
Empirical Software
Engineering SW Maintenance & Evolution

What is it?

• Empiricism: Observation- and
experimental driven

• Confirms (or rejects) theories
through experiments

• Observations of phenomena can
be the first step towards a theory

• A theory is more general

• A theory may concern things
that have not been observed yet

Experimental Physics vs. Theoretical
Physics

Theory predicted the existence of the
Higgs particle ~50 years ago

Experiments at the CERN may have
found it!

Theoretical models and
abstractions of physics to
rationalize and predict natural
phenomena

Experiments and observations
to explain natural and physical
phenomena

Is there something like
theoretical and

experimental software
engineering?

There is empirical
software engineering!

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Phenomenon
http://en.wikipedia.org/wiki/Phenomenon

Is anybody out
there?

Confirm

verify

Falsify

The Role of Empiricism in Software Engineering

• SE is a (relatively) young field with strong emphasis on the engineering aspect

• Countless tools, languages, frameworks, ... are available

• Development paradigms: Agile, Test-Driven, X-treme,

• (Vague) ideas of how to develop good software

The Role of Empiricism in Software Engineering

• SE is a (relatively) young field with strong emphasis on the engineering aspect

• Countless tools, languages, frameworks, ... are available

• Development paradigms: Agile, Test-Driven, X-treme,

• (Vague) ideas of how to develop good software

In SE decisions are still based on guts
and personal experience

Theoretical Aspect of in SE

not really developed

a few (theoretical)
models

a vague beliefs of
laws and theories in
SE

cause - effect
relations are unkown

Cocomo

Lehman’s Laws

Mythical Man Month

Metrics

Theoretical Aspect of in SE

not really developed

a few (theoretical)
models

a vague beliefs of
laws and theories in
SE

cause - effect
relations are unkown

Cocomo

Lehman’s Laws

Mythical Man Month

Metrics

People required (P) = Effort Applied /

Development Time [count]

Theoretical Aspect of in SE

not really developed

a few (theoretical)
models

a vague beliefs of
laws and theories in
SE

cause - effect
relations are unkown

Group

interco
mmunicati

on

formula: n(
n − 1) /

2

Cocomo

Lehman’s Laws

Mythical Man Month

Metrics

People required (P) = Effort Applied /

Development Time [count]

Theoretical Aspect of in SE

not really developed

a few (theoretical)
models

a vague beliefs of
laws and theories in
SE

cause - effect
relations are unkown

Group

interco
mmunicati

on

formula: n(
n − 1) /

2

Cocomo

Lehman’s Laws

Mythical Man Month

Metrics

People required (P) = Effort Applied /

Development Time [count]

Complexity = E − N
+ 2P

Lines o
f code

Problems of Models and Theories in SE

• Hard to generalize for all software projects

• Software projects differ widely in so many aspects

• Not always straightforward to apply in practice

• No standard measurement procedures and units

• Sometimes grounded on anecdotal evidence

Real World SW
Development

Experience Practice

Preferences

Marketing

Consulting

Historical Decisions

Formal Theories of
SW Development

(Repeated)
Experiments

Understand Improve

Probe

Modify

Reality

Scientific Apporach

Credits to Dr. Victor Pankratius & Andreas Höfer,
Karlsruhe Institute of Technology

Real World SW
Development

Experience Practice

Preferences

Marketing

Consulting

Historical Decisions

Formal Theories of
SW Development

(Repeated)
Experiments

Understand Improve

Probe

Modify

Reality

Scientific Apporach

Credits to Dr. Victor Pankratius & Andreas Höfer,
Karlsruhe Institute of Technology

Real World SW
Development

Experience Practice

Preferences

Marketing

Consulting

Historical Decisions

Formal Theories of
SW Development

(Repeated)
Experiments

Understand Improve

Probe

Modify

Reality

Scientific Apporach

Credits to Dr. Victor Pankratius & Andreas Höfer,
Karlsruhe Institute of Technology

The Role of Empiricism in Software Engineering

• Investigates (and attempts to explain) phenomena in SW

• Quantifies a phenomena or fact of SW with numbers

• Quantifies implicit knowledge

• Knowledge drawn form empirical SE can help practitioners

• Supports decision making

Is there a relation or connection between things?

Is size related to defects?

Is there a difference?

Difference between a waterfall and a iterative development process?

Can we make forecasts?

Do we have to expect more defects in the future?

How are certain observations related to
each other? What is the cause and what the

effect?

Defects

Complexity
Team Size

Changes

Dependency
Size

Relation: Correlation Analysis

• You may remember your stats class

• Investigates the strength of the relation between two measured variables

• Investigates the direction of the relation: Positive or Negative

• Correlation coefficients are available in any statistics package

• Parametric vs. non-parametric correlation

r

(X,

Y

) =
C

o

v

(X,

Y

)

�

(X)�(y
)

C

o

v(
X

,

y) =
E((

X �
E(

X))(
Y �

E(
Y)))

Correlation Refresher

 Parametric correlation: Pearson
correlation

 Linear relationship only!

 Significance tests require normal
distribution

Wikipedia

Correlation Refresher

 Non-parametric correlation:
Spearman rank correlation

 Linear relationship is not needed!

 Applies to non-normal distributions

 Available for ordinal data

Correlation Refresher

 Non-parametric correlation:
Spearman rank correlation

 Linear relationship is not needed!

 Applies to non-normal distributions

 Available for ordinal data

Correlation Refresher

 Non-parametric correlation:
Spearman rank correlation

 Linear relationship is not needed!

 Applies to non-normal distributions

 Available for ordinal data

Hypotheses & Statistical Significance Testing

• Is there a difference between two observations?

• Is this difference due to chance?

• Statistical significance testing helps us

• It a method to test a given hypothesis with data

• Parametric vs. non-parametric tests

H0 : µ = µ0 v.s. H1 : µ 6= µ0

Statistical Testing: Parametric Tests

• Parametric tests make assumptions regarding the data distributions

• Often they require normal distributions, e.g., t-test

• In this case a hypothesis is about the parameters of a normal distributions

• A system can handle 1000 requests per second (request per seconds are
normally distributed with standard deviation 5: Request~N(1000,5))

• During the last day on average 1100 request per second observed

• Is this increase just by chance or do we have to adjust the system?

Statistical Testing: Non-Parametric Tests

• Non-parametric test assume no particular distributions

• In other words, they do not a priori determine the kind and number of
parameters

• This is very helpful if data is not normally distributed

• ... or if data is ordinal

• Have less power than parametric tests

• Often software engineering data is heavily skewed

Statistical Testing: 1 Sample vs. 2 Samples

• 1 sample test

• 1 measured, observed value

• Test against an hypothetical, assumed value

• Measured 1100 requests/s is tested against the H0 : u = 1000/s

• 2 samples test

• 2 measured, observed values are compared to each other: Difference?

• D = X1 - X2 is then tested against the H0 : D = 0

Statistical Testing: Paired vs. Non-Paired Tests

• Paired: The same group is measured twice (“before & after”)

• a.k.a related samples test

• more than 2 measurements are possible

• Question: Is there a difference after the treatment?

• “Does the number of defects increase over the releases?”

• “Are there now less defects in our system since we introduced test-driven
development?”

Statistical Testing: Paired vs. Non-Paired Tests

• Non-paired: Two different groups are measured

• a.k.a independent samples test

• More than just 2 groups are possible

• Question: Is there a difference between to groups?

• “Do reviews find more defects than pair-programming?”

• “Which cost model is more accurate and delivers better forecasts?”

• “Is an iterative development process better than a linear one?”

Choosing the correct statistical test is essential!

I see defects in
your future and

code changes!

I see defects in
your future and

code changes!

Regression Models

Time Series

Data Mining Models

Clustering

Empirical SE is statistics (researcher’s view) Empirical SE is business analytics (practitioner’s view)

Capability Maturity Model

ISO/IEC 15504 (SPICE)

IBM Cleanroom process

Quality Control in SE

http://research.microsoft.com/en-us/groups/ese/

http://research.microsoft.com/en-us/groups/ese/
http://research.microsoft.com/en-us/groups/ese/

Let’s talk about
data!

Where does it come
from?

Software Repositories

• Versioning Systems

• Git, Mercurial, Svn, Cvs, Team Foundation Server

• Issue Tracker

• Bugzilla, Jiira, Redmine

• Feature Tracker

• Mailing Lists

• Discussion Boards

Other Data sources

• Interview with developers

• Controlled Experiments

• Observing

• Surveys

• ...

Examples of Empirical SE Results

Microsoft Team Foundation Server (TFS) provides a full-fledged data
warehouse for development data.

Design Patterns

Find Bugs: Catalogue of code idioms that often lead to bugs

• Common wisdom: Distributed
development is riskier; leads to
more defects

• Organizational challenges

• Knowledge sharing

• Communication problems

• No difference between
distributed developed binaries
and collocated binaries

The Tale of Distributed
Development

The Tale of
Organizational Structure

• In theory: Organizational
structure could influence
software quality:

• #Ex-SW-Engineers

• Strength of Code Ownership

• Degree of responsibility

• Structure is related to defect
proneness

Data Mining Static Code Attributes
to Learn Defect Predictors

Tim Menzies, Member, IEEE, Jeremy Greenwald, and Art Frank

Abstract—The value of using static code attributes to learn defect predictors has been widely debated. Prior work has explored issues

like the merits of “McCabes versus Halstead versus lines of code counts” for generating defect predictors. We show here that such

debates are irrelevant since how the attributes are used to build predictors is much more important than which particular attributes are
used. Also, contrary to prior pessimism, we show that such defect predictors are demonstrably useful and, on the data studied here,

yield predictors with a mean probability of detection of 71 percent and mean false alarms rates of 25 percent. These predictors would
be useful for prioritizing a resource-bound exploration of code that has yet to be inspected.

Index Terms—Data mining detect prediction, McCabe, Halstead, artifical intelligence, empirical, naive Bayes.

Ç

1 INTRODUCTION

GIVEN recent research in artificial intelligence, it is now
practical to use data miners to automatically learn

predictors for software quality. When budget does not
allow for complete testing of an entire system, software
managers can use such predictors to focus the testing on
parts of the system that seem defect-prone. These potential
defect-prone trouble spots can then be examined in more
detail by, say, model checking, intensive testing, etc.

The value of static code attributes as defect predictors
has been widely debated. Some researchers endorse them
([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]) while others vehemently
oppose them ([21], [22]).

Prior studies may have reached different conclusions
because they were based on different data. This potential
conflation can now be removed since it is now possible to
define a baseline experiment using public-domain data sets1

which different researchers can use to compare their
techniques.

This paper defines and motivates such a baseline. The
baseline definition draws from standard practices in the data
mining community [23], [24]. To motivate others to use our
definition of a baseline experiment, we must demonstrate
that it can yield interesting results. The baseline experiment
of this article shows that the rule-based or decision-tree
learning methods used in prior work [4], [13], [15], [16], [25]
are clearly outperformed by a naive Bayes data miner with a

log-filtering preprocessor on the numeric data (the terms in
italics are defined later in this paper).

Further, the experiment can explain why our preferred
Bayesian method performs best. That explanation is quite
technical and comes from information theory. In this
introduction, we need only say that the space of “best”
predictors is “brittle,” i.e., minor changes in the data (such
as a slightly different sample used to learn a predictor) can
make different attributes appear most useful for defect
prediction.

This brittleness result offers a new insight on prior work.
Prior results about defect predictors were so contradictory
since they were drawn from a large space of competing
conclusions with similar but distinct properties. Different
studies could conclude that, say, lines of code are a better/
worse predictor for defects than the McCabes complexity
attribute, just because of small variations to the data.
Bayesian methods smooth over the brittleness problem by
polling numerous Gaussian approximations to the nu-
merics distributions. Hence, Bayesian methods do not get
confused by minor details about candidate predictors.

Our conclusion is that, contrary to prior pessimism [21],
[22], data mining static code attributes to learn defect
predictors is useful. Given our new results on naive Bayes
and log-filtering, these predictors are much better than
previously demonstrated. Also, prior contradictory results
on the merits of defect predictors can be explained in terms
of the brittleness of the space of “best” predictors. Further,
our baseline experiment clearly shows that it is a misdir-
ected discussion to debate, e.g., “lines of code versus
McCabe” for predicting defects. As we shall see, the choice of
learning method is far more important than which subset of the
available data is used for learning.

2 BACKGROUND

For this study, we learn defect predictors from static code
attributes defined by McCabe [2] and Halstead [1]. McCabe
and Halstead are “module”-based metrics, where a module

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, JANUARY 2007 1

. T. Menzies is with the Lane Department of Computer Science and
Electrical Engineering, West Virginia University, Morgantown, WV
26506-610. E-mail: tim@menzies.us.

. J. Greenwald and A. Frank are with the Department of Computer Science,
Portland State University, PO Box 751, Portland, OR 97207-0751.
E-mail: jegreen@cecs.pdx.edu, arf@cs.pdx.edu.

Manuscript received 2 Jan. 2006; revised 9 Aug. 2006; accepted 13 Sept. 2006;
published online DD Mmmm, YYYY.
Recommended for acceptance by M. Harman.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0001-0106.

1. http://mdp.ivv.nasa.gov and http://promise.site.uottawa.ca/
SERepository.

0098-5589/06/$20.00 ! 2006 IEEE Published by the IEEE Computer Society

• Assumption: The bigger and
more complex modules are more
prone to defects

• Those parts are more difficult to
understand, and hence, to
change

• Study with data from NASA
software projects

• Size and complexity metrics are
an indicator for defects

The Tale of Code
Metrics

Who Should Fix This Bug?

John Anvik, Lyndon Hiew and Gail C. Murphy
Department of Computer Science
University of British Columbia

{janvik, lyndonh, murphy}@cs.ubc.ca

ABSTRACT
Open source development projects typically support an open
bug repository to which both developers and users can re-
port bugs. The reports that appear in this repository must
be triaged to determine if the report is one which requires
attention and if it is, which developer will be assigned the
responsibility of resolving the report. Large open source de-
velopments are burdened by the rate at which new bug re-
ports appear in the bug repository. In this paper, we present
a semi-automated approach intended to ease one part of this
process, the assignment of reports to a developer. Our ap-
proach applies a machine learning algorithm to the open bug
repository to learn the kinds of reports each developer re-
solves. When a new report arrives, the classifier produced
by the machine learning technique suggests a small number
of developers suitable to resolve the report. With this ap-
proach, we have reached precision levels of 57% and 64% on
the Eclipse and Firefox development projects respectively.
We have also applied our approach to the gcc open source de-
velopment with less positive results. We describe the condi-
tions under which the approach is applicable and also report
on the lessons we learned about applying machine learning
to repositories used in open source development.

Categories and Subject Descriptors: D.2 [Software]:
Software Engineering

General Terms: Management.

Keywords: Problem tracking, issue tracking, bug report
assignment, bug triage, machine learning

1. INTRODUCTION
Most open source software developments incorporate an

open bug repository that allows both developers and users to
post problems encountered with the software, suggest possi-
ble enhancements, and comment upon existing bug reports.
One potential advantage of an open bug repository is that it
may allow more bugs to be identified and solved, improving
the quality of the software produced [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06,May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

However, this potential advantage also comes with a sig-
nificant cost. Each bug that is reported must be triaged
to determine if it describes a meaningful new problem or
enhancement, and if it does, it must be assigned to an ap-
propriate developer for further handling [13]. Consider the
case of the Eclipse open source project1 over a four month
period (January 1, 2005 to April 30, 2005) when 3426 re-
ports were filed, averaging 29 reports per day. Assuming
that a triager takes approximately five minutes to read and
handle each report, two person-hours per day is being spent
on this activity. If all of these reports led to improvements
in the code, this might be an acceptable cost to the project.
However, since many of the reports are duplicates of exist-
ing reports or are not valid reports, much of this work does
not improve the product. For instance, of the 3426 reports
for Eclipse, 1190 (36%) were marked either as invalid, a du-
plicate, a bug that could not be replicated, or one that will
not be fixed.

As a means of reducing the time spent triaging, we present
an approach for semi-automating one part of the process, the
assignment of a developer to a newly received report. Our
approach uses a machine learning algorithm to recommend
to a triager a set of developers who may be appropriate
for resolving the bug. This information can help the triage
process in two ways: it may allow a triager to process a
bug more quickly, and it may allow triagers with less overall
knowledge of the system to perform bug assignments more
correctly. Our approach requires a project to have had an
open bug repository for some period of time from which the
patterns of who solves what kinds of bugs can be learned.
Our approach also requires the specification of heuristics to
interpret how a project uses the bug repository. We believe
that neither of these requirements are arduous for the large
projects we are targeting with this approach. Using our ap-
proach we have been able to correctly suggest appropriate
developers to whom to assign a bug with a precision between
57% and 64% for the Eclipse and Firefox2 bug repositories,
which we used to develop the approach. We have also ap-
plied our approach to the gcc repository, but the results
were not as encouraging, hovering around 6% precision. We
believe this is in part due to a prolific bug-fixing developer
who skews the learning process.

The paper makes two contributions:

1Eclipse provides an extensible development environment,
including a Java IDE, and can be found at www.eclipse.org
(verified 31/08/05).
2Firefox provides a web browser and can be found at www.

mozilla.org/products/firefox/ (verified 07/09/05).

361

Who is the expert?

• Examining, assessing, and
assigning a defect report to a
developer costs time

• Who has to most knowledge?

• Learning from past fixed defect
reports

• Result: Machine Learning
approach suggesting to most
appropriate developer

Information Needs in Collocated Software Development Teams  

Andrew J. Ko 
Human-Computer Interaction Institute 

Carnegie Mellon University 
 Forbes Ave, Pittsburgh PA  

ajko@cs.cmu.edu 

Robert DeLine and Gina Venolia 
Microsoft Research 
One Microsoft Way 
Redmond, WA  

{rdeline, ginav}@microsoft.com 
 
 

Abstract 

Previous research has documented the fragmented na-
ture of software development work. To explain this  in 
more detail, we analyzed software developers’ day-to-day 
information needs. We observed seventeen developers at 
a large software company and transcribed their activities 
in -minute  sessions. We  analyzed  these  logs  for  the 
information that developers sought, the sources that they 
used, and the situations that prevented information from 
being acquired. We identified twenty-one information 
types and cataloged the outcome and source when each 
type  of  information  was  sought.  The most  frequently 
sought  information included awareness about artifacts 
and  coworkers.  The most  often  deferred  searches  in-
cluded knowledge about design and program behavior, 
such as why code was written a particular way, what a 
program was supposed to do, and the cause of a program 
state.  Developers  often  had  to  defer  tasks  because  the 
only source of knowledge was unavailable coworkers. 

1. Introduction 

Soware development is an expensive and time-intensive 

endeavor. Projects ship late and buggy, despite develop-

ers’ best efforts, and what seem like simple projects be-

come  difficult  and  intractable [2].  Given  the  complex 

work involved, this should not be surprising. Designing 

soware with a consistent vision requires the consensus 

of many people, developers exert great efforts at under-

standing a system’s dependencies and behaviors [11], and 

bugs can arise from large chasms between the cause and 

the symptom, oen making tools inapplicable [6]. 

One approach to understanding why these activities 

are so difficult is to understand them from an informa-

tion perspective. Some studies have investigated informa-

tion sources, such as people [13], code repositories [5], 

and bug reports [16]. Others have studied means of ac-

quiring  information,  such  as  email,  instant  messages 

(), and informal conversations [16]. Studies have even 

characterized developers’ strategies [9], for example, how 

they decide whom to ask for help.  

While these studies provide several concrete insights 

about  aspects  of  software  development  work,  we  still 

know little about what information developers look for 

and why they look for it. For example, what information 

do developers use to triage bugs? What knowledge do 

developers seek from their coworkers? What are develop-

ers  looking for when they search source code or use a 

debugger? By identifying the types of information that 

developers seek, we might better understand what tools, 

processes and practices could help them more easily find 

such information. 

To understand these information needs in more de-

tail, we performed a two-month field study of software 

developers at Microsoft. We took a broad look, observing 

  groups  across  the  corporation,  focusing  on  three 

specific questions: 

· What information do soware developers’ seek? 

· Where do developers seek this information? 

· What prevents them from finding information? 

In our observations, we found several information needs. 

The most difficult  to satisfy were design questions:  for 

example, developers needed to know the intent behind 

existing code and code yet to be written. Other informa-

tion seeking was deferred because the coworkers who had 

the knowledge were unavailable. Some information was 

nearly  impossible to find,  like   bug  reproduction  steps 

and the root causes of failures. 

In this paper, we discuss prior field studies of soware 

development, and then describe our study’s methodol-

ogy. We then discuss the information needs that we iden-

tified in both qualitative and quantitative terms. We then 

discuss our findings’ implications on soware design and 

engineering. 

2. Related Work 

Several previous studies have documented the social na-

ture  of  development  work.  Perry,  Staudenmayer  and 

Votta  reported  that  over  half  of  developers’  time  was 

spent  interacting  with  coworkers  [15].  Much  of  this 

communication  is  to  maintain  awareness.  De  Souza, 

Redmiles, Penix and Sierhuis found that developers send 

emails before check-ins to allow their peers to prepare for 

Information? - What
information?

• What information do developers
seek when programming?

• How much time do developers
spend for information gathering?

• Result: 1# “What are my co-
developers working on?”

• Building tools that show what
other developers are doing

• Facebook for developers?

What Makes a Good Bug Report?

Nicolas Bettenburg*

nicbet@st.cs.uni-sb.de

Sascha Just*

just@st.cs.uni-sb.de

Adrian Schröter

¶

schadr@uvic.ca

Cathrin Weiss

‡

weiss@ifi.uzh.ch

Rahul Premraj*

§

premraj@cs.uni-sb.de

Thomas Zimmermann

+
§

tz@acm.org

* Saarland University, Germany

¶

University of Victoria, BC, Canada

‡

University of Zurich, Switzerland

+
University of Calgary, Alberta, Canada

ABSTRACT
In software development, bug reports provide crucial information
to developers. However, these reports widely differ in their quality.
We conducted a survey among developers and users of APACHE,
ECLIPSE, and MOZILLA to find out what makes a good bug report.

The analysis of the 466 responses revealed an information mis-
match between what developers need and what users supply. Most
developers consider steps to reproduce, stack traces, and test cases
as helpful, which are at the same time most difficult to provide for
users. Such insight is helpful to design new bug tracking tools that
guide users at collecting and providing more helpful information.

Our CUEZILLA prototype is such a tool and measures the quality
of new bug reports; it also recommends which elements should be
added to improve the quality. We trained CUEZILLA on a sample
of 289 bug reports, rated by developers as part of the survey. In our
experiments, CUEZILLA was able to predict the quality of 31–48%
of bug reports accurately.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Human Factors, Management, Measurement

1. INTRODUCTION
Bug reports are vital for any software development. They allow
users to inform developers of the problems encountered while using
a software. Bug reports typically contain a detailed description of a
failure and occasionally hint at the location of the fault in the code
(in form of patches or stack traces). However, bug reports vary in
their quality of content; they often provide inadequate or incorrect
information. Thus, developers sometimes have to face bugs with
descriptions such as “Sem Web” (APACHE bug COCOON-1254),
“wqqwqw” (ECLIPSE bug #145133), or just “GUI” with comment
“The page is too clumsy” (MOZILLA bug #109242). It is no sur-
prise that developers are slowed down by poorly written bug reports
§Contact authors are Rahul Premraj and Thomas Zimmermann.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

because identifying the problem from such reports takes more time.
In this paper, we investigate the quality of bug reports from

the perspective of developers. We expected several factors to im-
pact the quality of bug reports such as the length of descriptions,
formatting, and presence of stack traces and attachments (such as
screenshots). To find out which matter most, we asked 872 devel-
opers from the APACHE, ECLIPSE, and MOZILLA projects to:

1. Complete a survey on important information in bug reports
and the problems they faced with them. We received a total
of 156 responses to our survey (Section 2 and 3).

2. Rate the quality of bug reports from very poor to very good
on a five-point Likert scale [22]. We received a total of 1,186
votes for 289 randomly selected bug reports (Section 4).

In addition, we asked 1,354 reporters1 from the same projects to
complete a similar survey, out of which 310 responded. The results
of both surveys suggest that there is a mismatch between what
developers consider most helpful and what users provide. To
enable swift fixing of bugs, this mismatch should be bridged, for
example with tool support for reporters to furnish information that
developers want. We developed a prototype tool called CUEZILLA
(see Figure 1), which gauges the quality of bug reports and suggests
to reporters what should be added to make a bug report better.

1. CUEZILLA measures the quality of bug reports. We trained
and evaluated CUEZILLA on the 289 bug reports rated by the
developers (Section 5).

2. CUEZILLA provides incentives to reporters. We automati-
cally mined the bug databases for encouraging facts such as
“Bug reports with stack traces are fixed sooner” (Section 6).

1Throughout this paper reporter refers to the people who create bug
reports and are not assigned to any. Mostly reporters are end-users
but in many cases they are also experienced developers.

Figure 1: Mockup of CUEZILLA’s user interface. It recom-
mends improvements to the report (left image). To encourage
the user to follow the advice, CUEZILLA provides facts that are
mined from history (right image).

308

How to report
defects?

• The information in a bug report is
crucial to fixing defects

• Is defect reproducible?

• What OS & platform are
affected?

• Which version of the software?

• Study shows what information
makes a good bug report

Asking and Answering Questions about Unfamiliar APIs:

An Exploratory Study

Ekwa Duala-Ekoko and Martin P. Robillard
School of Computer Science

McGill University

Montréal, QC, Canada

{ekwa, martin}@cs.mcgill.ca

Abstract—The increasing size of APIs and the increase in
the number of APIs available imply developers must fre-
quently learn how to use unfamiliar APIs. To identify the
types of questions developers want answered when working
with unfamiliar APIs and to understand the difficulty they
may encounter answering those questions, we conducted a
study involving twenty programmers working on different
programming tasks, using unfamiliar APIs. Based on the screen
captured videos and the verbalization of the participants, we
identified twenty different types of questions programmers ask
when working with unfamiliar APIs, and provide new insights
to the cause of the difficulties programmers encounter when
answering questions about the use of APIs. The questions we
have identified and the difficulties we observed can be used
for evaluating tools aimed at improving API learning, and in
identifying areas of the API learning process where tool support
is missing, or could be improved.

I. INTRODUCTION

Modern-day software development is inseparable from the
use of Application Programming Interfaces (APIs). Software
developers make use of APIs as interfaces to code libraries
or frameworks to help speed up the process of software
development and to improve the quality of the software.
Before leveraging the benefits of an API, a developer
must discover and understand the behavior and relationships
between the elements of an API relevant to their task.
Given the increase in the size of APIs and the increase in
the number of APIs developers have to work with, even
experienced developers must frequently learn newer parts
of familiar APIs, or newer APIs when working on new
tasks. Recently, researchers started investigating how design
choices common to several APIs affect the API learning
process. For instance, Ellis et al. observed that the Factory
pattern hinders API learning [1], and a study by Stylos
et al. observed that method placement — for instance,
placing a “send” method on a convenience class such as
EmailTransport.send(EmailMessage), instead of hav-
ing it on the main-type such as EmailMessage.send()

— hinders API learning because convenience methods are
difficult to discover when learning to use an API [2].
In this paper, we expand on the body of work on API

learning by investigating the different types of questions

developers ask when working with unfamiliar APIs, in-
vestigating why some questions are difficult to answer,
and researching the cause of the difficulty. Our study was
inspired by the work of Sillito et al., who looked at the
different types of questions developers ask when working on
maintenance tasks [3]. To investigate those questions about
the use of APIs that are difficult to answer, we conducted
a study in which twenty participants worked on two pro-
gramming tasks using different real-world APIs. The study
generated over twenty hours of screen captured videos and
the verbalization of the participants spanning 40 different
programming sessions. Our analysis of the data involved
generating generic versions of the questions asked by the
participants about the use of the APIs, abstracting each
question from the specifics of a given API, and identifying
those questions that proved difficult for the participants to
answer. Based on the results of our analysis, we isolated
twenty different types of questions the programmers asked
when learning to use APIs, and identified five of the twenty
questions as the most difficult for the programmers to answer
in the context of our study. Drawing from varied sources
of evidence, such as the verbalizations and the navigation
paths of the participants, we explain why they found certain
questions hard to answer, and provide new insights to the
cause of the difficulties.
The different types of questions we have identified and

the difficulties we observed can be used for evaluating tools
aimed at improving API learning, and in identifying areas
of the API learning process where tool support is missing,
or could be improved. As an example, we identified some
areas where support is limited from existing tools including
the need for tools that would assist a developer in easily
identifying types that would serve as a good starting point
for searching for code examples, or for exploring the API
for a given programming task.

II. RELATED WORK

API Usability Studies: Previous studies on API usability
sought to identify factors that hinder the usability of APIs
and to understand the trade-offs between design options.
Ellis et al. conducted a study to compare the usability of

A new API?

• Getting used to a completely
unfamiliar API is difficult

• What objects need to be
instantiated?

• Which methods are required to
implement a task?

• Based on the study they build a
tool that supports developers on
how to use an API

Lehman’s Laws of SW Evolution & Eclipse

• Several Metrics of Eclipse for releases 2.0, 2.1, and 3.01

• Law of Continuing Growth

• Law of Increasing Complexity

• Law of Declining Quality

1Predicting Defects for Eclipse by T. Zimmermann, R. Premraj, A. Zeller

