

The specific questions that we address are:  

1. To what extent can we use cross-project data to predict post-
release defects for a software system?  

2. What kinds of software systems are good cross-project predic-
tors—projects of the same domain, or with the same process, 
or with similar code structure, or of the same company? 

Considering that within companies, the process is often similar or 
even the same, we seek conclusions about which characteristics 
facilitate cross-project predictions better—is it the same domain 
or the same process? 

To test our hypotheses we conducted a large scale experiment on 
several versions of open source systems from Apache Tomcat, 
Apache Derby, Eclipse, Firefox as well as seven commercial 
systems from Microsoft, namely Direct-X, IIS, Printing, Windows 
Clustering, Windows File system, SQL Server 2005 and Windows 
Kernel. For each system we collected code measures, domain and 
process metrics, and defects and built a defect prediction model 
based on logistic regression. Next we ran 622 cross-projects expe-
riments and recorded the outcome of the predictions, which we 
then correlated with similarities between the projects. To describe 
similarities we used 40 characteristics: code metrics, ranging from 
churn [23] (i.e., added, deleted, and changed lines) to complexity; 
domain metrics ranging from operational domain, same company, 
etc; process metrics spanning distributed development, the use of 
static analysis tools, etc. Finally, we analyzed the effect of the 
various characteristics on prediction quality with decision trees. 

1.1 Contributions 
The main contributions of our paper are threefold:  

1. Evidence that it is not obvious which cross-prediction models 
work. Using projects in the same domain does not help build 
accurate prediction models. Process, code data and domain 
need to be quantified, understood and evaluated before pre-
diction models are built and used. 

2. An approach to highlight significant predictors and the factors 
that aid building cross-project predictors, validated in a study 
of 12 commercial and open source projects.  

3. A list of factors that software engineers should evaluate be-
fore selecting the projects that they use to build cross-project 
predictors.  
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Cross-Project Defect 
Prediction

• Use a prediction model to 
predict defect in other software 
projects

• Study with open source systems 
(e.g. Eclipse, Tomcat) and MS 
product (e.g., Win-Kernel, Direct 
X, IE)

• Results: Only limited success

• Another example of how difficult 
it is in SE to find generally valid 
models



Promises & Perils of Defect Prediction

• There are many excellent approaches that reliably 
locate defects

• Deepens our understanding how certain properties 
of software are (statistically) related to defects

• Cross-project prediction is an open issue
• Much of it is pure number crunching, i.e., 

correlation != causality
• Assessment of the practical relevance of defect 

prediction approaches
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