
University of Zurich
Department of Informatics software evolution & architecture lab

Emanuel Giger

Bug Prediction
SW-Wartung & Evolution

Software has Bugs!

2

Software has Bugs!

2

Software has Bugs!

2

Software has Bugs!

2

Software has Bugs!

2

Software has Bugs!

Bugs! Bugs! Bugs! Bugs! Bugs!

2

First case of a bug Anecdotal story from 1947 related to the
Mark II computer

“...then that 'Bugs' - as such little faults
and difficulties are called - show

themselves...”
Noise in communication infrastructure

Why are bugs in our
software? The Path of a Bug

if(a <=b){
a.foo(); //.....

}

Code contains a
defect

Mistake

Error (Infection)
may occur

System failure
may result

Trace a failure back to identify
its root causes

Go the path backwards: Failure - Error -
Defect - Mistake

Find causes & fix the defect:
Debugging

Stages of Debugging

• Locate cause

• Find a solution to fix it

• Implement to solution

• Execute tests to verify the correctness of the
fix

Bug Facts

• “Software Errors Cost U.S.
Economy $59.5 Billion Annually”1

• ~36% of the IT-Budget is spend
on bug fixing1

• Massive power blackout in
North-East US: Race Condition

• Therac-25 Medical Accelerator:
Race Condition

• Ariane 5 Explosion: Erroneous
floating point conversion

12002, US National Institute of
Standards & technology

2iX Studie 01/2006,
Software-Testmanagement

http://www.heise.de/kiosk/special/ixstudie/06/01/
http://www.heise.de/kiosk/special/ixstudie/06/01/

Quality control: Find defects
as early as possible

Prevent defects from being shipped to
their productive environment

...is limited by time and money

Quality Assurance (QA)...

10

...is limited by time and money

Quality Assurance (QA)...

Spend resources with maximum efficiency!
Focus on the components that fail the most!

10

Defect Prediction

Identify those components of
your system that are most

critical with respect to defects

11

Build forecast (prediction)
models to identify bug-prone

parts in advance

Defect Prediction

Combines methods &
techniques of data mining,
machine learning, statistics

12

Defect Prediction

13

Input Data Machine Learning
Algorithm

Knowledge,
Forecast-Model, ...

Decision Trees, Support Vector Machines,
Neural Network, Bayesian Network, ...

Crime Fighting, Richmond,
VA

• 2005, Massive amount of crime data

• Data mining to connect various data sources

• Input: Crime reports, weather, traffic, sports events
and paydays for large employers

• Analyzed 3 times per day

• Output: Forecast where crime was most likely to
occur, crime pikes, crime patterns

• Deploy police forces efficiently in advance

14

Defect Prediction

Problem: Garbage In - Garbage Out
Defect Prediction Research:

What is the best input to build the most
efficient defect prediction models?

15

Defect Prediction

Defect Prediction Research:
How can we minimize the amount of

required input data but still get accurate
prediction models?

16

Defect Prediction

Defect Prediction Research:
How can we turn prediction models into

actionable tools for practitioners?

17

Bug Prediction Models

18

Bug Prediction

Organizational
Metrics

Change
Metrics

Code
Metrics

Previous Bugs Code Churn Fine-Grained
Source Changes

Function Level
Metrics OO-Metrics Contribution

Structure

Method-Level
Bug Prediction

Team Structure

Bug Prediction Models

18

Bug Prediction

Organizational
Metrics

Change
Metrics

Code
Metrics

Previous Bugs Code Churn Fine-Grained
Source Changes

Function Level
Metrics OO-Metrics Contribution

Structure

Method-Level
Bug Prediction

Team Structure

Code Metrics
Directly calculated on the code itself

Different metrics to measure various aspects of the size and complexity

Larger and more complex modules are harder to understand and change

19

Code Metrics
Directly calculated on the code itself

Different metrics to measure various aspects of the size and complexity

Larger and more complex modules are harder to understand and change

19

Lines of Code

Code Metrics
Directly calculated on the code itself

Different metrics to measure various aspects of the size and complexity

Larger and more complex modules are harder to understand and change

19

Dependency
Lines of Code

Code Metrics
Directly calculated on the code itself

Different metrics to measure various aspects of the size and complexity

Larger and more complex modules are harder to understand and change

19

Dependency

Inheritance

Lines of Code

Code Metrics
Directly calculated on the code itself

Different metrics to measure various aspects of the size and complexity

Larger and more complex modules are harder to understand and change

19

McCabe

Dependency

Inheritance

Lines of Code

Bug Prediction Setup

Eclipse

20

Bug Prediction Setup

Eclipse Code Metrics &
Bug Data

20

Bug Prediction Setup

Eclipse

Random Forest

Code Metrics &
Bug Data

20

Bug Prediction Setup

Eclipse

Random Forest

Code Metrics &
Bug Data

20

Random ForestRandom ForestRandom ForestRandom ForestRandom ForestRandom Forest

X-Validation

Bug Prediction Setup

Bug-Prone

Not Bug-Prone

Eclipse

Random Forest

Code Metrics &
Bug Data

20

Random ForestRandom ForestRandom ForestRandom ForestRandom ForestRandom Forest

X-Validation

Data Mining Static Code Attributes
to Learn Defect Predictors

Tim Menzies, Member, IEEE, Jeremy Greenwald, and Art Frank

Abstract—The value of using static code attributes to learn defect predictors has been widely debated. Prior work has explored issues

like the merits of “McCabes versus Halstead versus lines of code counts” for generating defect predictors. We show here that such

debates are irrelevant since how the attributes are used to build predictors is much more important than which particular attributes are
used. Also, contrary to prior pessimism, we show that such defect predictors are demonstrably useful and, on the data studied here,

yield predictors with a mean probability of detection of 71 percent and mean false alarms rates of 25 percent. These predictors would
be useful for prioritizing a resource-bound exploration of code that has yet to be inspected.

Index Terms—Data mining detect prediction, McCabe, Halstead, artifical intelligence, empirical, naive Bayes.

Ç

1 INTRODUCTION

GIVEN recent research in artificial intelligence, it is now
practical to use data miners to automatically learn

predictors for software quality. When budget does not
allow for complete testing of an entire system, software
managers can use such predictors to focus the testing on
parts of the system that seem defect-prone. These potential
defect-prone trouble spots can then be examined in more
detail by, say, model checking, intensive testing, etc.

The value of static code attributes as defect predictors
has been widely debated. Some researchers endorse them
([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]) while others vehemently
oppose them ([21], [22]).

Prior studies may have reached different conclusions
because they were based on different data. This potential
conflation can now be removed since it is now possible to
define a baseline experiment using public-domain data sets1

which different researchers can use to compare their
techniques.

This paper defines and motivates such a baseline. The
baseline definition draws from standard practices in the data
mining community [23], [24]. To motivate others to use our
definition of a baseline experiment, we must demonstrate
that it can yield interesting results. The baseline experiment
of this article shows that the rule-based or decision-tree
learning methods used in prior work [4], [13], [15], [16], [25]
are clearly outperformed by a naive Bayes data miner with a

log-filtering preprocessor on the numeric data (the terms in
italics are defined later in this paper).

Further, the experiment can explain why our preferred
Bayesian method performs best. That explanation is quite
technical and comes from information theory. In this
introduction, we need only say that the space of “best”
predictors is “brittle,” i.e., minor changes in the data (such
as a slightly different sample used to learn a predictor) can
make different attributes appear most useful for defect
prediction.

This brittleness result offers a new insight on prior work.
Prior results about defect predictors were so contradictory
since they were drawn from a large space of competing
conclusions with similar but distinct properties. Different
studies could conclude that, say, lines of code are a better/
worse predictor for defects than the McCabes complexity
attribute, just because of small variations to the data.
Bayesian methods smooth over the brittleness problem by
polling numerous Gaussian approximations to the nu-
merics distributions. Hence, Bayesian methods do not get
confused by minor details about candidate predictors.

Our conclusion is that, contrary to prior pessimism [21],
[22], data mining static code attributes to learn defect
predictors is useful. Given our new results on naive Bayes
and log-filtering, these predictors are much better than
previously demonstrated. Also, prior contradictory results
on the merits of defect predictors can be explained in terms
of the brittleness of the space of “best” predictors. Further,
our baseline experiment clearly shows that it is a misdir-
ected discussion to debate, e.g., “lines of code versus
McCabe” for predicting defects. As we shall see, the choice of
learning method is far more important than which subset of the
available data is used for learning.

2 BACKGROUND

For this study, we learn defect predictors from static code
attributes defined by McCabe [2] and Halstead [1]. McCabe
and Halstead are “module”-based metrics, where a module

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1, JANUARY 2007

. T. Menzies is with the Lane Department of Computer Science and
Electrical Engineering, West Virginia University, Morgantown, WV
26506-610. E-mail: tim@menzies.us.

. J. Greenwald and A. Frank are with the Department of Computer Science,
Portland State University, PO Box 751, Portland, OR 97207-0751.
E-mail: jegreen@cecs.pdx.edu, arf@cs.pdx.edu.

Manuscript received 2 Jan. 2006; revised 9 Aug. 2006; accepted 13 Sept. 2006;
published online 30 Nov. 2006.
Recommended for acceptance by M. Harman.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0001-0106.

1. http://mdp.ivv.nasa.gov and http://promise.site.uottawa.ca/
SERepository.

0098-5589/06/$20.00 ! 2006 IEEE Published by the IEEE Computer Society

Size and complexity are indicators of defects

Bug Prediction Models

22

Bug Prediction

Organizational
Metrics

Change
Metrics

Code
Metrics

Previous Bugs Code Churn Fine-Grained
Source Changes

Function Level
Metrics OO-Metrics Contribution

Structure

Method-Level
Bug Prediction

Team Structure

Change Metrics

• Process Metrics

• Reflect the development activities

• Basic assumptions: The modules with many
defects in the past will most likely be defect-
prone in the future as well.

• Modules that change often have inherently a
higher chance to be affected by defects.

23

Code Changes

Commits to version control
systems

Coarse-grained

Files are the units of change

Revisions

24

Revisions

There is more than just a file revision

25

Revisions

There is more than just a file revision

25

Revisions

There is more than just a file revision

25

Revisions

There is more than just a file revision

25

Revisions

There is more than just a file revision

25

Revisions

There is more than just a file revision

25

Revisions

There is more than just a file revision

25

Code Changes

Textual UnixDiff
between 2 File Versions

Code Churn

Ignores the structure of code

No change type information

Includes textual changes

Commits to version control
systems

Coarse-grained

Files are the units of change

Revisions

26

Code Churn

Does not reflect the type and the
semantics of source code changes

27

Code Changes

Textual UnixDiff
between 2 File Versions

Code Churn

Ignores the structure of code

No change type information

Includes textual changes

Compares 2 versions
of the AST of source code

Fine-Grained Changes1

Very fine-grained

Change type information

Captures all changes

Commits to version control
systems

Coarse-grained

Files are the units of change

Revisions

28

Code Changes

Textual UnixDiff
between 2 File Versions

Code Churn

Ignores the structure of code

No change type information

Includes textual changes

Compares 2 versions
of the AST of source code

Fine-Grained Changes1

Very fine-grained

Change type information

Captures all changes

Commits to version control
systems

Coarse-grained

Files are the units of change

Revisions

1[Fluri et al. 2007, TSE] 28

Fine-grained Changes

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

29

Fine-grained Changes

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

THEN

MI

IF

"balance > 0 && amount <= balance"

"withDraw(amount);"

ELSE

MI

notify();

Account.java 1.6

29

Fine-grained Changes

1x condition change, 1x else-part insert, 1x invocation statement insert

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

THEN

MI

IF

"balance > 0 && amount <= balance"

"withDraw(amount);"

ELSE

MI

notify();

Account.java 1.6

29

Fine-grained Changes

1x condition change, 1x else-part insert, 1x invocation statement insert

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

THEN

MI

IF

"balance > 0 && amount <= balance"

"withDraw(amount);"

ELSE

MI

notify();

Account.java 1.6

30

Fine-grained Changes

1x condition change, 1x else-part insert, 1x invocation statement insert

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

THEN

MI

IF

"balance > 0 && amount <= balance"

"withDraw(amount);"

ELSE

MI

notify();

Account.java 1.6

30

More accurate representation
of the change history

Method-Level Bug Prediction

class 1 class 2 class 3 class n...

31

Method-Level Bug Prediction

class 1 class 2 class 3 class n...class 2

31

Method-Level Bug Prediction

11 methods on average

class 1 class 2 class 3 class n...class 2

31

Method-Level Bug Prediction

11 methods on average

class 1 class 2 class 3 class n...class 2

4 are bug prone

31

Method-Level Bug Prediction

11 methods on average

class 1 class 2 class 3 class n...class 2

4 are bug prone

Retrieving bug-prone methods saves manual
inspection steps and improves testing effort allocation

31

Method-Level Bug Prediction

11 methods on average

class 1 class 2 class 3 class n...class 2

4 are bug prone

Retrieving bug-prone methods saves manual
inspection steps and improves testing effort allocation

31

Saves more than half of all manual

inspection steps

Bug Prediction Models

32

Bug Prediction

Organizational
Metrics

Change
Metrics

Code
Metrics

Previous Bugs Code Churn Fine-Grained
Source Changes

Function Level
Metrics OO-Metrics Contribution

Structure

Method-Level
Bug Prediction

Team Structure

Bug Prediction Models

32

Bug Prediction

Organizational
Metrics

Change
Metrics

Code
Metrics

Previous Bugs Code Churn Fine-Grained
Source Changes

Function Level
Metrics OO-Metrics Contribution

Structure

Method-Level
Bug Prediction

Team Structure

Bug Prediction

Organizational
Metrics

Change
Metrics

Code
Metrics

Previous Bugs Code Churn Fine-Grained
Source Changes

Function Level
Metrics OO-Metrics Contribution

Structure

Method-Level
Bug Prediction

Team Structure

Using the Gini Coefficient for
Bug Prediction

Organizational Metrics

Basic Assumption: Organizational structure
and regulations influence the quality of a

software system.

33

Gini Coefficient

• The Lorenz curve plots the cumulative % of the
total participation against the cumulative % of the
population

• Gini Coefficient summarizes the curve in a number

34

Income Distribution

1CIA - The World Factbook, DISTRIBUTION OF FAMILY INCOME - GINI INDEX,
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html

Gini Coefficients are reported in %

35

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html

Income Distribution

Botswana 63.0

Namibia 70.7

Switzerland 33.7

European Union 30.4
Germany 27.0

New Zealand 36.2

USA 45.5

Chile 52.4

1CIA - The World Factbook, DISTRIBUTION OF FAMILY INCOME - GINI INDEX,
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html

Gini Coefficients are reported in %

35

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html

What about Software?

36

What about Software?

Developers = Population

36

What about Software?

Files = Assets

Developers = Population

36

What about Software?

Files = Assets

Changing a file = “being owner”

Developers = Population

36

What about Software?

How are changes of a file distributed among the
developers and how does this relate to bugs?

Files = Assets

Changing a file = “being owner”

Developers = Population

36

Eclipse Resource

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cumulative % of Developer Population

C
um

ul
at

iv
e

%
 o

f
R

ev
is

on
s

Lorenz Curve of Eclipse Resource

A

B

37

Eclipse Resource

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cumulative % of Developer Population

C
um

ul
at

iv
e

%
 o

f
R

ev
is

on
s

Lorenz Curve of Eclipse Resource

A

B

Gini Coefficient
= A / (A + B)

37

Study

• Eclipse Dataset
• Avg. Gini coefficient is 0.9
• Namibia has a coefficient of 0.7
• Negative Correlation of ~-0.55
• Can be used to identify bug-prone files

38

Study

• Eclipse Dataset
• Avg. Gini coefficient is 0.9
• Namibia has a coefficient of 0.7
• Negative Correlation of ~-0.55
• Can be used to identify bug-prone files

The more changes of a file are done by a few dedicated
developers the less likely it will be bug-prone!

38

Economic Phenomena

• Economic phenomena of code
ownership

• Economies of Scale (Skaleneffekte)
• I’m an expert (in-depth knowledge)
• Profit from knowledge

39

Economic Phenomena

• Economic phenomena of code
ownership

• Economies of Scale (Skaleneffekte)
• I’m an expert (in-depth knowledge)
• Profit from knowledge

39

Costs to acquire knowledge can be split, e.g., among
several releases if you stay with a certain component

Diseconomies of Scale

• Negative of effect of code ownership?
• Loss of direction and co-ordination
• Are we working for the same product?

40

Another Phenomena

• Economies of Scope (Verbundseffekte)
• Profiting from breadth-knowledge
• Knowledge of different components

helps in co-ordinating
• Danger of bottlenecks!

41

http://dict.leo.org/ende?lp=ende&p=_xpAA&search=breadth&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=_xpAA&search=breadth&trestr=0x8001

Implications & Conclusions

• How much code ownership & expertise?
• What is your bus number?
• What is better? In-depth- or breadth-

knowledge?
• What’ is the optimal team size?

42

Promises & Perils of Defect Prediction

• There are many excellent approaches that reliably
locate defects

• Deepens our understanding how certain properties
of software are (statistically) related to defects

• X-project defect prediction is an open issue
• Much of it is pure number crunching, i.e.,

correlation != causality
• Assess practical relevance of defect prediction

approaches

43

Cross-project Defect Prediction
A Large Scale Experiment on Data vs. Domain vs. Process

Thomas Zimmermann
Microsoft Research

tzimmer@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

 Emanuel Giger
University of Zurich

giger@ifi.uzh.ch

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

ABSTRACT
Prediction of software defects works well within projects as long
as there is a sufficient amount of data available to train any mod-
els. However, this is rarely the case for new software projects and
for many companies. So far, only a few have studies focused on
transferring prediction models from one project to another. In this
paper, we study cross-project defect prediction models on a large
scale. For 12 real-world applications, we ran 622 cross-project
predictions. Our results indicate that cross-project prediction is a
serious challenge, i.e., simply using models from projects in the
same domain or with the same process does not lead to accurate
predictions. To help software engineers choose models wisely, we
identified factors that do influence the success of cross-project
predictions. We also derived decision trees that can provide early
estimates for precision, recall, and accuracy before a prediction is
attempted.

Categories and Subject Descriptors. D.2.8 [Software Engineer-
ing]: Metrics—Performance measures, Process metrics, Product
metrics. D.2.9 [Software Engineering]: Management—Software
quality assurance (SQA)

General Terms. Management, Measurement, Reliability.

1. INTRODUCTION
Defect prediction works well if models are trained with a suffi-
ciently large amount of data and applied to a single software
project [26]. In practice, however, training data is often not avail-
able, either because a company is too small or it is the first release
of a product, for which no past data exists. Making automated
predictions is impossible in these situations. In effort estimation
when no or little data is available, engineers often use data from
other projects or companies [16]. Ideally the same scenario would
be possible for defect prediction as well and engineers would take
a model from another project to successfully predict defects in
their own project; we call this cross-project defect prediction.
However, there has been only little evidence that defect prediction

works across projects [32]—in this paper, we will systematically
investigate when cross-project defect prediction does work.

The specific questions that we address are:

1. To what extent can we use cross-project data to predict post-
release defects for a software system?

2. What kinds of software systems are good cross-project predic-
tors—projects of the same domain, or with the same process,
or with similar code structure, or of the same company?

Considering that within companies, the process is often similar or
even the same, we seek conclusions about which characteristics
facilitate cross-project predictions better—is it the same domain
or the same process?

To test our hypotheses we conducted a large scale experiment on
several versions of open source systems from Apache Tomcat,
Apache Derby, Eclipse, Firefox as well as seven commercial
systems from Microsoft, namely Direct-X, IIS, Printing, Windows
Clustering, Windows File system, SQL Server 2005 and Windows
Kernel. For each system we collected code measures, domain and
process metrics, and defects and built a defect prediction model
based on logistic regression. Next we ran 622 cross-projects expe-
riments and recorded the outcome of the predictions, which we
then correlated with similarities between the projects. To describe
similarities we used 40 characteristics: code metrics, ranging from
churn [23] (i.e., added, deleted, and changed lines) to complexity;
domain metrics ranging from operational domain, same company,
etc; process metrics spanning distributed development, the use of
static analysis tools, etc. Finally, we analyzed the effect of the
various characteristics on prediction quality with decision trees.

1.1 Contributions
The main contributions of our paper are threefold:

1. Evidence that it is not obvious which cross-prediction models
work. Using projects in the same domain does not help build
accurate prediction models. Process, code data and domain
need to be quantified, understood and evaluated before pre-
diction models are built and used.

2. An approach to highlight significant predictors and the factors
that aid building cross-project predictors, validated in a study
of 12 commercial and open source projects.

3. A list of factors that software engineers should evaluate be-
fore selecting the projects that they use to build cross-project
predictors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08...$10.00.

Cross-Project Defect
Prediction

• Use a prediction model to
predict defect in other software
projects

• Study with open source systems
(e.g. Eclipse, Tomcat) and MS
product (e.g., Win-Kernel, Direct
X, IE)

• Results: Only limited success

• Another example of how difficult
it is in SE to find generally valid
models

Promises & Perils of Defect Prediction

• There are many excellent approaches that reliably
locate defects

• Deepens our understanding how certain properties
of software are (statistically) related to defects

• Cross-project prediction is an open issue
• Much of it is pure number crunching, i.e.,

correlation != causality
• Assessment of the practical relevance of defect

prediction approaches

45

