
Reengineering I Slides are based on the reengineering lecture

Legacy Software System

• Long running, existing business software is called legacy software

• Often business critical

• In most cases it runs and works properly

• Huge amount of money and time has been invested

• A lot of experience with such an existing system

• After all: Never ever changes a running system

Lehman’s Laws

• We must add new features to existing systems

• What shall we do with our legacy system?

• Re-Implement and replace it with the new features?

• Extend the existing legacy software with new features?

• The problem: In practice new features are often added in ad hoc manner

• Copy-Past Programming, if-branches, adding dependencies, ...

• No tests, no documentation updates, ...

The Result

• System becomes one large inter-
wired monolith

• Try to change only one of these
dependencies!

• How sure can you be not to
break anything else?

• Those sloppy, non structured ad-
hoc changes are what drives
Lehman’s Laws in practice

Vicious Circle The more complex a system is the more tempting are ad-hoc
changes

Ad-hoc Changes

• The seem to be less costly and faster to implement at first

• Do a quick hack - it’s only a matter of hours

• They even do their job (for some time)

• This is not a sustainable point of view

• Ad-hoc changes do not follow the original architecture

• It a short-term mindset, but any legacy system runs over a long time

• Ad-hoc changes are like taking a loan or credit

• There is going to be pay back - with huge interests rates

(Mid- to Long-Term) Consequences 1

• Changing one module leads to a rat-tail of changes in other modules: Even small
changes take too much time and are complex

• More defects

• Bad time to market performance (changes take longer to implement)

• Evolution of the system controls us: The only way to implement changes are ad-
hoc changes

• We spend most of the resources dealing with problems that were caused by prior
ad-hoc modifications: Once a single defect is fixed, new ones pop up

• At some point: We are hardly implementing any new features

(Mid- to Long-Term) Consequences 2

• Documentation is out of synch with real system

• No tests (there are no well defined interfaces anymore to be tested)

• Due to all the (circular) dependencies, building the system is difficult and results
in long compilation times.

• The original, clean design and the architecture of the system are long gone

• Only the most senior developers know the system (and how and where to
change it)

• We have no choice but to implement new requirements by ad-hoc changes

In the long run we are all
dead! John Maynard Keynes

Reengineering can help

• ... when the evolution of a system gets out of control

• ... to break the vicious circle of increasing complexity and ad-hoc changes

• Reengineering is concerned with restructuring a system [Demeyer et al.]

• Prepare a software system for future development and new requirements without
the use of ad-hoc changes

“Reengineering is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent

implementation of the new form.”
[Demeyer et al.]

Object-Oriented Reegineering Patterns by
S. Demeyer, S. Ducasse, and O. Nierstrasz
free copy @ http://scg.unibe.ch/download/oorp/

Refactoring: Improving the Design of existing Code by
Martin Fowler
Addision-Wesley Professional , 1999

Reengineering Workflow

Reengineering Workflow

Reengineering Workflow

Reengineering Workflow

Code

Reengineering Workflow

Design

Code

Reengineering Workflow

Design

Code

Reverse Engineering

Reengineering Workflow

Design

Code

Reverse Engineering Reengineering

Reengineering Workflow

Design

Code

Reverse Engineering Reengineering

New Requirements
Reengineering Workflow

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Reverse- and Reengineering
are step wise procedures Demeyer et al.

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Reverse- and Reengineering
are step wise procedures Demeyer et al.

It is a structured, well documented,
reproducible process

1.5. A MAP OF REENGINEERING PATTERNS 15

Figure 1.2: The format of a typical reengineering pattern

Reengineering
Pattern Catalogue

• Description how to solve a
problem (in the reengineering
context)

• Capture best practices how to
solve the problem

• Not necessarily “new”, but
formalization of existing
knowledge

• Use of a common vocabulary

• Relation between patterns

Reverse Engineering Recap

• The goal of reverse engineering is understanding how an existing system “works”

• identify (important parts) of the system

• understand dependencies

• building an abstract model of the system

• We need to understand the system because we can not reengineer and
transform what we do not understand

• Transforming without a solid understanding would be ad-hoc development

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Setting Direction (Ch. 2) Don’t set the stakes too high

Setting Direction (Chapter 2)

• It is about getting a focused mindset before embarking the actual reengineering
journey

• Reengineering is a holistic approach with (too) many dimensions

1001
problems

1001
options

1001
opinions

1001 ways
to do it
right

1001 ways
to do it
wrong

1001
starting
points

1001
problems

1001
options

1001
opinions

1001 ways
to do it
right

1001 ways
to do it
wrong

1001
starting
points

It is easy to get lost
before you actually start

Setting Direction (Chapter 2)

• It is about getting a focused mindset before embarking the actual reengineering
journey

• Reengineering is a holistic approach with (too) many dimensions

• Decide where you start, what to do, how to do it

• Once the decision is made, stick to that plan

A Few Patterns

• Most valuable first

• Some problems are critical, other problems are minor issues

• Find out what is important for the customers

• Can be difficult (Usage statistics, log files, business models)

• Keep it simple

• Don’t fix it if it ain’t broken

• The patterns are rather general and apply to other kind of projects too

Visualizing and Understanding Players’ Behavior in Video Games:
Discovering Patterns and Supporting Aggregation and
Comparison
by Dinara Moura et al. @ Game Track, SIGGRAPH’11, Vancouver

Data Analytics for Game
Development by Hullet et al.
@ NIER-Track, ICSE’11

• 53 of 133 vehicles used in <
0.25% of races

• 7 of 16 event types were used in
< 0.1% of races

• 2 of 4 game modes were used in
< 2% of races

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

First Contact (Ch. 3) Get a quick overview of the situation

First Contact (Chapter 3)

• Get a first quick overview of the current state of the system

• Conduct a first assessment of the feasibility of the reengineering project

• Grasp the main issues, identify risks, and opportunities

• First contact is critical because it can trigger some initial decisions

• Time critical

A Few Patterns

• Chat with the maintainers

• Skim the documentation

Asses the quality and update-status of the
documentation (if available)

If the system is large narrow down the
documentation you red

Read only the documents related to those
parts that are in the focus of the

reenginnering efforts

An assessment of the usefulness of
documents in the focus and context of the
reengineering project

A Few Patterns

• Chat with the developers/maintainers

• Skim the documentation

• Read the code in one hour

• A brief assessment of the source code in an intensive review

• Focus on unit tests, write down question you intend to answer

• Identify high level modules, e.g., UI, network layers, etc.

• If possible play with a running version of the system

Interview During the Demo

• Let users show you the functionality of a system

• It will give you some usage scenarios

• The main features of the system:

• Which features are important?

• Which features are less important?

• What do user like/dislike about the system?

• Consider different stakeholders for an demo-interview

Chat with the Maintainers

• Which modules contain most of the defects?

• Which modules are changed often?

• How long does it take for a newcomer to understand the system?

• Which was the easiest/most difficult defect to fix?

• Why was it easy/difficult?

• How are priorities given? (Find out if there is a structured development process)

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Initial Understanding
(Ch. 4)

Get a deeper understanding

Initial Understanding
(Chapter 4)

• Refine the ideas from the first
contact into a deeper, initial
understanding

• Layout the foundation for the
rest of the project

• Large reengineering projects
take time, therefore, document,
in particular, initial decisions and
their rationals

• This most likely is an iterative
process

4.1. ANALYZE THE PERSISTENT DATA 89

Person

id: char(5)

name: char(40)

address: char(60)

Inheritance Hierarchy
Tables with foreign key relationships

Tables with common column definitions Large table with many optional columns

(a)

(b)
(c)

Patient

id: char(5)

insuranceID: char(7)

insurance: char(5)

Salesman

id: char(5)

company: char(40)

Patient

id: char(5)

name: char(40)

address: char(60)

insuranceID: char(7)

insurance: char(5)

Salesman

id: char(5)

name: char(40)

address: char(60)

company: char(40)

Person

id: char(5)

kind: integer

name: char(40)

address: char(60)

insuranceID: char(7) <<optional>>

insurance: char(5) <<optional>>

company: char(40) <<optional>>

Person

id: ObjectID

name: String

address: String

Patient

insuranceID: String

insurance: String

Salesman

company: String

Figure 4.2: Mapping a series of relational tables onto an inheritance hier-
archy. (a) one to one; (b) rolled down; (c) rolled up

Patterns

• Analyze the persistent data

• Data is the most precious asset

• Look at database scheme and try
mapping it to code entities

• Foreign-Keys -> Class associations

• Table -> Class

• Columns -> Attributes

• Class model should not be data driven

Patterns

• Speculate about the design

• Progressively recover design from code
code

• Draw plausible diagrams

• Speculate about business objects:

• How is the domain represented as
classes?

• Speculate about patterns:

• Look for Design Patterns

4.2. SPECULATE ABOUT DESIGN 101

(a) Initial hypothesis where the open questions are inserted as Notes

(b) Refined hypothesis after verification against the source code; the modifications
are shown as Notes

Figure 4.4: Refining the hypotheses concerning the Euro representation.
(a) subclasses for the different currencies; (b) flyweight approach for the
currencies

Patterns

• What does it mean if we find an
Observer Pattern?

• Maybe there is a kind of Publish-
Subscriber design

• What does the occurrence of a
Concurrency Pattern mean?

• ...

4.2. SPECULATE ABOUT DESIGN 101

(a) Initial hypothesis where the open questions are inserted as Notes

(b) Refined hypothesis after verification against the source code; the modifications
are shown as Notes

Figure 4.4: Refining the hypotheses concerning the Euro representation.
(a) subclasses for the different currencies; (b) flyweight approach for the
currencies

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Detailed Model Capture
(Ch. 5)

Understand the code, statically and dynamically

Detailed Model Capture (Chapter 5)

• The important, most valuable parts are identified, and we have a decent
understanding of those parts

• Build a deep and detailed understanding on fine-grained code level

• Expose design artifacts hidden in the code

• More technical than the previous steps

• Dynamic vs. static structure

Step Through
Execution

• Static Structure

• Polymorphism: Which concrete object are
instantiated at runtime?

• When are they instantiated?

• Code reveals the dependencies of a system, but
not a the actual collaboration

• Which sequence of events do occur at runtime?
What is the actual flow of execution?

• Debug typical scenarios and enhance the
current understanding of the code with
this knowledge of the runtime behavior

• What is an appropriate scenario for debugging?

Learn from the Past 1

• Legacy system evolved over a long time through many iterations and changes

• The current design of a system the result of a continuous process triggered by a
multitude of external and internal factors

• Development history is an extremely valuable source for information

• Compare subsequents revisions of the code

• Problem: 1000 source files in the current version; each file

has on avg. 20 revisions: Does not scale for large projects

Learn from the Past 2

• Focus on those parts that change the most often: Sign of potential unstable design

• Try to understand why those parts change so that often

• Unstable design offer great opportunities for reengineering

• Stable parts should not be the primary focus (especially if time is scarce)

• Use appropriate tools to identify the unstable parts

• Entire lecture will be dedicated to software visualization

• Lecture on empirical software engineering

Refactor to Understand 1

• Cryptic code is hard to grasp and understand

• Such code hardly reflects its purpose

• meaninglessly or confusingly named attributes, method names, or parameters

public class Student {

! private String myString;

! public Student(String theString) {
! myString = theString;

! // ...
! }

 }

const int TWENTY_EIGHT = 28;

const long ZHANYIZHOUQI = 1000; //1000
 const long ZHANYIZHOUQI_WITH_NOZZLE_CHANGES = 100; //
 const int ENDING_SLOT_NUMBER_OF_FRONT_SIDE = 38;
 const int NOT_SHIELD = 0;
 const double PANZIGAILUU = 0.1;

 /* important global variables */
 unsigned int x;
 unsigned int xx;
 unsigned int y;
 unsigned int yy;

http://c2.com/cgi/wiki?BadVariableNames

http://c2.com/cgi/wiki?BadVariableNames
http://c2.com/cgi/wiki?BadVariableNames

Magic Numbers Plain Numbers in Code

public	
 class	
 Foo	
 {
	
 	
 	
 	
 	
 public	
 void	
 setPassword(String	
 password)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 don't	
 do	
 this
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (password.length()	
 >	
 7)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 throw	
 new	
 InvalidArgumentException("password");
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 }

public	
 class	
 Foo	
 {
	
 	
 	
 	
 	
 public	
 static	
 final	
 int	
 MAX_PASSWORD_SIZE	
 =	
 7;

	
 	
 	
 	
 	
 public	
 void	
 setPassword(String	
 password)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (password.length()	
 >	
 MAX_PASSWORD_SIZE)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 throw	
 new	
 InvalidArgumentException("password");
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

}

Check Style http://checkstyle.sourceforge.net/availablechecks.html

http://checkstyle.sourceforge.net/availablechecks.html
http://checkstyle.sourceforge.net/availablechecks.html

Refactor to Understand 1

• Cryptic code is hard to grasp and understand

• Such code hardly reflects its own purpose

• meaninglessly or confusingly named attributes, method names, or parameters

• The order of the statements may not matter for the execution, but they may matter when reading the
code. For instance, handle default control flow in the if-part

• Refactor the code making it reflect its purpose

• Primary goal is to understand, not to reengineer (“refactoring experiments”)

• Refactoring means changing code: Unit tests are essential!

Refactor to Understand 2

• Refactoring does not change the functionality of a system

• Transforming the system into a better shape with respect to Software
Engineering principles.

• In contrast: After reengineering that system can have new features

Look for Contracts

• What does a class expect of its clients?

• A.k.a. How do I use an API?

• Proper sequence of method calls

• How do I instantiate a certain object of a class?

• Documentation is out of synch

• Look for certain, similar code block related to an API

• Reason about contracts, document contracts, run unit tests

At this point we have enlightened ourselves with a detailed
understanding of the system and the crucial parts to be

reengineered

We are now ready to
reengineer

Document everything and record all the knowledge of the
reverse engineering phase (and continue doing so!)

Lecture Outlook

• Reengineering

• Software Analysis Visualization

• Modeling the history of a project

• Empirical SWE

