)
N
.
-
O
D
(@)
-
-
)
)
c
(@)
-
O]
)
| -
O]
i
e

Slides are based on

INneering |

Reeng

Legacy Software System

* Long running, existing business software is called /egacy software
e Often business critical

* |[n most cases it runs and works properly

* Huge amount of money and time has been invested

* A lot of experience with such an existing system

» After all: Never ever changes a running system

L ehman’s Laws

* \WWe must add new features to existing systems

* \What shall we do with our legacy system?

* Re-Implement and replace it with the new features?

* Extend the existing legacy software with new features”?

* The problem: In practice new features are often added in ad hoc manner
e Copy-Past Programming, if-branches, adding dependencies, ...

* No tests, no documentation updates, ...

The Result

e System becomes one large inter-
wired monolith

* [ry to change only one of these
dependencies!

 How sure can you be not to
break anything else?

* Those sloppy, non structured ad-
hoc changes are what drives
Lehman’s Laws in practice

1IC| l Th I tem is th tempti d-h
VI C I O u S CI rC | e Chsnrgé);e complex a system is the more tempting are ad-hoc

Ad-hoc Changes

e [The seem to be less costly and faster to implement at first

Do a quick hack - it's only a matter of hours

* They even do their job (for some time)

e This is not a sustainable point of view

» Ad-hoc changes do not follow the original architecture

[t a short-term mindset, but any legacy system runs over a long time
e Ad-hoc changes are like taking a /oan or credit

e There is going to be pay back - with huge interests rates

(Mid- to Long-Term) Consequences 1

Changing one module leads to a rat-tail of changes in other modules: Even small
changes take too much time and are complex

More defects

Bad time to market performance (changes take longer to implement)

Evolution of the system controls us: The only way to implement changes are ad-
hoc changes

We spend most of the resources dealing with problems that were caused by prior
ad-hoc modifications: Once a single defect is fixed, new ones pop up

* At some point: We are hardly implementing any new features

(Mid- to Long-Term) Conseguences 2

* Documentation is out of synch with real system

No tests (there are no well defined interfaces anymore to be tested)

Due to all the (circular) dependencies, building the system is difficult and results
In long compilation times.

The original, clean design and the architecture of the system are long gone

* Only the most senior developers know the system (and how and where to
change it)

* \We have no choice but to implement new requirements by ad-hoc changes

walting forsrep)y

.
.

Lk a

In the long run we are all PR
onn viaynar eynes
dead! R

Reengineering can help

* ... when the evolution of a system gets out of control
* ... to break the vicious circle of increasing complexity and ad-hoc changes
* Reengineering is concerned with restructuring a system [Demeyer et al.]

* Prepare a software system for future development and new requirements without
the use of ad-hoc changes

“‘Reengineering is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
Implementation of the new form.”

[Demeyer et al.]

OBJECT-ORIENTED

REENGINEERING PATTERNS Rl,, NI P
{FACTORING
44 [

Serge Demeyer Stéphane Ducasse Oscar Nierstrasz

IMPROVING THE DESIGN
OF EXISTING CODE

ADDILOMN Wi Ay

Object-Oriented Reegineering Patterns by Refactoring: Improving the Design of existing Code by
S. Demeyer, S. Ducasse, and O. Nierstrasz Martin Fowler
free copy @ http://scg.unibe.ch/download/oorp/ Addision-Wesley Professional , 1999

Reengineering Workflow

Reengineering Workflow

Reengineering Workflow

Reengineering Workflow

Reengineering Workflow

Reengineering Workflow

ﬁ%) /E\

Reengineering Workflow
REVERSE ENGINEERING

P ..,, lllllllllllllllllllllllll ny

¢ H H H = = = = = = = = = = =

\\

\\i

\\i

QoLU

\\

DESIGN
CODE

REENGINEERING
¢ H H H = = = = = = = = = = =

Reengineering Workflow
REVERSE ENGINEERING

|
o™ ™

¢ H H H = = = = = = = = = = =

NEwW REQUIREMENTS
REENGINEERING

Reengineering Workflow
REVERSE ENGINEERING

¢ H H H = = = = = = = = = = =

|
o=

¢ H H H = = = = = = = = = = =

Tests: Your Life Insurance!

Migration Strategies

Detailed Model Capture

Detecting Duplicated Code

Inifial Understanding

Redistribute Responsibilities

First Contact

Transform Conditionals fo
Setting Direction Polymorphism

Legacy Reengineered
System System

Reverse- and Reengineering

. D tal.
are step wise procedures =

IT IS A STRUCTURED, WELL DOCUMENTED,
REPRODUCIBLE PROCESS

Reverse- and Reengineering

: Demeyer et al.
are step wise procedures

Reengineering
Pattern Catalogue

e Description how to solve a
problem (in the reengineering
context)

» Capture best practices how to
solve the problem

* Not necessarily “new”, but
formalization of existing
knowledge

e Use of a common vocabulary

e Relation between patterns

If It Ain’t Broke., Don’t Fix It ‘ The name is usually an action phmse.ﬁ

Intent: Save your reengineering effort for the | The intent should capture
parts of the system that will make a difference. | the essence of the pattern

Problem The problem is phrased as a

Which parts of a legacy system should you reengineer? simple question. Sometimes the
: - context is explicitly described.
This problem is difficult because:

* Legacy software systems can be large and complex. Next we discuss the forces! D)
» Rewriting everything is expensive and risky. They tell us why the problem
Yet, solving this problem is feasible because: is difficul 1 anq‘ interesting.
L , We also pinpoint the key to
* Reengineering is always driven by some concrete goals. solving the problem.

Solution

The solution sometimes includes a N

Only fix the parts that are “broken” — that ,
recipe of steps to apply the pattern. ‘

can no longer be adapted to planned changes.

Tradeoffs) N
Each pattern entails some positive

Pros You don’t waste your time fixing | and negative tradeoffs.
things that are not only your critical path.

Cons Delaying repairs that do not seem critical may cost you more in the long run.

Difficulties 1t can be hard to determine what is “broken”. There may follow a

realistic example of

Rationale applying the pattern.

There may well be parts of the legacy system that are
ugly, but work well and do not pose any significant -
maintenance effort. If these components can be isolated We E_XP"G"H why the N

‘ , solution makes sense. ‘
and wrapped, it may never be necessary to replace them.

We list some well documented
Alan M. Davis discusses this in his book, | jnstances of the pattern.

201 Principles of Software Development .

Known Uses 7

Related Patterns Related patterns may
suggest alternative actions.

Other patterns may suggest
What Next logical followup action.

Be sure to Fix Problems, Not Symptoms.

Consider starting with the Most Valuable First.

Reverse Engineering Recap

* The goal of reverse engineering is understanding how an existing system “works”

 identify (important parts) of the system
» understand dependencies

* building an abstract model of the system

* \We need to understand the system because we can not reengineer and
transform what we do not understand

* Transforming without a solid understanding would lbe ad-hoc development

Tests: Your Life Insurance!

Migration Strategies

Detailed Model Capture

Detecting Duplicated Code

Inifial Understanding

Redistribute Responsibilities
First Contact

o L L L . Transform Conditiondls to

/' setting Direction . Polymorphism

S J
Legacy Reengineered
System System

Sethﬂg DlreCtIOﬂ (Ch 2) Don’t set the stakes too high

Setting Direction (Chapter 2)

* |t is about getting a focused mindset before embarking the actual reengineering
journey

e Reengineering is a holistic approach with (too) many dimensions

r .
~+—
n
O
~+—
O
@)
O
+—
%)
(0
O
22,
=

T
Hy
N
=
IS
5
9
O
S
3
S
D
'S,
D
Q

Setting Direction (Chapter 2)

* |t is about getting a focused mindset before embarking the actual reengineering
journey

e Reengineering is a holistic approach with (too) many dimensions
e Decide where you start, what to do, how to do it

* Once the decision is made, stick to that plan

A Few Patterns

* Most valuable first
e Some problems are critical, other problems are minor issues
* Find out what is important for the customers
e Can be difficult (Usage statistics, log files, business models)
e Keep it simple
* Dont fix it if it ain’t broken

* The patterns are rather general and apply to other kind of projects too

IRAGON

™
b] ‘.
™

ORIGINS

-
Visualizing and Understanding Players’ Behavior in Video Games:
Discovering Patterns and Supporting Aggregation and
Comparison

by Dinara Moura et al. @ Game Track, SIGGRAPH’11, Vancouver
.

\

J

Data Analytics for Game
Development by Hullet et al.
@ NIER-Track, ICSE’11

e 53 of 133 vehicles used In <
0.25% of races

e 7/ of 16 event types were used in
< 0.1% of races

e 2 of 4 game modes were used in
< 2% of races

EVERYONE

€

CONTENT RATED BY
ESRB CREATIONS

Game Experience May
ange During Online Play

Tests: Your Life Insurance!

Migration Strategies

Detailed Model Capture

Detecting Duplicated Code

Inifial Understanding

--------- ‘ Redistribute Responsibilities
|

Transform Conditionals to

Setting Direction Polymorphism

Legacy Reengineered
System System

FI rSt CO ﬂtaCt (Ch _ 8) Get a quick overview of the situation

First Contact (Chapter 3)

e Get afirst quick overview of the current state of the system

e Conduct a first assessment of the feasibility of the reengineering project
e (Grasp the main issues, identify risks, and opportunities

* First contact is critical because it can trigger some initial decisions

e Time critical

A Few Patterns

e Chat with the maintainers

e Skim the documentation

| &
ahty and update-status of the N\ | BB T
‘ documentatlon (if avaﬂable) % | ;‘ ' ; R i T

P Asses the qu
i

LeaRL i

t,; |
ra

. m . :
JEIE SIf the System is large narrow down the ==
documentation \ you red |,

the documents related to{those """"
parts that are in the focu@ of the
reenginnering efforts

R bbnly
Hf
!i

'// ! / &£ I
-4
A

MLENIPERIEIR 4 |
LTI

ML

‘ [‘ — v p L 9 »o ¥
' : 48 ; \ 8
§ . ' o -
3 o » o 4
phis : . £ . ” - ?‘. v . - -
. i /8 - B y v ¢ .
: : ’ -~ y) P ”
(. ' /i . & 4 A d '. .
£ i V4 : i N EFF 4 !
: b ’ 2 - :
y R 1 —) . n \ |
/ i TSN y - ‘AR 7 4
H ! ; X - .) ‘
2P 3 (8 . r H ’ i :
/ | i / T
' i ! v V4N 'y ’ o ! l
£E L 5 " i A o il - ¥ AN\ \ | o
it) W £ - S — . \ “ | :
! { - | ' “H =W NS ' : A
r Y S !
\ 1 : b
{ , > : .
. 4 : ! \. 3
1 \‘ ’ A -

= I |
L LU
. 1] | B |

— Il
..E'T"l_ Al o _ ”I
) e !.f%‘ J'I]

1

I

NIELL

T ?ﬂ
) ¥ i B
\ I | .

LTI L

0 st | 1 E.n I'.' ‘|l ‘ """' ‘r".\.‘.." 2 f_]q“u
T e _,"--Arr assessment of the ué.ﬁé?‘u/n?é

~documents in the focus and qmlf@ﬁ of the,
| +reengineering project e 128}

A Few Patterns

e Chat with the developers/maintainers
e Skim the documentation

e Read the code in one hour

* A brief assessment of the source code in an intensive review
* Focus on unit tests, write down question you intend to answer

 |dentify high level modules, e.g., Ul, network layers, etc.

* If possible play with a running version of the system

Interview During the Demo

* L et users show you the functionality of a system
* [t will give you some usage scenarios
* The main features of the system:

* \WWhich features are important?

* Which features are less important?

* What do user like/dislike about the system?

e Consider different stakeholders for an demo-interview

Chat with the Maintainers

* Which modules contain most of the defects?

* \Which modules are changed often?

* How long does it take for a newcomer to understand the system?
* Which was the easiest/most difficult defect to fix?

* Why was it easy/difficult?

* How are priorities given? (Find out if there is a structured development process)

Tests: Your Life Insurance!

Migration Strategies

Detailed Model Capture

------------ ~ Detecting Duplicated Code
: Initfial Understanding

Redistribute Responsibilities

First Contact

Transform Conditionals to

Setting Direction Polymorphism

Legacy Reengineered
System System

Initial Understanding
(Ch. 4)

Get a deeper understanding

Initial Understanding
(Chapter 4)

e Refine the ideas from the first
contact into a deeper, initial
understanding

e Layout the foundation for the
rest of the project

* Large reengineering projects
take time, therefore, document,
In particular, initial decisions and
their rationals

* This most likely is an iterative
Process

Patterns

* Analyze the persistent data

Data is the most precious asset

Look at database scheme and try
mapping it to code entities

Foreign-Keys -> Class associations

Table -> Class

Columns -> Attributes

Class model should not be data driven

7ables with forejgn key relationships

Person

—®id: char(5)

name: char(40)
address: char(60)

-

Patient

Salesman

~lid: char(5)
insurancelD: char(7)

id: char(5) B
company: char(40)

insurance: char(5)

(a)

(h)

Inheritance Hierarchy

Person

id: ObjectID
name: String
address: String

%

Patient

Salesman

insurancelD: String
insurance: String

company: String

()

Patterns

* Speculate about the design

* Progressively recover design from code

code
: : 1 1
 Draw plausible diagrams aClass > Money > Currency
amount: Money 4amount: float ‘e
- d currency: Currency convert??
precision? j’ prE p g
: , < |convert (Currenc
* Speculate about business objects: P— - (1 o7 |
caicuiations. ﬁ / conversion ’ Euro | aCurrency
; / support on f
: , c?;:;ers:on ;: pj Currency? supported currencies? j
* How is the domain represented as orher currency:
classes?

* Speculate about patterns:

* ook for Design Patterns

Patterns

e \What does it mean if we find an
Observer Pattern?

* Maybe there is a kind of Publish-

Subscriber design 1

aClass 1; Money N Currency

amount: Money 4amount: float aee
- d currency: Currency convert??
sion? JrE ’
* WWhat does the occurrence of a precision? ¥ Tt (Currency) - |
, / ; |
Concurrency Pattern mean? caleulations? |/ Euwo | [aCurrency
version 1 / support on ;I
conversion to
other currency?j Currency? supported currencies? j

Tests: Your Life Insurance!

Migration Strategies

I Detailed Model Cﬂp’rure:

Detecting Duplicated Code

Inifial Understanding

Redistribute Responsibilities

First Contact

Transform Conditionals to

Setting Direction Polymorphism

Legacy Reengineered
System System

Detalled Model Capture
(Ch. 5)

Understand the code, statically and dynamically

Detalled Model Capture (Chapter 5)

The important, most valuable parts are identified, and we have a decent
understanding of those parts

Build a deep and detailed understanding on fine-grained code level

Expose design artifacts hidden in the code

More technical than the previous steps

Dynamic vs. static structure

Step Through
—xecution

o Static Structure

Polymorphism: Which concrete object are
instantiated at runtime?

» When are they instantiated?

« Code reveals the dependencies of a system, but
not a the actual collaboration

» Which sequence of events do occur at runtime?
What is the actual flow of execution”?

* Debug typical scenarios and enhance the
current understanding of the code with
this knowledge of the runtime lbehavior

« What is an appropriate scenario for debugging?

Learn from the Past 1

Legacy system evolved over a long time through many iterations and changes

The current design of a system the result of a continuous process triggered by a
multitude of external and internal factors

* Development history is an extremely valuable source for information

Compare subsequents revisions of the code

Problem: 1000 source files in the current version; each file

has on avg. 20 revisions: Does not scale for large projects

Learn from the Past 2

e Focus on those parts that change the most often: Sign of potential unstable design

e Try to understand why those parts change so that often

Unstable design offer great opportunities for reengineering

Stable parts should not be the primary focus (especially if time is scarce)

Use appropriate tools to identify the unstable parts

Entire lecture will be dedicated to software visualization

* | ecture on empirical software engineering

Refactor to Understand 1

e Cryptic code is hard to grasp and understand

e Such code hardly reflects its purpose

e meaninglessly or confusingly named attributes, method names, or parameters

const long ZHANYIZHOUQI = 1000; //1000

const long ZHANYIZHOUQI WITH NOZZLE CHANGES = 100; //
const int ENDING SLOT NUMBER OF FRONT SIDE = 38;
const int NOT SHIELD = 0;

const double PANZIGAILUU = 0.1;

const int TWENTY EIGHT = 28;

public class Student {
private String myString;

public Student(String theString) {
myString = theString;

7 oo

/* important global variables */
unsigned int x;

unsigned int xx;

unsigned int y;

unsigned int yy;

http://c2.com/cai/wiki?BadVariableNames

http://c2.com/cgi/wiki?BadVariableNames
http://c2.com/cgi/wiki?BadVariableNames

public class Foo {
public void setPassword(String password) {
// don't do this
if (password.length() > 7) {
throw new InvalidArgumentException("password");

o}

public class Foo {
public static final int MAX_ PASSWORD SIZE = 7;

public void setPassword(String password) {
if (password.length() > MAX PASSWORD SIZE) {
throw new InvalidArgumentException("password");

¥

Magic Numlbers | piain Numbers in Code

M& Hierar Ju Junit| = O | [J) ObjectCheckerimpl java 2 = 0O 5% outline 2 =a

= Q= oo 97 public final void matchesAnyOf (final Iterable<Matcher<? extends T>> i1terable) { (a)m § L w
S - - . 'az R \ ° \
98 getAsserter().expectThat(subject, Matchers.anyOf(iterable)); * \sNotEqualTolT) =
b '1.9 «bs.l.innha.rm‘humldfml_” Qo } @ % 1sNotEqualTol(T) -
b 5 eclipse New ‘ o L isAninstanceOf(
o E Go Into final void doesNotMatchonAllof (final Matcher<T>... matchers) { o isNotAninstance
asserter().expectThat(subject, noneof(matchers)); :
Open in New Window @ .. isOfType(Class<
Open Type Hierarchy F4 final void doesNotMatchOnALlof(final Iterable<Matcher<? extends T>> matchers) { .:TSNM ype(Cla
Show In Shift+Alt+W » Asserter().expectThat(subject, noneOf (matchers)); @ . isTheSameinsta
. @ L isNotTheSamelr|
¥ Copy Ctrl+C .
final void hasBeanProperty(final String propertyName, final Class<?> propertyType) { @ isNull()
& Sasta —— asserter().expectThat(subject, Matchers.hasProperty(propertyName), new PropertyMatcherDe oL isNotNull)
% Delete Delete o [hasToString(Mat
final void hasBeanPropertywithValue(final String propertyName, final Class<?> propertyT) o matches(Match
Build Path » Asserter () .expectThat(subject, Matchers.hasProperty(propertyName, matcher), .
new PropertyMatcherwithvValueDescriber<T>(subject, propertyName, propertyType, match @ . matches(iterabl
Source Shift+alt+S » -
@ .. matchesAnyOf(l
Refactor Shift+Alt+T » - .
ssWarnings ({"EqualswhichDoesntCheckParameterclass*}) @ 2 matchesAnyOfil
L2 Import... :fi~ L bot e final oo . o L doesNotMatchC
3 Export... inal boolean equals(fina ject obj ' ;
ES ow new UnsupportedOperationException(*Equality on checkers 1s not supported, you probabl @ doesNotMatchC
& Refresh £S o . hasBeanPropen
¥
Opgn Project 55 visibilityModifier|IllegalToken @2 hasBeanPropert
Cloge Project - » % equals(Object)
Close Unrelated Projects] [»)] I »]
Assign Working Sets... radoc [, Declaration B Consolo]«b Checkstyle violations &2 + 4 ® ¥ °0
Run As » le violations - 0 markers in 0 categories (Filter matched 0 of 0 items)
Debug As » on type
Team ’
Compare With ’
Replace With ’
Restore from Local History... |
Checkstyle * Configure project(s) from blueprint...
PDE Togls * Activate Checkstyle

Deactivate Checkstyle

Properties Alt+Enter

C h eC k Styl e http://checkstyle.sourceforge.net/availablechecks.html

http://checkstyle.sourceforge.net/availablechecks.html
http://checkstyle.sourceforge.net/availablechecks.html

Refactor to Understand 1

e Cryptic code is hard to grasp and understand

e Such code hardly reflects its own purpose
* meaninglessly or confusingly named attributes, method names, or parameters

* The order of the statements may not matter for the execution, but they may matter when reading the
code. For instance, handle default control flow in the if-part

* Refactor the code making it reflect its purpose
* Primary goal is to understand, not to reengineer (“refactoring experiments”)

* Refactoring means changing code: Unit tests are essential!

Refactor to Understand 2

* Refactoring does not change the functionality of a system

* Transforming the system into a better shape with respect to Software
Engineering principles.

* In contrast: After reengineering that system can have new features

ook for Contracts

* \WWhat does a class expect of its clients?
* Ak.a. How do | use an API?
* Proper sequence of method calls
 How do | instantiate a certain object of a class”?
* Documentation is out of synch
* Look for certain, similar code block related to an AP

e Reason about contracts, document contracts, run unit tests

At this point we have enlightened ourselves with a « g
ing of the system and the

o /

We are now ready to
reengineer

Document everything and record all the knowledge of the
reverse engineering phase (and continue doing so!)

| ecture Outlook

* Reengineering

Software Analysis Visualization

* Modeling the history of a project

Empirical SWE

