
Reengineering II Transforming the System

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Recap: Reverse
Engineering

• We have a detailed impression of
the current state

• We identified the important parts

• We identified reengineering
opportunities

• We have a detailed
understanding of the system

• We documented the knowledge
of the reverse engineering part

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Reengineering Patterns

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Reengineering Patterns

Why do we reengineer?

• We want to improve our system in some or the other way

• Improve internal structure of the software

• Make maintenance “easier”

• Make new feature implementation “easier”

• Improving technology

• Game engine: Use new Direct3D API to support latest shaders; multi platform ready: Support OpenGL
(PS4, WII U) & Direct3D (XBox, PC)

• Using object-oriented database mapper, rather than accessing “plain SQL”

• Improve performance

• Reengineering data model to speed up database queries

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Tests: Your Life
Insurance! (Ch. 6)

Tests: Your Life Insurance! (Ch. 6)

• Reengineering: Radical surgery on the (most) valuable parts of the system

• For sure, we don not want to introduce new defects or even break any working
parts

• Reengineering per se is a risky business with many opportunities to fail

• Unit test can reduce the risks posed by reengineering

• Whenever we change code, we must make use of unit tests

The Problem with Tests

• To write tests, we sometimes need to change the code

• Tests are time consuming: Under time pressure tests are often eliminated the first

• Customers pay for new features in the first place, and not for tests

• But customers won’t accept an buggy system either

• Writing tests is not really a “fun task”

• Test are a sustainable, long term commitment, like an insurance

Write Tests to Enable Evolution

• This pattern basically is the rationale why to test at all

• Every change can potentially introduce a new defect or break the system

• Tests minimize those risks

• More important:

• Automated, repeatable, persistent, documented -> well designed tests

• Run tests after every change to verify its correctness

• Use a mature testing framework (The “main-method” is not a mature testing
framework)

How much do your tests cover?

18

Eclipse and third party tools
provide an excellent

framework

Record Business Rules as Tests

• Business rules are important but often hidden and implicit in the code base

• It is not obvious which module is responsible for a given business rule

• Write test cases that encapsulate individual business rules

• Rules become explicit, therefore, the risk of loosing implicit knowledge because
of developer turnover is reduced

• Again enables evolution: Whenever something is changed, we can check if the
rules are still fulfilled correctly by simply running the tests

• Be aware: There might be a lot of different rules

Test the Interface, not the Implementation

• Test the external behavior, not the implementation

• Implementation details change often, interfaces are (more) stable

• Interface tests will survive changes to the implementation

• Focusing on the external behavior

• We don’t waste time in developing tests each time we make small changes to
the system

• Black-Box testing

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Migration Strategies
(Ch. 7) From new to old ... but how?

Migration Strategies (Ch.7)

• Migration to the new system happens while the old system is still running

• People are still using the old system and are skeptic about the new system

• Expects changes even while reengineering and deploying the new system

• Avoid a big Waterfall Project

• Migration of legacy system is an entire topic on its own

Migrate Incrementally

• Step-wise migration is the key

• Avoid the complexity and risks of big-bang reengineering

• Decompose the reengineering effort into parts; deploy those individual parts of the
new system gradually

• Get early feedback from users

• Users learn the system gradually; they are not faced with one big change overnight

• You can prioritize migration steps: Deploy important parts first (and possibly re-
iterate)

Always have a Running Version

• A running version is required:

• For running tests

• Gradually release the new system to the users

• A running version after the integration of changes builds confidence

• it is hard to get excited about the new system if it is not yet running

• If we break the system, we can always fall back to the last running version

• Continuously integrating changes is time consuming (use build and configuration management
systems)

• The architecture must support a step-wise integration of of changes

Involve the Users Maximize the acceptance of changes

Make a Bridge to the
new Town How to migrate the data?

Migrating Data is Difficult

• The old and new system are running in parallel

• Ensure that the data is transferred

• Ensure that that nothing is lost

• Ensure that the data remains uncorrupted

• Implements a “data bridge” that acts like a proxy for data manipulation

New System

Data Bridge

Data Store

2:write()

2.1:write()

Old System

1:read()

1.1:read()

1.2:write()

Data Bridge

• Data bridge redirects read
requests from the new system to
the legacy database

• Data bridge makes data
conversion

• Eventually data bridge
automatically migrates requested
data to the new system

• If necessary the old system code
reads/writes to the new data
store via bridge

Deprecate obsolete Interfaces

• How to introduce new interfaces without invalidating all the clients?

• Avoid radical changes

Win 8 SDK and
DirectX

• DirectX SDK part of Win 8 SDK

• Header files were renamed

• Math functions of the D3DX utility library
are replaced

• DirectXMath should be used now

• Utility library for textures is completely
replaced by 2 new frameworks
DirectXTK and DirectXTex

• Code does not compile anymore

• You could still mix old and new

Deprecate Obsolete Interfaces

• How to introduce new interfaces without invalidating all the clients?

• Leaving old interfaces in code will blow up the API

• Makes maintenance difficult

• Clients will most likely stick with the old interfaces

• Describe old interfaces as obsolete

• Give clients some time to react

Java

• Annotation @deprecated, part of Java Doc

• Labels classes and methods that are no longer supported

• Code still compiles and runs

• Compiler issues a warning

• You set a link to redirect clients to the new method/class
/**
 * @deprecated As of release 1.3, replaced by
{@link #getPreferredSize()}
 */
@Deprecated public Dimension preferredSize() {
return getPreferredSize();
}

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Refactoring

Refactoring Make your code look nice

Refactoring

• Process of improving the internal structure of the code

• During this process the external behavior, i.e., the functionality, of the system
does not change

• Part of the reengineering cycle

• Refactoring can also happen is a smaller context (daily work) outside of a big
reengineering project

• Notice: At the end of the entire reengineering project the system may implement
new features

Refactoring: Improving the Design of existing Code by
Martin Fowler
Addision-Wesley Professional , 1999

Refactoring to Patterns by
Joshua Kerievsky
Addison-Wesley Longman , 2044

1. Make sure your tests pass (You need to ensure that the code behaves the same
after refactoring)

2. Find the bad code

3. Find a solution how to make it look nice

4. Modify the code

5.Run unit tests to verify the correctness of the refactoring

6. Repeat step 1-5 until all bad code is eliminated

Refactoring Workflow

What is exactly is bad?

• Indications to start a reengineering project:

• Lot of bug fixing, long time to market cycles, evolution of a system gets out of
control, ...

• But how can we identify bad code?

• Bad code can turn even small changes into a difficult, large nightmare

• Bad smells are indications for refactoring potential on source code level

• In practice bad smells are violations of good design principles & design heuristics

Bad Smell Detection

• Difficult because smells can affect more than just one class:

• Sub-optimal inheritance structure

• Dependency Inversion Principle (high-level module should not depend on low-
level modules)

• There is tool support to find bad smells

• Detection is often based on metrics

• Lecture on Software Visualization

Code Smells (Fowler 1999)

29

Bad Smell Overview Fowler (1999)

Refactorings (Fowler 1999)

30

Refactoring's Fowler (199)

When to Refactor?

• When you add functionality

• When you learn something about the code

• When you fix a bug

• Code Smells

• You (should) do it all the time

Refactoring Examples (with Ecplise)

Extract Method

• Gather a block of code statements and move it in a new method

• Improves readability of the code

• Summarizes the intent of code in a single meaningful method name

• Reduce the length of a method (Bad Smell: Long method)

• Remove duplicated code (improves code reuse)

• Smaller method are generally easier to maintain than really big ones

• Rule of Thumb: Only extract a new method if you can find a good name

• Opposite: Inline method

Refactorings (Fowler 1999)

30

Refactoring's Fowler (199)

Move Method

• Where to put functionality my design?

• Fundamental aspect of object-oriented design

• Class Responsibility Card by Cunningham and Beck1

• Keep behavior and data together

• Slim down the interface of a class

1A laboratory for teaching object oriented thinking by
Kent Beck and Cunningham Ward
@ OOPSLA Conference, 1989

CRC Brainstorming Tool

StudentStudent

Responsibilities Collaborators

Represents a student of
the university.

Holds all the necessary
data of an individual
student

Encapsulates the data but
provides access to data via
interface methods

Student AdminStudent Admin

Responsibilities Collaborators

Provides back-end
functionality of the student
administration

SAP Database interface
for read and write
access to student data

Refactorings (Fowler 1999)

30

Refactoring's Fowler (199)

Organize Data

• Data inherently involves (low level) implementation details

• Datatypes, data structures

• Needs to satisfy constraints

• It often accessed/modified by many functions

• Hide implementation details and provide a unified access to data

• Last Lecture: Magic Numbers

• Other examples: Replace Type Code with Class, Encapsulate field, ...

Refactorings (Fowler 1999)

30

Refactoring's Fowler (199)

Introduce Parameter Object

• Method signatures with many parameters are difficult to read

• In many cases several parameters carry a certain data semantic

• Create a class to group all parameters into a single object

• Purpose of parameter object is to pass values into the method

• Easier to add new values ->add another field to parameter object

Real World Example: DirectX API

D3D11_BUFFER_DESC vertexBufferDesc; //Parameter object

//Set values of parameter object

vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; //Example of Replace Type Code

vertexBufferDesc.ByteWidth = sizeof(VertexType) * m_vertexCount;

vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;

vertexBufferDesc.CPUAccessFlags = 0;

vertexBufferDesc.MiscFlags = 0;

vertexBufferDesc.StructureByteStride = 0;

//Pass parameter object to method

Direct3D11device->CreateBuffer(&vertexBufferDesc,....);

D3D11_USAGE_DEFAULT

//reflects whether a resource is accessible by the CPU and/or the graphics processing unit (GPU).

typedef enum D3D11_USAGE {

 D3D11_USAGE_DEFAULT = 0,

 D3D11_USAGE_IMMUTABLE = 1,

 D3D11_USAGE_DYNAMIC = 2,

 D3D11_USAGE_STAGING = 3

} D3D11_USAGE;

Refactorings (Fowler 1999)

30

Refactoring's Fowler (199)

Making Conditional Expressions Easier

• Application logic can be complex and difficult to get right

• Logic is central and changes often

• In OO conditional behavior is handled by polymorphism

• Logic is encapsulated in objects

• Less complex conditional statements and more flexibility

• Logic is decentralized across different classes: Runtime vs. Static

Problems of Refactoring

• Taken to far:

• Risk of over-engineering, “desperately” searching for refactoring opportunities

• Don’t refactor if there are not any running tests

• Databases are difficult to refactor

• Refactoring changes API

• Choose appropriate migration strategy

• Keep old interface, but flag as deprecated

Refactoring Reading Material

• http://sourcemaking.com/refactoring

http://sourcemaking.com/refactoring
http://sourcemaking.com/refactoring

