\
!
|
_
) : . - l ! |
/ memw s (v.iE ® /A
Bl NN = =
-2 $ -

Reeng | neering | Transforming the System

Recap: Reverse
—Nngineering

* \We have a detailed impression of
the current state

* \We identified the important parts Detailed Model Capture

* We identified reengineering

- Initial Understanding
opportunities N

First Contact

* \We have a detailed
understanding of the system

tting Direct

|D
-

* We documented the knowledge

of the reverse engineering part Legacy
System

Tests: Your Life Insurance!

Migration Strategies

Detailed Model Capture

Detecting Duplicated Code

Initial Understanding

Redistribute Responsibilities

First Contact

Transform Conditionals to
Setting Direction Polymorphism

Legacy Reengineered
System System

Reengineering Patterns

Tests: Your Life |

Detailed M | tur

Initial Understandin

First ntact

Setting Direction

Legacy
System

Reengineering Patterns

Why do we reengineer?

We want to improve our system in some or the other way

Improve internal structure of the software

* Make maintenance “easier”

* Make new feature implementation “easier”

Improving technology

« Game engine: Use new Direct3D API to support latest shaders; multi platform ready: Support OpenGL
(PS4, WII U) & Direct3D (XBox, PC)

« Using object-oriented database mapper, rather than accessing “plain SQL”

Improve performance

» Reengineering data model to speed up database queries

Migration Strateqgies

Detailed Model Capture

Detecting Duplicated Code

Initial Understanding

Redistribute Responsibilities

First Contact

Transform Conditionals to
Setting Direction Polymorphism

Legacy Reengineered
System System

Tests: Your Lite
Insurance! (Ch. 6)

Tests: Your Life Insurance! (Ch. ©6)

* Reengineering: Radical surgery on the (most) valuable parts of the system

* For sure, we don not want to introduce new defects or even break any working
parts

* Reengineering per se is a risky business with many opportunities to fall
* Unit test can reduce the risks posed by reengineering

* \Whenever we change code, we must make use of unit tests

The Problem with Tests

* Jo write tests, we sometimes need to change the code

e Jests are time consuming: Under time pressure tests are often eliminated the first
e Customers pay for new features in the first place, and not for tests

* But customers won’t accept an buggy system either

* Writing tests is not really a “fun task”™

* Jest are a sustainable, long term commitment, like an insurance

Write Tests to Enable Evolution

This pattern basically is the rationale why to test at all

Every change can potentially introduce a new defect or break the system

Tests minimize those risks

 More important:

e Automated, repeatable, persistent, documented -> well designed tests
e Run tests after every change to verify its correctness

« Use a mature testing framework (The “main-method” is not a mature testing
framework)

Finished after 34,898 seconds public boolean addilliint index, Collection c) { e =)
Runs: 13009/13009 HEErrors: 0 H Failures: 0 sl R
return false’; -
] } else if(size == index || size == 0) {
B 4 E— return addill (c):;
@™ Failures | Hlerarchy| } else {
=)) junit. framework. TestSuite A Listable succ = getListabledt (index);
E] [:. junit.frameviork. TestSuite Listable pred = (null == succ) ? null : succ.previ):
E- TestBagUtils Iterator it = c.iterator():
E. org.apache.commons.collections, TestClos while (it.hasNext ()] {
-] org.apache.commons. collections, TestColle T : :
TestBufferUtils pred = insertlistable (pred,succ,it.nextci))’
-] TestEnumerationlUtils)
-k org.apache.commons.collections, TestFact BNV T
- [E[) TestListUtils }
- [E[) TestMapUtils } v
-] org.apache.commons.collections. TestPrec | LI—I
-] TestSetUtils - ~
)-[5] org.apache.commons.collections., TestTrar Problems | Javadoc | Declaration | Console (B Coverage 23\ =
TestArrayStack TestAllPackages (31.10.2006 15:04:14) & = oS | B,_ g 9 -
-5 TestBeanMap
org.apache. commons. collections. TestBina— Elen_ment Coverage | Covered Lines Total Lines | «
TestBoundedFifoBuffer E]Lﬁ java - commons-collections =a 79,5 % 10927 13738
TestBoundedFifoBuffer? E]B} org.apache.commons.collections =a 74,1 % 3842 5183
TestCursorableLinkedList 4] ArrayStack.java = 805 & =e 22
-] TestDoubleOrderedMap J] Bagutils.java = o 5 50
- [[) org.apache.commons.collections, TestExte |J] BeanMap.java - 16T o LE s
- B TestFastarrayList . E-[8] BinaryHeap.jova = 68i0% L G
TestFastarrayList1 m BoundedFifoBuffer.java = 93,2 % 82 38
TestFastHashMap \J] BufferOverflowException.java = 55,6 % 5 9
TestFastHashMap1 \J] BufferUnderflowException.java = 88,9 % 8 9
- - E TestFastTreeMap B[] BufferUtis java - 30,8% 4 13
TestFastTreeMap1 - P @ Closureltils.java = 93,9 % 3 33
« | LlJ \J] Collectionltils.java = 92,4 % 293 317
m ComparatorUtils.java - 8,6 % 3 35
= Failure Trace RO @ CursorableLinkedList.java = | 85,4 % 444 520 w

| - | Writable | Smart Insert | 1491 28

Eclipse and third party tools
provide an excellent
framework

Record Business Rules as Tests

* Business rules are important but often hidden and implicit in the code base

It is not obvious which module is responsible for a given business rule

Write test cases that encapsulate individual business rules

Rules become explicit, therefore, the risk of loosing implicit knowledge because
of developer turnover is reduced

* Again enables evolution: Whenever something is changed, we can check if the
rules are still fulfilled correctly by simply running the tests

* Be aware: There might be a lot of different rules

Test the Interface, not the Implementation

Test the external behavior, not the implementation

Implementation details change often, interfaces are (more) stable
* Interface tests will survive changes to the implementation
* Focusing on the external behavior

* We don’t waste time in developing tests each time we make small changes to
the system

* Black-Box testing

Tests: Your Life Insurance!

1
|
4

Detailed Model Capture

Detecting Duplicated Code

Initial Understanding

Redistribute Responsibilities

First Contact

Transform Conditionals to
Setting Direction Polymorphism

Legacy Reengineered
System System

Migration Strategies
(Ch. 7) From new to old ... but how?

Migration Strategies (Ch.7)

* Migration to the new system happens while the old system is still running

* People are still using the old system and are skeptic about the new system

Expects changes even while reengineering and deploying the new system

Avoid a big Waterfall Project

Migration of legacy system is an entire topic on its own

Migrate Incrementally

o Step-wise migration is the key

Avoid the complexity and risks of big-bang reengineering

 Decompose the reengineering effort into parts; deploy those individual parts of the
new system gradually

Get early feedback from users

e Users learn the system gradually; they are not faced with one big change overnight

e You can prioritize migration steps: Deploy important parts first (and possibly re-
iterate)

Always have a Running Version

A running version is required:

e For running tests

e Gradually release the new system to the users

A running version after the integration of changes builds confidence

it is hard to get excited about the new system if it is not yet running

If we break the system, we can always fall back to the last running version

Continuously integrating changes is time consuming (use build and configuration management
systems)

The architecture must support a step-wise integration of of changes

Involve the Users Maximize the acceptance of changes

Make a Bridge to the
new Town

How to migrate the data?

Migrating Data is Difficult

The old and new system are running in parallel

Ensure that the data is transferred

Ensure that that nothing is lost

Ensure that the data remains uncorrupted

Implements a “data bridge” that acts like a proxy for data manipulation

Data Bridge

e Data bridge redirects rReab
requests from the new system to
the legacy database

* Data bridge makes data
conversion

e Eventually data bridge
automatically migrates requested
data to the new system

* |f necessary the old system code
READS/WRITES {0 the new data
store via bridge

OLD SYSTEM

1:READ()

1.1:READI()

NEW SYSTEM

2:WRITE()

vy

1.2:WRITE()

DATA BRIDGE

Y

2.1:wWRrRITE()

Yy

DATA STORE

Deprecate obsolete Interfaces

* How to introduce new interfaces without invalidating all the clients?

* Avoid radical changes

Win 8 SDK and
DirectX

e DirectX SDK part of Win 8 SDK

» Header files were renamed

* Math functions of the D3DX utility library
are replaced

e DirectXMath should be used now

* Ultility library for textures is completely
replaced by 2 new frameworks
DirectXTK and DirectXTex

* Code does not compile anymore

e You could still mix old and new

by stacxoverfiow

4. These are my headers from before | updated to the new SDK:

1
v

wANLAVVE

#include
#include
#include
#include
#include
#include

pragma
#pragma
#pragma
#pragma
#pragma
Wpragma
pragma
#pragma
#pragma
f#pragma
#ipragma
fpragma
pragma
#pragma
#pragma
#pragma
#pragma
Wpragma
fpragma
#pragma
#pragma
#pragma

Wpragma

fendif

CAR E E R S 2 0 III + E Have projects on SourceForge?
= wl RS Ao

\VABA 112
<d3dii.h>
<d3dcompiler.h>
<d3dxidmath.h>
<d3dxilasync.h>
<D3DX11tex.h>
<gdiplus.h>

comment (1ib, “"gdiplus.lib™)
comment (1ib, “"winmm.1ib")
comment (1ib, “"dxguid.lib*™)
comment (1ib, “"d3dx9d.1ib")
comment (1ib, “d3dx10d.11ib")
comment (1ib, "d3d11.1ib")
comment (1ib, “"d3dx11.1ib")
comment (1ib, "dxgi.lib")
comment (1ib, “"dxgi.lib")
comment (1ib, “dxerr.lib"™)
comment (1ib, “d3dx1@.1ib")
comment (1ib, “"wsock32.1ib")
comment (1ib, “"dinput8.1ib™)
comment (1ib, “dxguid.lib™)
comment (1ib, “"pdh.1lib")
comment (1ib, “"comctl32.1ib*)
comment (1ib, “"xaudio2.1ib™)
comment (1ib, “"x3daudio.lib™)
comment (1ib, "libogg.lib"™)
comment (1ib, "libogg static.lib")
comment (1ib, “"libvorbis.lib"™)
comment (1ib, "libvorbisfile.lib")

warning (disable : 4482)

Atleast half of them are missing in the new SDK...

Windows 8 SDK renamed all headers and | don't know what to include now?

Hello Wc¢

Thisis ac
question a
professiol
programn
no registra

tagged
windows-8
sok
drectx-11
windows-sc
asked 6

viewed 14
active 2

Commui

2013
Mok

Max,
Shet
to th

Deprecate Obsolete Interfaces

How to introduce new interfaces without invalidating all the clients”

eaving old interfaces in code will blow up the AP

Makes maintenance difficult

Clients will most likely stick with the old interfaces

Describe old interfaces as obsolete

e (Give clients some time to react

Java

e Annotation @deprecated, part of Java Doc

Labels classes and methods that are no longer supported

Code still compiles and runs

Compiler issues a warning

You set a link to redirect clients to the new method/class

J **

* @deprecated As of release 1.3, replaced by
{@link #getPreferredSize()}

* /

@Deprecated public Dimension preferredSize() {
return getPreferredSize();

}

Tests: Your Life Insurance!

Migration Strateqgies

Detailed Model Capture

\ Detecting Duplicated Code
Initial Understanding |

Redistribute Responsibilities

First Contact

|
Transform Conditionals 1o
Polymorphism :

Setting Direction

Legacy Reengineered
System System

Refactoring

Make your code look nice

iNg

Refactor

Refactoring

* Process of improving the internal structure of the code

* During this process the external behavior, i.e., the functionality, of the system
DOES NOT change

* Part of the reengineering cycle

e Refactoring can also happen is a smaller context (daily work) outside of a big
reengineering project

* Notice: At the end of the entire reengineering project the system may implement
new features

/// .////.)/ 27 //,f/r.)/c/ //7////////‘/ ;

REFACTORING

IMPROVING THE DESIGN
OF EXISTING CODE

R EFACTORING
TO PATTERNS

MARTIN FOWLER

-mmnmmmm
William Opdyke, sna Don Roberts

JOSHUA KERIEVSKY Foreword by Erich Gamma

Object Technology International Inc.

Forewords by Ralph Johnson and Martin Fowler
Afterword by John Brant and Don Roberts

I10OM Wi lany

ADD

Refactoring to Patterns by Refactoring: Improving the Design of existing Code by
Joshua Kerievsky Martin Fowler
Addison-Wesley Longman , 2044 Addision-Wesley Professional , 1999

Refactoring Workflow

1. Make sure your tests pass (You need to ensure that the code behaves the same
after refactoring)

2. Find the bad code

3. Find a solution how to make it look nice

4, Modify the code

5.Run unit tests to verify the correctness of the refactoring

6. Repeat step 1-5 until all bad code is eliminated

What is exactly is bad”?

* Indications to start a reengineering project:

* Lot of bug fixing, long time to market cycles, evolution of a system gets out of
contral, ...

e But how can we identify bad code?

* Bad code can turn even small changes into a difficult, large nightmare

Bad smells are indications for refactoring potential on source code level

* |In practice bad smells are violations of good design principles & design heuristics

Bad Smell Detection

Difficult because smells can affect more than just one class:

e Sub-optimal inheritance structure

* Dependency Inversion Principle (high-level module should not depend on low-
level modules)

There is tool support to find bad smells

Detection is often based on metrics

|_ecture on Software Visualization

Primitive Obsession

Data Class
Data

Data Clump

Temporary field Comments

ﬂ Long method
Refused bequest Measured]
_ — \ _ ong class
Inappropriate intimacy |\ Inheritance Long parameter list

Lazy class/
Type embedded in name

Feature envy ithi } Nam [ncommunicative name
| o &Between classes Within a class/ ~3Me€S Uncommu
nappropriate intimacy - \ .
Respons|b|l|ty4 \ Inconsistent names

Message chains
Middle man j

Dead code

Complexity ,~ _ _
S_ Speculative generality

Divergent change

Shotgun surgery
Parallel inheritance Accommodating change \ Magic number

hierarchies o Duplicated code
Duplication

Combinatorial explosion Alternative classes
with different interfaces

Bad Smell Overview | Fowler (1999)

Move method

Move field

Extract class

Inline class

Hide delegate
Remove middle man
Introduce foreign method

Introduce local extensior

Moving features between objects

Decompose conditional

Consolidate conditional expressior

Consolidate duplicate conditional fragment:

Remove control flag

replace nested conditional with guard clauses

Replace conditional with polymorphisn

Introduce null object

iﬁmplifying conditional expression

Introduce assertion

Pull up field

Pull up method

Pull up contructor body

Extract subclass

Extract superclass \ _ _ o
_ —\ Dealing with generalizatior
Extract interface

Collapse hierarchyj

Form template method

Replace inheritance with delegationﬂ

Replace delegation with inheritance

Refactoring'’s

Inline method

/ Inline temp
/[Replace temp with query

-

Composing Methods) Introduce explaining variable

{
_ Split temporary variable

& Remove assignment to parameters

Replace method with method object
\Substitute algorithr

Self encapsulate field

Replace data value with object

~N N

/Change value to reference

/Change reference to value

[Replace array with object

[Duplicate observed data

[Change unidirectional association to bidirectionz

Organizing data s Change bidirectional association to unidirectionc

Refactorings

_ Replace magic number with symbolic constant
K Encapsulate field

Replace record with data class

\ Replace type code with class

\

% Replace type code with state/strategy

Replace type code with subclasses

Replace subclass with fields

Rename method

Add parameter

[Remove parameter

/ Separate query from modifier

Parameterize method

Making method calls simpler j~ _ -
_ Replace parameter with explicit method

_ Preserve whole object

\ Replace parameter with method

\ Replace error code with exception

Replace exception with test 30

Fowler (199)

When to Refactor?

* \When you add functionality

* When you learn something about the code
* When you fix a bug

* Code Smells

e You (should) do it all the time

Refactoring

—xamples (with

—cplise)

—xtract Method

Gather a block of code statements and move it in a new method

Improves readability of the code

Summarizes the intent of code in a single meaningful method name

Reduce the length of a method (Bad Smell: Long method)

Remove duplicated code (improves code reuse)

Smaller method are generally easier to maintain than really big ones

Rule of Thumb: Only extract a new method if you can find a good name

Opposite: Inline method

Move method

Move field

Extract class

Inline class

Hide delegate
Remove middle man
Introduce foreign method

Introduce local extensior

Moving features between objects

Decompose conditional

Consolidate conditional expressior

Consolidate duplicate conditional fragment:

Remove control flag

replace nested conditional with guard clauses

Replace conditional with polymorphisn

Introduce null object

iSimplifying conditional expression

Introduce assertion

Pull up field

Pull up method

Pull up contructor body\\

Extract subclass \

Extract superclass\ _ _ o
_ —\ Dealing with generalizatior
Extract interface

Collapse hierarchyj

Form template method
Replace inheritance with delegationj

Replace delegation with inheritance

Refactoring'’s

Refactorings

Inline method

/ Inline temp
/[Replace temp with query

-

Composing Method Introduce explaining variable

_ Split temporary variable

K Remove assignment to parameters

KRepIace method with method object
_Substitute algorithmr

Self encapsulate field

Replace data value with object

N

/Change value to reference

/Change reference to value

/ Replace array with object

[Duplicate observed data

Change unidirectional association to bidirectionz

Organizing data s Change bidirectional association to unidirectionc

_ Replace magic number with symbolic constant
K Encapsulate field
Replace record with data class

% Replace type code with state/strategy

Replace type code with class

Replace type code with subclasses

Replace subclass with fields

Rename method

Add parameter

[Remove parameter

[Separate query from modifier

Parameterize method

Making method calls simpler j~ _ -
_ Replace parameter with explicit method

_ Preserve whole object

\ Replace parameter with method

\ Replace error code with exception

Replace exception with test 30

Fowler (199)

Move Method

* Where to put functionality my design”

* Fundamental aspect of object-oriented design
 Class Responsibility Card by Cunningham and Beck
* Keep behavior and data together

e Slim down the interface of a class

A laboratory for teaching object oriented thinking by
Kent Beck and Cunningham Ward
@ OOPSLA Conference, 1989

Student

Responsibilities

Collaborators

Represents a student of
the university.

Holds all the necessary
data of an individual
student

Encapsulates the data but
provides access to data via
interface methods

Student Admin

Responsibilities

Collaborators

Provides back-end
functionality of the student
administration

SAP Database interface
for read and write
access to student data

RC

Brainstorming Tool

Move method
Move field
Extract class

Inline class

Moving features between objects

Hide delegate

Remove middle man

Introduce foreign method

Introduce local extensior

Decompose conditional

Consolidate conditional expressior

Consolidate duplicate conditional fragment:

Remove control flag

replace nested conditional with guard clauses

Replace conditional with polymorphisn

Introduce null object

Introduce assertion

Pull up field

Pull up method

Pull up contructor body\\
Extract subclass\

Extract superclass \

iSimplifying conditional expression

—\ Dealing with generalizatior

Extract interface

Collapse hierarchyj

Form template method
Replace inheritance with delegationj

Replace delegation with inheritance

Refactoring'’s

Composing Methods

Inline method

/ Inline temp
/[Replace temp with query

-

Introduce explaining variable

{
_ Split temporary variable

K Remove assignment to parameters

Replace method with method object
\Substitute algorithr

Self encapsulate field

Replace data value with object

N

/Change value to reference

/Change reference to value

/ Replace array with object

[Duplicate observed data

Change unidirectional association to bidirectionz

Change bidirectional association to unidirectionc

Refactorings)~ ©r9anizing data

Making method calls simpler)~

_ Replace magic number with symbolic constant
K Encapsulate field
Replace record with data class

% Replace type code with state/strategy

Replace type code with class

Replace type code with subclasses

Replace subclass with fields

Rename method

Add parameter

[Remove parameter

[Separate query from modifier

Parameterize method

_ Replace parameter with explicit method

_ Preserve whole object

\ Replace parameter with method

\ Replace error code with exception

Replace exception with test 30

Fowler (199)

Organize Data

Data inherently involves (low level) implementation details

e Datatypes, data structures

* Needs to satisfy constraints

|t often accessed/modified by many functions

e Hide implementation details and provide a unified access to data

o Last Lecture: Magic Numbers

o Other examples: Replace Type Code with Class, Encapsulate field, ...

Move method

Move field

Extract class

Inline class

Hide delegate
Remove middle man
Introduce foreign method

Introduce local extensior

Moving features between objects

Decompose conditional

Consolidate conditional expressior

Consolidate duplicate conditional fragment:

Remove control flag

Refactorings

replace nested conditional with guard clauses

Replace conditional with polymorphisn

Introduce null object

iﬁmplifying conditional expression

Introduce assertion

Pull up field

Pull up method

Pull up contructor body

Extract subclass \

Extract superclass\ _ _ o
_ —\ Dealing with generalizatior
Extract interface

Collapse hierarchyj

Form template method

Replace inheritance with delegationﬂ

Replace delegation with inheritance

Refactoring'’s

Inline method

/ Inline temp
/[Replace temp with query

-

Composing Methods) Introduce explaining variable

{
_ Split temporary variable

K Remove assignment to parameters

KRepIace method with method object

Substitute algorithn

Self encapsulate field

Replace data value with object

/Change value to reference

/Change reference to value

/ Replace array with object

/ Duplicate observed data

Change unidirectional association to bidirectionz

Organizing @ata) Change bidirectional association to unidirectionc

_ Replace magic number with symbolic constant
k Encapsulate field

Replace record with data class

Replace type code with class

\ Replace type code with subclasses
& Replace type code with state/strategy

Replace subclass with fields

Rename method

Add parameter

[Remove parameter

[Separate query from modifier

Parameterize method

Making method calls simpler j~ _ -
_ Replace parameter with explicit method

_ Preserve whole object

\ Replace parameter with method

\ Replace error code with exception

Replace exception with test 30

Fowler (199)

Introduce Parameter Object

* Method signatures with many parameters are difficult to read

* |[n many cases several parameters carry a certain data semantic

Create a class to group all parameters into a single object

* Purpose of parameter object is to pass values into the method

Easier to add new values ->add another field to parameter object

Real World Example: DirectX AP

D3D11 BUFFER DESC vertexBufferDesc; //Parameter object

//Set values of parameter object

vertexBufferDesc.Usage = D3D11 USAGE DEFAULT; //Example of Replace Type Code

vertexBufferDesc.ByteWidth sizeof (VertexType) * m vertexCount;
vertexBufferDesc.BindFlags = D3D11 BIND VERTEX BUFFER;
vertexBufferDesc.CPUAccessFlags = 0;

vertexBufferDesc.MiscFlags = 0;

vertexBufferDesc.StructureByteStride = 0;

//Pass parameter object to method

Direct3Dlldevice->CreateBuffer(&vertexBufferDesc,....);

D3D11_USAGE_DEFAULT

//reflects whether a resource is accessible by the CPU and/or the graphics processing unit (GPU).

typedef enum D3D11 USAGE {

D3D11 USAGE DEFAULT =0,
D3D11 USAGE IMMUTABLE = 1,
D3D11 USAGE DYNAMIC = 2,
D3D11 USAGE STAGING =3

} D3D11 USAGE;

Move method

Move field

Extract class

Inline class

Hide delegate
Remove middle man
Introduce foreign method

Introduce local extensior

Moving features between objects

Decompose conditional

Consolidate conditional expressior

Consolidate duplicate conditional fragment:

Remove control flag

replace nested conditional with guard clauses

Replace conditional with polymorphisn

Introduce null object

iﬁmplifying conditional expression

Introduce assertion

Pull up field

Pull up method

Pull up contructor body\
Extract subclass\

Extract superclass\ _ _ o
_ —\ Dealing with generalizatior
Extract interface

Collapse hierarchyj

Form template method
Replace inheritance with delegationﬂ

Replace delegation with inheritance

Refactoring'’s

Inline method

/ Inline temp
/[Replace temp with query

-

Composing Methods) Introduce explaining variable

{
_ Split temporary variable

K Remove assignment to parameters

Replace method with method object
\Substitute algorithr

Self encapsulate field

Replace data value with object

N

/Change value to reference

/Change reference to value

/ Replace array with object

[Duplicate observed data

Change unidirectional association to bidirectionz

Organizing data s Change bidirectional association to unidirectionc

Refactorings

_ Replace magic number with symbolic constant
k Encapsulate field

Replace record with data class

Replace type code with class

k Replace type code with subclasses

Replace type code with state/strategy
Replace subclass with fields

Rename method

Add parameter

[Remove parameter

[Separate query from modifier

Parameterize method

Making method calls simpl¢

-
_ Replace parameter with explicit method

_ Preserve whole object

\ Replace parameter with method

\ Replace error code with exception

Replace exception with test

Fowler (199)

Making Conditional Expressions Easier

* Application logic can be complex and difficult to get right

* Logic is central and changes often

In OO conditional behavior is handled by polymorphism

* Logic is encapsulated in objects

Less complex conditional statements and more flexibility

Logic is decentralized across different classes: Runtime vs. Static

Problems of Refactoring

* Jaken to far:
* Risk of over-engineering, “desperately” searching for refactoring opportunities
* Don’t refactor If there are not any running tests
* Databases are difficult to refactor
* Refactoring changes AP
* Choose appropriate migration strategy

* Keep old interface, but flag as deprecated

Refactoring Reading Material

e http://sourcemaking.com/refactoring

http://sourcemaking.com/refactoring
http://sourcemaking.com/refactoring

