
University of Zurich
Department of Informatics software evolution & architecture lab

Emanuel Giger

Code Clones
SW Maintenance and Evolution

Code Clones are similar segments
of source code found in different
places of a system

Two Fundamental
Questions?

How do we define similar? When do we
consider code segments to be similar?

How do we detect similar source code
segments?

Two Fundamental
Questions?

Both problems are surprisingly difficult

Find all clones but avoid false positives

Fast and efficient : Software systems
are potentially large

1. Exact Copies

2. Parameterized Copies

3. Extended Copies

while (unsorted){
 unsorted = false;
 for (int i=0; i < x.length-1; i++)
 if (x[i] > x[i+1]) {
 temp = x[i];
 x[i] = x[i+1];
 x[i+1] = temp;
 unsorted = true;
 }
 }

while (unsorted){
 unsorted = false;
 for (int i=0; i < x.length-1; i++)
 if (x[i] > x[i+1]) {

 try{
 temp = x[i];

 x[i] = x[i+1];
 x[i+1] = temp;

 }
 catch(IndexException){
 ErrorLogger.(“...”);
 return false;
 }

unsorted = true;
 }
 }

Code Clones Types
Cloned code segments segments can be

found in different files, in the same files but
in different methods, or in the same method

Segments must contain some kind of logic
or structure that can be abstracted

....
computeVectorCrossProduct(v1, v2);
....

....
computeVectorCrossProduct(v2, v3);
....

....
setIP(“182.89.34.21”);
....

....
setIP(“182.89.34.21”);
....

Code Clones Types
Cloned code segments segments can be

found in different files, in the same files but
in different methods, or in the same method

Segments must contain some kind of logic
or structure that can be abstracted

....
computeVectorCrossProduct(v1, v2);
....

....
computeVectorCrossProduct(v2, v3);
....

....
setIP(“182.89.34.21”);
....

....
setIP(“182.89.34.21”);
....

Most likely not a clone

Code Clones Types
Cloned code segments segments can be

found in different files, in the same files but
in different methods, or in the same method

Segments must contain some kind of logic
or structure that can be abstracted

....
computeVectorCrossProduct(v1, v2);
....

....
computeVectorCrossProduct(v2, v3);
....

....
setIP(“182.89.34.21”);
....

....
setIP(“182.89.34.21”);
....

Most likely not a clone Potential clone

Copied artifacts range from expressions,
to functions, to data structures, and to
entire subsystems.

Why Code Clones?

• Ctrl&C and Ctrl&V: Simple and fast way of code
reuse, “templating”

• No time to factor out useful code
• Unexperienced developers
• Technological constraints: Frameworks,

programming language (e.g., no polymorphism)
• Architectural constraints
• ...

Bad Clones Bad Clones

• Code bloat

• Doubles, triples, quadruples, ... the effort
maintenance: Code reading and modification

• Copied defects

• Risk of inconsistent changes or “forgotten” clone
segments

• Increases testing efforts when clones are scattered
throughout different files/methods

Simply, it is a question regarding
the aesthetic of code

•8 to 12% in normal
industrial code

•gcc: 8.7%, LOC 460k

•Database Server: 36.4%,
LOC 245k

•X Windows: 19%

•Payroll Software: 59.3%

•Mostly small clones < 25
LOC

How much Code
Clones are out
there?

Active Research
Topic

Code Clone Detection

Consequences of
clones to maintenance

Tool support

Visualization of Code
Clones

Characteristics of Code
Clones

“Cloning Considered Harmful” Considered Harmful

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)

David R. Cheriton School of Computer Science, University of Waterloo
{cjkapser, migod}@uwaterloo.ca

Abstract

Current literature on the topic of duplicated (cloned)
code in software systems often considers duplication
harmful to the system quality and the reasons commonly
cited for duplicating code often have a negative
connotation. While these positions are sometimes
correct, during our case studies we have found that this is
not universally true, and we have found several situations
where code duplication seems to be a reasonable or
even beneficial design option. For example, a method of
introducing experimental changes to core subsystems is to
duplicate the subsystem and introduce changes there in a
kind of sandbox testbed. As features mature and become
stable within the experimental subsystem, they can then
be introduced gradually into the stable code base. In this
way risk of introducing instabilities in the stable version is
minimized. This paper describes several patterns of cloning
that we have encountered in our case studies and discusses
the advantages and disadvantages associated with using
them.

1. Introduction

It is believed that most large software systems contain
a non-trivial amount of redundant code. Often referred to
as code clones, these segments of code typically involve
10–15% of the source code [24, 25]. Code clones can
arise through a number of different activities. For example,
intentional clones may be introduced through direct “copy-
and-pasting” of code. Unintentional clones on the other
hand may be the manifestation of programming idioms
related to the language or libraries the developers are using.

In much of the literature on the topic [2, 7, 12, 21, 22,
27, 28], cloning is considered harmful to the quality of the
source code. Code clones can cause additional maintenance
effort. Changes to one segment of code may need to
be propagated to several others, incurring unnecessary
maintenance costs [15]. Locating and maintaining these

clones pose additional problems if they do not evolve
synchronously. With this in mind, methods for automatic
refactoring have been suggested [4, 7], and tools specifically
to aid developers in the manual refactoring of clones have
also been developed [19].

There is no doubt that code cloning is often an indication
of sloppy design and in such cases should be considered to
be a kind of development “bad smell”. However, we have
found that there are many instances where this is simply not
the case. For example, cloning may be used to introduce
experimental optimizations to core subsystems without
negatively effecting the stability of the main code. Thus,
a variety of concerns such as stability, code ownership, and
design clarity need to be considered before any refactoring
is attempted; a manager should try to understand the reason
behind the duplication before deciding what action (if any)
to take. 1

This paper introduces eight cloning patterns that we have
uncovered during case studies on large software systems,
some of which we reported in [23, 24, 25]. These
patterns present both good and bad motivations for cloning,
and we discuss both the advantages and disadvantages of
these patterns of cloning in terms of development and
maintenance. In some cases, we identify patterns of cloning
that we believe are beneficial to the quality of the system.
From our observations we have found that refactoring may
not be the best solution in all patterns of cloning. Tools
need to be developed to aid the synchronous maintenance
of clones within a software system, such as Linked Editing
presented by Toomim et al. [29].

This paper introduces the notion of categorizing high
level patterns of cloning in a similar fashion to the
cataloging of design patterns [14] or anti-patterns [8].
There are several benefits that can be gained from
this characterization of cloning. First, it provides a
flexible framework on top of which we can document
our knowledge about how and why cloning occurs in

1A simple (but trivial) example is the title of this paper. Although there
is a kind of duplication in the wording, no ”refactoring” of the title would
carry the same connotations as the original statement.

Assessing the effect of clones on changeability

Angela Lozano, Michel Wermelinger
Computing Department and Centre for Research in Computing

The Open University, UK

Abstract

To prioritize software maintenance activities, it

is important to identify which programming flaws
impact most on an application's evolution. Recent
empirical studies on such a flaw, code clones, have
focused on one of the arguments to consider clones
harmful, namely, that related clones are not
updated consistently. We believe that a wider notion
is needed to assess the effect of cloning on
evolution. This paper compares measures of the
maintenance effort on methods with clones against
those without. Statistical and graphical analysis
suggests that having a clone may increase the
maintenance effort of changing a method. The effort
seems to increase depending on the percentage of
the system affected whenever the methods that share
the clone are modified. We also found that some
methods seem to increase significantly their
maintenance effort when a clone was present.
However, the characteristics analyzed in these
methods did not reveal any systematic relation
between cloning and such maintenance effort
increase.

1. Introduction

A clone is a source code fragment whose structure
is identical or very similar to the structure of another
code fragment. Cloned code is a consequence of a
frequent programming practice: copying a piece of
functionality and pasting it in another context where it
is adapted. A clone family (also called clone group or
clone class) is a maximal set of source code fragments
that are similar among themselves. There are many
reasons to believe that clones are harmful for software
maintenance, among others:
1. unawareness of clone families leads to incomplete

updates that generate bugs [1];
2. clones increase the size of code, making it more

complex and difficult to understand [1];
3. clones cause faulty behavior due to the lack of

awareness of the different pre- and post-conditions
of the source and target contexts of the copied
code [2];

4. clones may indicate lack of inheritance or missing
abstractions [1], which affects the flexibility of the
design.

Most of the previous work [3-8] just tackles the issue
of incomplete updates. These empirical experiments
have shown that changes are propagated to the clone
family in less than half of the cases [3, 4, 8], and that in
some cases the lack of consistent changes indeed leads
to bugs [6]. Nevertheless, these findings are not
enough to grasp the extent of the harmfulness of clones
w.r.t. maintainability. In this paper, we aim to account
for the effect of clones as a whole by focusing on how
clones affect the maintenance effort of the methods
they belong to. Sanders and Curran [9] have defined
changeability as the set of "attributes of software that
bear on the effort needed for modification, fault
removal or for environmental change". Our aim is
hence to find whether the existence of clones is a
changeability attribute of methods. Finding supporting
evidence for this would allow us to conclude that, in
general, eliminating clones is a good maintenance
investment.

This paper presents four contributions. First, it
introduces three measures to assess, in a holistic way,
the effect of cloning on a method’s maintenance effort.
Second, it presents a new approach to perform origin
analysis. Third, it presents a methodology to analyze
the effect of a programming flaw in a method on its
changeability. Fourth, it shows that when methods
have clones the change effort may increase, and that
although that increase is not present in half of the
cases, when it happens the effort increases
significantly. The rest of the paper is organized as
follows. Section 2 describes the hypothesis and the
empirical data required to test it. Sections 3, 4 and 5
explain the experiment, its results, and its threats to
validity. Section 6 compares this experiment with the
related work, and the final section presents concluding
remarks and points to future work.

2. Experiment

The harmful effect of clones on changeability could

go beyond incomplete and inappropriate changes. In

978-1-4244-2614-0/08/$25.00 2008 IEEE ICSM 2008227

Do Code Clones Matter?

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, Stefan Wagner
Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany
{juergens,deissenb,hummelb,wagnerst}@in.tum.de

Abstract

Code cloning is not only assumed to inflate mainte-
nance costs but also considered defect-prone as inconsistent
changes to code duplicates can lead to unexpected behavior.
Consequently, the identification of duplicated code, clone
detection, has been a very active area of research in recent
years. Up to now, however, no substantial investigation of
the consequences of code cloning on program correctness
has been carried out. To remedy this shortcoming, this pa-
per presents the results of a large-scale case study that was
undertaken to find out if inconsistent changes to cloned code
can indicate faults. For the analyzed commercial and open
source systems we not only found that inconsistent changes
to clones are very frequent but also identified a significant
number of faults induced by such changes. The clone de-
tection tool used in the case study implements a novel algo-
rithm for the detection of inconsistent clones. It is available
as open source to enable other researchers to use it as basis
for further investigations.

1. Clones & correctness

Research in software maintenance has shown that
many programs contain a significant amount of duplicated
(cloned) code. Such cloned code is considered harmful for
two reasons: (1) multiple, possibly unnecessary, duplicates
of code increase maintenance costs and, (2) inconsistent
changes to cloned code can create faults and, hence, lead
to incorrect program behavior [20, 29]. While clone detec-
tion has been a very active area of research in recent years,
up to now, there is no thorough understanding of the degree
of harmfulness of code cloning. In fact, some researchers
even started to doubt the harmfulness of cloning at all [17].

To shed light on the situation, we investigated the ef-
fects of code cloning on program correctness. It is impor-
tant to understand, that clones do not directly cause faults
but inconsistent changes to clones can lead to unexpected
program behavior. A particularly dangerous type of change
to cloned code is the inconsistent bug fix. If a fault was

found in cloned code but not fixed in all clone instances,
the system is likely to still exhibit the incorrect behavior.
To illustrate this, Fig. 1 shows an example, where a missing
null-check was retrofitted in only one clone instance.

This paper presents the results of a large-scale case study
that was undertaken to find out (1) if clones are changed in-
consistently, (2) if these inconsistencies are introduced in-
tentionally and, (3) if unintentional inconsistencies can rep-
resent faults. In this case study we analyzed three commer-
cial systems written in C#, one written in Cobol and one
open-source system written in Java. To conduct the study
we developed a novel detection algorithm that enables us
to detect inconsistent clones. We manually inspected about
900 clone groups to handle the inevitable false positives and
discussed each of the over 700 inconsistent clone groups
with the developers of the respective systems to determine
if the inconsistencies are intentional and if they represent
faults. Altogether, around 1800 individual clone group as-
sessments were manually performed in the course of the
case study. The study lead to the identification of 107 faults
that have been confirmed by the systems’ developers.

Research Problem Although most previous work agrees
that code cloning poses a problem for software mainte-
nance, “there is little information available concerning the
impacts of code clones on software quality” [29]. As the
consequences of code cloning on program correctness, in
particular, are not fully understood today, it remains unclear
how harmful code clones really are. We consider the ab-
sence of a thorough understanding of code cloning precari-
ous for software engineering research, education and prac-
tice.

Contribution The contribution of this paper is twofold.
First, we extend the existing empirical knowledge by a case
study that demonstrates that clones get changed inconsis-
tently and that such changes can represent faults. Second,
we present a novel suffix-tree based algorithm for the detec-
tion of inconsistent clones. In contrast to other algorithms
for the detection of inconsistent clones, our tool suite is
made available for other researchers as open source.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 2009 IEEE 485

Clones considered harmful? - Studies are
inconclusive

Not universally bad, some
times clones makes sense,
e.g, sandbox testbed

Empirical evidence of
inconsistent changes that
lead to faults

Some Indications, but no
systematic relation
between code clones and
maintenance effort

Code Clone Detection

Non-trivial Problem: No a priori knowledge about
which code was cloned, its amount, its granularity

How to find all cloned segments among all possible
pairs of segments: Avoid computational complexity

Define an appropriate similarity measure: Some
clones are similar, but not identical - abstract from
those differences

Code Clone Detection

Source Code Transformed Code Duplication Data

Transformation Comparison

Code Clone Detection

Author Level Transformed Code Comparison
Technique

Johnsen, 1994 Lexical Substrings String-Matching

Ducasse, 1999 Lexical Normalized Strings String-Matching

Baker, 1997 Syntactical Token Strings String-Matching

Mayrand, 1996 Syntactical Metric Tuples Discrete comparison

Kontogiannis, 1997 Syntactical Metric Tuples Euclidean distance

Baxter, 1998 Syntactical AST-Representation Tree-Matching

Token Based Clone
Detection

Code is tokenized by set of
of lexical rules (Lexical
Analysis)

Token Based Clone
Detection

Code is tokenized by set of
of lexical rules (Lexical
Analysis)

Token sequence is
transformed/normalized by
a set of rules

Rules Exmaples:

C++ Rules:

Remove namespace: std::vector to vector

Remove template parameters: vector<int> to
vector

Java Rules:

Remove modifiers: protected void foo() to
foo()

Token Based Clone
Detection

Code is tokenized by set of
of lexical rules (Lexical
Analysis)

Token sequence is
transformed/normalized by
a set of rules

Token Based Clone
Detection

Code is tokenized by set of
of lexical rules (Lexical
Analysis)

Token sequence is
transformed/normalized by
a set of rules

Identifiers of variables,
types, methods, and
constants are replaced with
a special token

Code segments with different variable names become clone pairs

Token Based Clone
Detection

Code is tokenized by set of
of lexical rules (Lexical
Analysis)

Token sequence is
transformed/normalized by
a set of rules

Identifiers of variables,
types, methods, and
constants are replaced with
a special token

Code segments with different variable names become clone pairs

Detection based on the
tokenized source code

Token Based Clone
Detection

Token Based Clone
Detection

Token Based Clone
Detection

Token Based Clone
Detection

Metrics Based Clone
Detection Mayrand’96

• Basic idea: For a given code segment a metrics
profile is calculated

• Basic assumption: Similar code segments have
similar metrics profiles

• Granularity: Method/Function level
• Approach makes sense: Most segments are

copied & pasted (and slightly modified)
• But they keep their basic properties

Metrics Based Clone
Detection Mayrand’96

• 4 Points of comparison:
• Name
• Layout
• Expressions
• Control flow

• Each point is a set of numerical metrics
describing certain aspects of a method/function

1. Point of comparison:
Name

“If two functions have the same name
they are likely clones.”

Relative number of common characters

2. Point of comparison:
Layout

Layout is defined as: “the visual
organization of the source code”

Count the number of comments,
number of non-blank lines, average
length of variable names, ...

3. Point of comparison:
Expressions

“the number of expressions in a
function, their nature and their
complexity are considered”

Count calls to other methods, number
of declaration statements, number of
executable statements, conditional
complexity

4. Point of comparison:
Control Flow

“the control flow characteristics of a
method”

Number of unique paths, number of
loops, nesting level, number of exits,
number of conditional decisions, ...

Predefined Code Clone Classes

Software systems in practice
are large thousands of files

Cloned code exists in different
files, different methods of the

same files

How can we presents the
results of clone detection?

Quick and efficient overview
where similarities in source

code occur

Clone Visualization

Dot Plot Visualization

Adopt idea for DNA Analysis: Compare
protein and DNA sequences

Dot plot is an established technique to
compare sequences

(not to be confused with dot plots from
statistics)

T

G

A

G

G

C

T

A

A T C G G C A T

T

G

A

G

G

C

T

A

A T C G G C A T

T

G

A

G

G

C

T

A

A T C G G C A T

T

G

A

G

G

C

T

A

A T C G G C A T

T

G

A

G

G

C

T

A

A T C G G C A T

T

G

A

G

G

C

T

A

A T C G G C A T

T

G

A

G

G
C

T

A

A T C G G C A T

(No sequence length restrictions)

G
G
C
T
A
C
G
G
C
T
A

A T C G G C A T C G G

(Clone sequence length > 2)

Dot Plot Visualization

• Code (according to granularity) is put on vertical / horizontal axis

• A match between two elements is a dot in the matrix

• Easy visual identification of insertion, deletions, repeats, variations

Exact Copies Copies with Inserts/Deletes Repetitive

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x y dc ea x b c x d e x f xg ha

Variations Code Elements
Image by Uni of Berne [Rieger & Ducasse 1999]

Example: Copied Code
Sequences

• File A contains two copies of a
code segment

• File B also contains two copies
of that segment

• Extract Method to refactor
clone?

• Examples are made using
Duploc from an industrial case
study (1 Mio. LOC C++ System)

• Duploc @ Uni Berne [Rieger &
Ducasse 1999]

Example: Cloned Class

One Class is an edited
copy of another class

Subclassing to refactor
clones?

File A File B

Dot Plots

+ Good overall impression
+ Easy to spot patterns
- Pairwise comparison
- Scalability?

Conclusion

• Code Clones exist and can be problematic during
maintenance (inconclusive results from research!)

• Solution: Periodic clone assessment of a software,
e.g., major releases,

• Detection of clones is nontrivial

• Efficient visualization of code clones is needed for real
world system

• There is tool support

