
Software Evolution
Analysis & Visualization

 © by M. Würsch

Friday, 22. March, 13

Ball’s Dilemma

Software is intangible,
having no physical

shape or size.

Thomas Ball

Friday, 22. March, 13

How much Software
is out there?

The total volume of software is
estimated at 7’000’000’000
function points (FP)

• 1 FP ~ 128 lines of C or 107
lines of COBOL

• This means ca. 1 TLOC
(1’000’000’000’000 lines)

• Printed on paper, we can wrap
the planet 10 times!

In what shape is it?

• On average ca. 5 bugs / FP

• 35’000’000’000 bugs
(6 per Person)

© Michele Lanza, University of Lugano
Friday, 22. March, 13

The growth of operating systems over time

Friday, 22. March, 13

Welcome to Microsoft...

...and your first task is to get
familiar with our code base!

• Reverse engineer ~50 MLOC
of Windows Vista Code

• 2 sec/line avg. reading speed
= 100’000’000 sec

• / 3600 = 27’777 hours
• / 8 = 3472 days
• / 5 = 694 weeks

Roughly 14 to 15 years just to
read all the code!

Friday, 22. March, 13

Yes we can!you

Friday, 22. March, 13

By the way, you should also browse the
change logs of the last few years to
understand were we are coming from...

Friday, 22. March, 13

Software Evolution

Software Evolution is the process of
continual fixing, adaptation,

enhancement to maintain stakeholder
satisfaction.

Lehman and Ramil

Maintenance means general post-
delivery activities, whereas Evolution

refers to a particular phase in the
staged model where substantial

changes are made to the software.

Bennet and Rajlich

Evolution is what happens while you
are busy making other plans.

Godfrey

Friday, 22. March, 13

3 Types of Programs

S-Type (“Specifiable”)
do not evolve

P-Type (“Problem Solving”)
are likely to evolve

E-Type (“Embedded”)
are inherently evolutionary, due
to feedback loops

(Lehman and Belady, 1980)

Friday, 22. March, 13

14

Laws of Software Evolution

Friday, 22. March, 13

Release History
Database

http://evolizer.org

Integrates various software
repositories in one query-able
database:

• Source Code Management

• Issue Tracking

• Developer Mailinglists

Augments this data with:

• Links

• Fine grained changes

• Metrics

Friday, 22. March, 13

http://evolizer.org
http://evolizer.org

Mining Software
Repositories

Friday, 22. March, 13

Friday, 22. March, 13

Friday, 22. March, 13

Friday, 22. March, 13

Metrics

Metrics are a mapping of a particular
characteristic of a measured entity to
a numerical value.

They can be used to quantify aspects
of quality.

Measuring software is cheap and can
be automated.

Numbers are just numbers; don’t
trust them.

They capture symptoms, not causes.

Hard for developers to deal with
them.

Inflation of measurements

Friday, 22. March, 13

Yesterday I met a
system...

Q: How many lines of code?
A: 35’000 LOC
Q: How many functions/
methods?
A: 3600 NOM
Q: How many classes?
A: 380 NOC

Is it “normal” to have such a
system?

What about coupling or
cohesion?

Friday, 22. March, 13

Yesterday I met a
system...

Q: How many lines of code?
A: 35’000 LOC
Q: How many functions/
methods?
A: 3600 NOM
Q: How many classes?
A: 380 NOC

Is it “normal” to have such a
system?

What about coupling or
cohesion?

So what?

Friday, 22. March, 13

The Overview
Pyramid

A metrics-based means to both
describe and characterize the
structure of an object-oriented
system by quantifying its
complexity, coupling, and
usage of inheritance

Measuring these three aspects
at system level provides a
comprehensive characterization
of an entire system.

Friday, 22. March, 13

The Overview Pyramid in Detail - Object Oriented Metrics in Practice,
Lanza and Marinescu.

The left side: System Size & Complexity
Direct metrics: NOP, NOC, LOC, CYCLO
Derived Metrics: NOC/P, NOM/C, LOC/M, Cyclo/LOC

Friday, 22. March, 13

The Overview Pyramid in Detail - Object Oriented Metrics in Practice,
Lanza and Marinescu.

The left side: System Size & Complexity
Direct metrics: NOP, NOC, LOC, CYCLO
Derived Metrics: NOC/P, NOM/C, LOC/M, Cyclo/LOC

The right side: System Coupling
Direct metrics: CALLS, FANOUT
Derived Metrics: CALLS/M, FANOUT/CALL

Friday, 22. March, 13

The Overview Pyramid in Detail - Object Oriented Metrics in Practice,
Lanza and Marinescu.

The left side: System Size & Complexity
Direct metrics: NOP, NOC, LOC, CYCLO
Derived Metrics: NOC/P, NOM/C, LOC/M, Cyclo/LOC

The right side: System Coupling
Direct metrics: CALLS, FANOUT
Derived Metrics: CALLS/M, FANOUT/CALL

The top: System Inheritance
Direct metrics: ANDC, AHH

Friday, 22. March, 13

The Overview Pyramid in Detail - Object Oriented Metrics in Practice,
Lanza and Marinescu.

The left side: System Size & Complexity
Direct metrics: NOP, NOC, LOC, CYCLO
Derived Metrics: NOC/P, NOM/C, LOC/M, Cyclo/LOC

The right side: System Coupling
Direct metrics: CALLS, FANOUT
Derived Metrics: CALLS/M, FANOUT/CALL

The top: System Inheritance
Direct metrics: ANDC, AHH

What about re
ference points?

Friday, 22. March, 13

The Overview Pyramid in Detail - Object Oriented Metrics in Practice,
Lanza and Marinescu.

The left side: System Size & Complexity
Direct metrics: NOP, NOC, LOC, CYCLO
Derived Metrics: NOC/P, NOM/C, LOC/M, Cyclo/LOC

The right side: System Coupling
Direct metrics: CALLS, FANOUT
Derived Metrics: CALLS/M, FANOUT/CALL

The top: System Inheritance
Direct metrics: ANDC, AHH

What about re
ference points?

Friday, 22. March, 13

Identity Disharmony: God Class

Friday, 22. March, 13

Identity Disharmony: God Class

What about re
ference points?

Friday, 22. March, 13

Collaboration Disharmony: Shotgun Surgery

Friday, 22. March, 13

Collaboration Disharmony: Shotgun Surgery

Friday, 22. March, 13

What is the meaning of those numbers?

Friday, 22. March, 13

What is the meaning of those numbers?

Friday, 22. March, 13

Can you understand the beauty of a painting by measuring the size of its frame, or by
counting the number of colors the artist used, etc?

Friday, 22. March, 13

Software Visualization

The use of the crafts of typography,
graphic design, animation, and

cinematography with modern
human computer interaction and
computer graphics technology to

facilitate both the human
understanding and effective use of

computer software.

Stasko, 1998

Friday, 22. March, 13

Software Visualization

The use of the crafts of typography,
graphic design, animation, and

cinematography with modern
human computer interaction and
computer graphics technology to

facilitate both the human
understanding and effective use of

computer software.

Lanza, 2010

Friday, 22. March, 13

Few’s Gestalt Principles

1. Proximity

2. Similarity

3. Closure

4. Enclosure

5. Continuity

6. Connection

Friday, 22. March, 13

Principle of Proximity

Friday, 22. March, 13

Principle of Similarity

Friday, 22. March, 13

Principle of Closure

Friday, 22. March, 13

Principle of Enclosure

Friday, 22. March, 13

Principle of Continuity

Friday, 22. March, 13

Principle of Connection

Friday, 22. March, 13

Tufte’s 6 Information
Visualization Principles (1)

1. Tell the truth
Clear and thorough labeling, avoid
distortion

2. Show the data
Reduce unnecessary non-data
information to a bare minimum

3. Present many numbers in
small space
Use Polymetric Views, but use
them wisely

Friday, 22. March, 13

Tufte’s 6 Information
Visualization Principles (1)

4. Help the viewer think about
the information rather than
about the methodology and
the design
Remove redundant data and
unnecessary design elements

5. Encourage the eye to compare
the data
Contrast different pieces of data

6. Make large data sets coherent
Use three viewing depths: the
overall structure, detail information
and the implicit context

Friday, 22. March, 13

Traditional Approaches to
Software VisualizationAbout Nodes and Edges

Friday, 22. March, 13

Unified Modelling Language (UML)

Friday, 22. March, 13

Unified Modelling Language (UML)

Not Softw
are Visualization

Friday, 22. March, 13

Treemaps

Friday, 22. March, 13

Friday, 22. March, 13

Euclidian Cones and Hyperbolic Trees

Friday, 22. March, 13

Jun/OpenGL

Graph on the right displays the
class hierarchy of Smalltalk

Problems:

• Visual overload

• Colors are meaningless

• Navigation is difficult

Friday, 22. March, 13

Rigi

Friday, 22. March, 13

That’s how it is supposed to look like!

Friday, 22. March, 13

Rigi

Entity-Relationship Visualization

Allows grouping and
aggregation of entities

Problem: Still lacks of code
semantics

Friday, 22. March, 13

Shrimp/Creole

http://www.thechiselgroup.org
/creole

SHriMP (Simple Hierarchical
Multi-Perspective) is a domain-
independent visualization
technique.

Creole is a top-down approach
to visualize Java source code
within the Eclipse IDE.

Problem: Graph is cluttered
with irrelevant details.

Friday, 22. March, 13

http://www.thechiselgroup.org/creole
http://www.thechiselgroup.org/creole
http://www.thechiselgroup.org/creole
http://www.thechiselgroup.org/creole

Friday, 22. March, 13

*org

*eclipse

*jdt

*internal

*debug

*core

breakpoints

Package
Java class
Method call

(a) Added package
breakpoints

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

*model

*JDIDebugT.

*JDIThread

breakpoints

(b) Added callers of breakpoints

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

breakpoints

*model

*JDIThread

*JDIDebugT.

(c) Added method calls between the classes
JDIDebugTarget and JDIThread

Figure 2. Example of analyzing the incoming method calls of package breakpoints.

and edges. Next, we describe these features and demon-
strate them with the breakpoints example.

4.2. Features to add information to graphs

DA4Java supports two ways of adding information to a
graph. The first way is to select the entities in an Eclipse
view such as the Package Explorer and add them to the
graph. The second way is to select nodes in the graph and
add entities and relationships via their incoming or outgo-
ing dependency relationships. For the explanation of these
features we use the examples depicted in Figure 2. The fea-
tures are:

Add entities: Adds selected entities, their parents, and
descendants to the graph. The selection is done in the
Eclipse Package Explorer or similar views. Method calls
between added entities as well as between added entities
and methods that are already contained in the graph are in-
cluded as well. In the example, we selected the package
breakpoints from the Package Explorer and added it to
the graph. The resulting graph is depicted in Figure 2a. It
shows the package breakpoints and all its parent pack-
ages.

Add callers: Adds methods to the graph that call the se-
lected node. The corresponding method calls, parent pack-
ages, and classes of methods are also added to the graph.
Nodes of different types can be selected in the DA4Java
graph. If a package node is selected, methods that call any
method of the selected package are added. If callee meth-
ods of the selected package are not present in the graph,
they are added. In the example, we selected the node rep-
resenting package breakpoints and added its callers.
Figure 2b depicts the result. Two packages debug.core

and model contain methods that call methods of package
breakpoints.

Add callees: Adds methods that are called by methods of
the selected node to the graph. The corresponding method
calls, parent packages, and classes of methods are added to
the graph as well. Nodes of different types can be selected
in the DA4Java graph. If a package node is selected, meth-
ods that are called by any method of the selected package
are added. If caller methods of the selected package are not
present in the graph, they are added.

Add calls between selected nodes: Given at least two se-
lected nodes in the graph, this feature adds the method calls
between these nodes. Nodes of different types can be se-
lected in the DA4Java graph. For example, if two classes
are selected the incoming and outgoing method calls be-
tween the methods of both classes are added. Methods that
are not present in the graph but involved in method calls are
added to the graph as well. In Figure 2c we expanded the
package model and added the method calls between the
two classes JDIDebugTarget and JDIThread. They
are represented by the two edges between the class nodes.

4.3. Features to filter information from graphs

While adding information to the graph the number of
nodes and edges in the graph increases until the graph be-
comes too complex and can hardly be grasped by the user.
To re-focus on relevant source code entities and dependency
relationships, DA4Java provides a number of features to
filter nodes and edges from the graph. These are:

Keep callers and remove other nodes: Removes nodes
that do not call a method of the selected node. The corre-
sponding method calls are removed from the graph as well.

255255257

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 04:59 from IEEE Xplore. Restrictions apply.

DA4Java

http://serg.aau.at/bin/view/
MartinPinzger/DA4Java

DA4Java uses nested graphs to
visualize source code in the
Eclipse IDE.

Allows to incrementally add and
filter source code information.

Combines top-down with
bottom-up analysis for insights
on overall structure and gory
details

Friday, 22. March, 13

DA4Java in action within the Eclipse IDE

Friday, 22. March, 13

*org

*eclipse

*jdt

*internal

*debug

*core

breakpoints

Package
Java class
Method call

(a) Added package
breakpoints

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

*model

*JDIDebugT.

*JDIThread

breakpoints

(b) Added callers of breakpoints

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

breakpoints

*model

*JDIThread

*JDIDebugT.

(c) Added method calls between the classes
JDIDebugTarget and JDIThread

Figure 2. Example of analyzing the incoming method calls of package breakpoints.

and edges. Next, we describe these features and demon-
strate them with the breakpoints example.

4.2. Features to add information to graphs

DA4Java supports two ways of adding information to a
graph. The first way is to select the entities in an Eclipse
view such as the Package Explorer and add them to the
graph. The second way is to select nodes in the graph and
add entities and relationships via their incoming or outgo-
ing dependency relationships. For the explanation of these
features we use the examples depicted in Figure 2. The fea-
tures are:

Add entities: Adds selected entities, their parents, and
descendants to the graph. The selection is done in the
Eclipse Package Explorer or similar views. Method calls
between added entities as well as between added entities
and methods that are already contained in the graph are in-
cluded as well. In the example, we selected the package
breakpoints from the Package Explorer and added it to
the graph. The resulting graph is depicted in Figure 2a. It
shows the package breakpoints and all its parent pack-
ages.

Add callers: Adds methods to the graph that call the se-
lected node. The corresponding method calls, parent pack-
ages, and classes of methods are also added to the graph.
Nodes of different types can be selected in the DA4Java
graph. If a package node is selected, methods that call any
method of the selected package are added. If callee meth-
ods of the selected package are not present in the graph,
they are added. In the example, we selected the node rep-
resenting package breakpoints and added its callers.
Figure 2b depicts the result. Two packages debug.core

and model contain methods that call methods of package
breakpoints.

Add callees: Adds methods that are called by methods of
the selected node to the graph. The corresponding method
calls, parent packages, and classes of methods are added to
the graph as well. Nodes of different types can be selected
in the DA4Java graph. If a package node is selected, meth-
ods that are called by any method of the selected package
are added. If caller methods of the selected package are not
present in the graph, they are added.

Add calls between selected nodes: Given at least two se-
lected nodes in the graph, this feature adds the method calls
between these nodes. Nodes of different types can be se-
lected in the DA4Java graph. For example, if two classes
are selected the incoming and outgoing method calls be-
tween the methods of both classes are added. Methods that
are not present in the graph but involved in method calls are
added to the graph as well. In Figure 2c we expanded the
package model and added the method calls between the
two classes JDIDebugTarget and JDIThread. They
are represented by the two edges between the class nodes.

4.3. Features to filter information from graphs

While adding information to the graph the number of
nodes and edges in the graph increases until the graph be-
comes too complex and can hardly be grasped by the user.
To re-focus on relevant source code entities and dependency
relationships, DA4Java provides a number of features to
filter nodes and edges from the graph. These are:

Keep callers and remove other nodes: Removes nodes
that do not call a method of the selected node. The corre-
sponding method calls are removed from the graph as well.

255255257

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 04:59 from IEEE Xplore. Restrictions apply.

Step 1) Add package ‘breakpoints’
Step 2) Add callers of package ‘breakpoints’
Step 3) Added method calls between classes ‘JDIDebugTarget’ and ‘JDIThread’

Friday, 22. March, 13

Polymetric Views

http://www.inf.usi.ch/faculty/
lanza/codecrawler.html
Visualizations of a graph
enriched with (multiple) metrics.
System Complexity is a
polymetric view that shows the
classes of the system,
organized in inheritance
hierarchies.
Each class is represented by a
node.
Edges denote inheritance
relationships.

number of
lines of code

number of attributes

number of methods

Friday, 22. March, 13

http://www.inf.usi.ch/faculty/lanza/codecrawler.html
http://www.inf.usi.ch/faculty/lanza/codecrawler.html
http://www.inf.usi.ch/faculty/lanza/codecrawler.html
http://www.inf.usi.ch/faculty/lanza/codecrawler.html

ArgoUML in CodeCrawler
Friday, 22. March, 13

ArgoUML in CodeCrawler

Quickly identify exception entities
Exception Entities are important when

reengineering

Friday, 22. March, 13

Class Blueprints

Polymetric view that shows
the internals of a class. The
class is split into 5 layers:

1. Initialization layer

2. Public interface layer

3. Private implementation
layer

4. Accessor layer

5. Attribute layer

Friday, 22. March, 13

Friday, 22. March, 13

An old friend pays us a visit: ArgoUML’s ModelFacade
453 Methods - 114 Attributes - 3500 LOC - Coupled to hundreds of classes

Friday, 22. March, 13

CodeCrawler, Runtime Visualization, Instance Collaboration View

Friday, 22. March, 13

JInsight - Visualization of an execution stack trace

Friday, 22. March, 13

Inter-class call matrix

Friday, 22. March, 13

Evolution Radar

Reference module is placed in
center.

All other modules are shown as
sectors.

For each module, all its files are
rendered as colored circles and
positioned using polar
coordinates:

d: inverse proportional to LC

Θ: alphabetical sorting and
uniform distribution

LC is the number of shared
commits.

Marco D’Ambros - University of Lugano WCRE 2006: October 23-27 2006 4/14!

The Evolution Radar
•! The module in focus (or reference

module) is placed in the center

•! All the other modules are shown as

sectors

•! For each module all its files are

rendered as colored circles and

positioned using polar coordinates:

–! d: inverse proportional to LC

–! !: alphabetical sorting and uniform

distribution

•! Metrics can be mapped on the size

and color of figures

•! LC between two files is the number of

“shared” commits

•! LC between a file and a module is

defined by means of a group operator

d " 1/LC
File f Module M

© Marco D’Ambros, University of Lugano

Friday, 22. March, 13

ArgoUML in Evolution Radar - http://www.inf.usi.ch/phd/dambros/tools/evoradar.php

Friday, 22. March, 13

http://www.inf.usi.ch/phd/dambros/tools/evoradar.php
http://www.inf.usi.ch/phd/dambros/tools/evoradar.php

Smart Views

http://seal.ifi.uzh.ch/

Polymetric View on effort
estimation data.

Visualizes effort estimation
patterns.

Can be used to measure and
improve the efficiency and
effectiveness of the development
process.

3 Visualization Building Blocks

We present three relevant views of our visualization approach and the generic
patterns that can be observed.

For the visualization of e�ort measures, we use Polymetric Views [3]. In
Figure 2 the basic concepts of our visualization are shown: the width of the boxes
is determined by the value of the estimatedE�ort and the height by the value of
the actualE�ort. The e�ort measure is the sum of all e�orts that were exerted
to resolve the issue described by the problem report.

overestimated

estimatedEffort

a
c
tu

a
lE

ff
o
rt

perfect estimate

u
n

d
e
re

s
ti

m
a
te

d

color: analyser

Fig. 2. Polymetric E�ort Shape Patterns

With this mapping we can get a quick and e�ective overview over the quality
of estimates: balanced estimates (square boxes) constitute problems that were
estimated accurately with respect to the actual resolution e�ort needed; under-
estimated (boxes that are thin and tall), and overestimated (boxes that are short
and broad) PRs can also be spotted easily.

To visualize the relative duration of process steps we use a Pie Chart Vi-
sualization. In Figure 3 we show a single pie with the mapping to the four
process steps: submitted, in analysis, in resolution, in evaluation. The size (i.e.,
the area) of the pie is mapped to the total time from the creation of the PR
until it was closed.

Finally our Phase View Visualization in Figure 4 is concerned with the
process life-cycle sequence. This view depicts the sequence of the process steps,
and allows an investigator to spot cycles and other exceptional situations.

4 Visual Patterns

In this section we present some generic visual patterns that we found in the
course of our investigations. In the next section we will then show the actual
instances of these patterns in the data of our industrial case study. The first
part of this section presents the patterns for the Polymetric Views, followed
by the patterns for our Pie Chart View, as well as our Phase View in the
second part.

Friday, 22. March, 13

http://seal.ifi.uzh.ch
http://seal.ifi.uzh.ch

Smart Views: Effort View on PRs grouped and colored according to the analyzer

5 Case Study

The case study is based on a five year multisite project in the consumer elec-
tronics domain. The issue tracking repository contains approx. 20’000 problem
reports (PRs) that were handled by 368 distinct analyzers.

In Figure 10 we configured a view that groups and colorizes PRs according to
the analyzer that did the estimation. Looking for patterns, we can see that there
is a mix of estimation errors as well as some fairly well estimated PRs. There are
instances of all the presented e�ort estimation patterns. We have highlighted an
example for every pattern in Figure 10, but one can easily spot other occurrences
for other analyzers.

Discussing the highlighted cases we see a), b), and c) where the main concern
is to improve the quality of the estimates, but we have also the cases d) always
the same and e) cheater. For d) and e) it might be advisable for a manager to talk
to the corresponding analyzers and maybe also take the estimation performance
from other projects into consideration. Since for d) the average actual e�ort is
not that big, the impact on the overall project e⇤ciency might be neglected.
But for e) not only the perfect estimates are suspicious, but the actual e�ort
measures are among the biggest in this display, and therefore the impact on the
overall estimation quality is significant.

c) Overestimator

a) Underestimator

e) Cheater

d) Always the sameb) Scatter

Fig. 10. E�ort View on PRs Grouped and Colored According to the Analyzer

Friday, 22. March, 13

About Metaphors Software Visualization++

Friday, 22. March, 13

CodeCity

http://www.inf.usi.ch/phd/
wettel/codecity.html

Software systems are
visualized as interactive,
navigable 3D cities

The visible properties of the city
artifacts depict a set of chosen
software metrics

Friday, 22. March, 13

http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.inf.usi.ch/phd/wettel/codecity.html

© Richard Wettel, University of Lugano
Friday, 22. March, 13

© Richard Wettel, University of Lugano
Friday, 22. March, 13

© Richard Wettel, University of Lugano
Friday, 22. March, 13

© Richard Wettel, University of Lugano
Friday, 22. March, 13

© Richard Wettel, University of Lugano
Friday, 22. March, 13

Friday, 22. March, 13

© Richard Wettel, University of Lugano
Friday, 22. March, 13

© Richard Wettel, University of Lugano
Friday, 22. March, 13

In which house do you want to live? - Use analogies from daily life

Friday, 22. March, 13

CocoViz

http://seal.ifi.uzh.ch/cocoviz

Provides software
comprehension support
through visualization and audio.

Objects from daily life are used
as metaphors to foster an
intuitive assessment of a
software’s structure and quality.

Incorporates static source code
metrics and evolutionary
aspects.

Friday, 22. March, 13

http://seal.ifi.uzh.ch/cocoviz
http://seal.ifi.uzh.ch/cocoviz

CocoViz: Cognitive Glyphs

Friday, 22. March, 13

CocoViz: Cognitive Glyphs

Friday, 22. March, 13

Use methods from GIS applications form SW Visualization

Friday, 22. March, 13

Software Cartography

http://scg.unibe.ch/codemap

Codemaps use the same
visual language as cartographic
visualizations found in an atlas.

• Population density

• Industry sectors

• weather forecast

• birth rate

• flow of trade

• ...

Friday, 22. March, 13

http://scg.unibe.ch/codemap
http://scg.unibe.ch/codemap

3.3. THE CARTOGRAPHY PIPELINE 19

Figure 3.2: Construction steps: left) MDS placement of files on the visualization pane,
middle) circles around each files location, based on class size in KLOC,
right) digital elevation model with hill-shading and contour lines.

alone. Since almost all real world maps make use of contour lines, maps with contour
lines are very familiar to the user.

Figure 3.3: Digital elevation model: since classes might appear on the map very close
to each other, we have to prevent larger classes from hiding smaller classes.
Thus, the elevation model is built by summing up the volumes of all classes.

3.3.4 Labeling

This section introduces the labeling algorithm we use to annotate the landscape with
textual information.

A map without labels is of little use. On a software map, all entities are labeled with

Digital elevation model of Codemaps

Friday, 22. March, 13

34 CHAPTER 4. CODEMAP

Figure 4.3: Codemap’s coverage metrics are displayed directly on the hills to leave place
for other overlays and text-labels.

vocabulary) of the software the term searched for occurs the most. This visualizes how
the search results are distributed over a software project.

4.2.4 Searching References/Declarations

Searching for references and declarations is a customized search provided by Eclipse.
This section states how these searches are visualized by Codemap.

When programmers explore a system during reverse engineering they can rely on
utilities that navigate the system’s structure. We link Codemap to Eclipse’s specialized
search utilities that can find callers and implementers of given functionality.

While browsing code, the programmer is interested where something has been defined
or from where it is referenced. Eclipse provides utilities to search for references to
an identifier or declarations of that identifier in different scopes, among others in
project scope. This feature can be seen as a customized, language specific search, so the
description of Subsection 4.2.3 applies here as well. The results of a domain-specific
references/search are displayed the same way as the normal search results, as a list.
Thus, Codemap visualizes these results as shown in Figure 4.4, the same way it visualizes
the normal search results.

4.2. SUPPORTED PROGRAMMING TASKS 37

4.2.6 Collaboration

In this section, we analyze how Codemap enriches collaboration by supporting collabo-
rative awareness in development teams.

Collaboration is one of the most important activities in software engineering since
software engineering projects are inherently cooperative. To produce a larger software
system, it requires many engineers to coordinate their efforts [68]. Awareness of
individual and group activities is critical to successful collaboration [20]. We propose
to ease the collaboration by adding a feature to Codemap that supports the awareness of
collaboration in the development team.

The Eclipse Communication Framework (ECF)4 supports development of distributed
Eclipse applications. ECF provides the library code needed to create distributed plugins
easily as well as some example plugins. These examples include shared editing and
instant messaging.

Building on ECF, we integrate collaboration support into Codemap. We chose to display
which files are currently edited by a peer, once the collaboration feature is enabled.
Collaboration is supported on top of popular protocols compatible to the Extensible
Messaging and Presence Protocol (XMPP) or similar. As depicted in Figure 4.7 once
sharing is enabled, a meeple is displayed for each file opened by remote collabora-
tors.

Figure 4.7: Codemap builds on the Eclipse Communication Framework, adding a collab-
orative overview. For each file that is opened by the remote collaborators, a
meeple is displayed at that location.

4http://www.eclipse.org/ecf/

36 CHAPTER 4. CODEMAP

providing an entry “Open Call Hierarchy” in the right-click menu. Once clicked the
view as illustrated in Figure 4.5 appears. The tree displayed in the call hierarchy view
can be expanded and collapsed to show nested calls.

Codemap enriches these call hierarchies by showing an arrow based overlay (see Fig-
ure 4.6). For each node that is expanded in the call hierarchy view an arrow based
graph is added representing the calls of that node. This additional visualization helps
the programmer to understand which domain of the code calls which other domain.
The traces are not visualized as straight arrows, but using automatically generated
flow maps based on hierarchical clustering [44] to avoid visual clutter. These arrows
can be interpreted as roads or shipping routes connecting the islands. For a detailed
description of the algorithm please refer to Section 5.1.2.

Note that the distances have an interpretation in terms of lexical distance, so the lengths
of invocation edges are meaningful. A short edge indicates that closely related artifacts
are invoking each other, whereas long edges indicate a “long-distance call” to a lexically
unrelated class.

Figure 4.6: Codemap enriches call hierarchies shown by Eclipse by displaying an arrow-
based overlay. For each expanded location in the Eclipse call hierarchy view,
arrows representing the calls are shown.

Codemap: Improving the Mental Model of Software Developers through
Cartographic Visualization. David Erni. Master's Thesis, University of Bern

Friday, 22. March, 13

Codemap
of Javac

Friday, 22. March, 13

4.3. OPEN-SOURCE EXAMPLES 31

version 1 version 1.1 version 2

Figure 4.4: Kasai Map: The first version shows a huge mountain, obviously this is
the most important class to know - during the evolution towards version 2, the central
mountain kept his relatively large volume while the newer and smaller files are placed
arround the main massif

Apache Tomcat Columba Google Taglib

JFtp JoSQL JCGrid

Figure 4.5: Overview of the software maps of six open source systems. Each map
reveals a distinct spatial structure. When consequently applied to every visualization,
the consistent layout may soon turn into the system’s iconic fingerprint. An engineer
might e.g. point to the top left map and say: “Look, this huge Digester peninsula in
the north, that must be Tomcat. I know it from last year’s code review.”.

Software Cartography: A Prototype for Thematic Software Maps. Peter
Loretan, Diploma thesis, University of Bern

Friday, 22. March, 13

Friday, 22. March, 13

Ball’s Dilemma

Software is intangible,
having no physical

shape or size.

Thomas Ball

Friday, 22. March, 13

Ball’s Dilemma

Software is intangible,
having no physical

shape or size.

Thomas Ball

Metrics

Metrics are a mapping of a particular
characteristic of a measured entity to
a numerical value.

They can be used to quantify aspects
of quality.

Measuring software is cheap and can
be automated.

Numbers are just numbers; don’t
trust them.

They capture symptoms, not causes.

Hard for developers to deal with
them.

Inflation of measurements

Friday, 22. March, 13

Ball’s Dilemma

Software is intangible,
having no physical

shape or size.

Thomas Ball

Metrics

Metrics are a mapping of a particular
characteristic of a measured entity to
a numerical value.

They can be used to quantify aspects
of quality.

Measuring software is cheap and can
be automated.

Numbers are just numbers; don’t
trust them.

They capture symptoms, not causes.

Hard for developers to deal with
them.

Inflation of measurements

ArgoUML in CodeCrawler

Friday, 22. March, 13

Ball’s Dilemma

Software is intangible,
having no physical

shape or size.

Thomas Ball

Metrics

Metrics are a mapping of a particular
characteristic of a measured entity to
a numerical value.

They can be used to quantify aspects
of quality.

Measuring software is cheap and can
be automated.

Numbers are just numbers; don’t
trust them.

They capture symptoms, not causes.

Hard for developers to deal with
them.

Inflation of measurements

ArgoUML in CodeCrawler
About Metaphors Software Visualization++

Friday, 22. March, 13

