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Abstract—Work practices vary among software developers.
Some are highly focused on a few artifacts; others make wide-
ranging contributions. Similarly, some artifacts are mostly au-
thored, or “owned”, by one or few developers; others have very
wide ownership. Focus and ownership are related but different
phenomena, both with strong effect on software quality. Prior
studies have mostly targeted ownership; the measures of own-
ership used have generally been based on either simple counts,
information-theoretic views of ownership, or social-network views
of contribution patterns. We argue for a more general concep-
tual view that unifies developer focus and artifact ownership.
We analogize the developer-artifact contribution network to a
predator-prey food web, and draw upon ideas from ecology to
produce a novel, and conceptually unified view of measuring
focus and ownership. These measures relate to both cross-entropy
and Kullback-Liebler divergence, and simultaneously provide
two normalized measures of focus from both the developer and
artifact perspectives. We argue that these measures are theoret-
ically well-founded, and yield novel predictive, conceptual, and
actionable value in software projects. We find that more focused
developers introduce fewer defects than defocused developers. In
contrast, files that receive narrowly focused activity are more
likely to contain defects than other files.

I. INTRODUCTION

Developers are the lifeblood of open source software, OSS,
and their contribution is vital for OSS to thrive. Rather than
being assigned tasks by management, OSS developers are
generally free to choose their style, focus and breadth of
contributions. Some might be quite focused, working on one
specific subsystem; others may range widely over the different
subsystems. An expert in a particular hardware device, for
example, might contribute very specialized knowledge to one
or more open source projects. Such developers may focus
on only a few files or a few packages to get a particular
job done. That small subset of modules1 may be their only
contribution during their tenure with the project. In contrast,
other developers may work on a variety of tasks.

While OSS developers are free too choose their contribution
styles, these choices are not inconsequential, especially to the
central issue of software quality. A dominant theme emerging
from previous work in this area is module ownership. If a
module has many contributors or low ownership, this can
adversely impact code quality. A variety of measures have
been developed to measure ownership [36], [31], [5].

There is, however, an entirely different perspective, devel-
oper’s attention focus, which is relatively unexplored. Human

1We use modules to mean packages or files, depending on the situation.

attention and cognition are not unlimited [4]; mental resources,
like other resources, are finite, and different tasks can compete
for mental resources when simultaneously engaged, and task
performance can suffer [1]. Programming work is arguably
highly demanding and difficult. A developer engaged in many
different tasks carries a greater cognitive burden than a more
focused one. Interestingly, the developer and module perspec-
tives are conceptually symmetric, dualistic views of focus.
From a module’s perspective, strong ownership indicates a
strong focused contribution. We refer to this as module activity
focus, or MAF , a measure of how focused the activities
are on a module. Symmetrically, we refer to the developer’s
attention focus, or DAF , a measure of how focused the
activities are of a particular developer. A surprising, but
natural, analogy for MAF and DAF are predator-prey food
webs from ecology. In a sense, modules are predators, which
“feed upon” the cognitive resources of developers. The more
different developers contribute to a module, the more different
and diverse are the cognitive resources it “feeds” upon. Like-
wise, a developer is a “prey” whose limited cognitive resources
are spread over the modules that “prey upon” her.

Ecosystem diversity is of great interest to ecologists.
Williams and Martinez call the roles complexity and diversity
play “[o]ne of the most important and least settled questions in
ecology.” [22] This diversity has two symmetric perspectives,
both from a prey’s perspective, and a predator’s perspective.
Ecologists have developed sophisticated symmetric measures
of predator-prey relationships, drawing upon ideas such as
entropy and Kulback-Leibler divergence, that simultaneously
captures both perspectives. We adapt these measures for soft-
ware engineering projects into the metrics MAF and DAF .

In this work, we employ methodology presented by El
Emam to validate our measures [13]. In particular, we show
that the DAF and MAF masures succeed in distinguishing
interesting cases that extant measures don’t capture. We make
the following contributions:
• We adapt terminology and motivation from ecology,

based on bipartite graphs;
• We incorporate and generalize previous results on devel-

oper and artifact diversity;
• We provide easy to compute measures of focus, MAF

and DAF , normalized to faciliate comparison within and
across projects;

• We show these measures more precisely capture out-
comes relevant to software researchers and practitioners.
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This novel analysis simultaneously considers focus both
from the artifact perspective and the author perspective.
Researchers can use our MAF and DAF metrics to more
precisely evaluate how attributes of developer experience and
focus contribute to outcomes of interest. Managers could also
use these metrics to assess whether the degree of focus each
developer exercises is in alignment with their expectations.

Research Outline Existing measures such as ownership and
diversity only partially capture developer focus. Consider, for
example, device drivers. They are small but intricate, and
will likely require “focused” work. If we measure the focus
from solely the perspective of the module (the driver source
code) we may be misled. Quite possibly, a single developer D
contributed most of the coding activity in a driver module and
traditional ownership measures will indicate that the driver
has received focused activity. But, if D is a wide, prolific
contributor, then the contribution she makes to the driver
may not reflect focused attention. Indeed, D may have been
distracted by many tasks, and the quality of the activity in the
driver may be compromised.

Measuring focus solely from the developer’s perspective
is also insufficient. The attention of a particular developer
may be highly focused on just a few files. However, if those
activities make insignificant contributions, say a few lines
out of thousands, then we should describe her contributions
as minor in comparison to those who contribute the bulk
of the code. Given equal overall contributions, a developer
whose attention is focused on a small subset of the code
base is viewed as exhibiting greater focused attention than
the developer that contributes more uniformly all over.

Our Goal: Simultaneously study the module activity
focus and developer attention focus in OSS.

We introduce theMAF and DAF measures in Section III.
To understand them we mount a detailed study of module
activity and developer attention focus in OSS projects. Starting
from a combined DAF and MAF perspective, we examine
the descriptive statistics of these measures in projects; we use
regression modeling to tease apart the effects of MAF and
DAF on software quality and answer the following questions.

Our measures enable us to characterize the attention focus
of developers as broad or narrow. In particular, we ask if the
leaders, or people with top involvement in open source projects
are distinguishable by this measure?

Research Question 1: Do project leaders exhibit broad or
narrow attention focus? What about the top developers?

The effect of focus and collaboration on defects has been
studied in the past. Some papers use social network models
of developer collaborations; others use ownership measures
of contributions by developers. Complex network measures
such as degree centrality and betweenness are difficult to
interpret and act upon. Ownership measures are better, but they
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Fig. 1: Graphical representation of commits from multiple developers
to a single package (a), from a single developer to multiple packages
(b), and their bipartite representation (c).

ignore the effect of developer attention focus. Simultaneously
modeling the diversity of both sides of the developer-module
contributions, usingMAF and DAF , allows us to tease apart
the effect of each one separately. As we shall see, bothMAF
and DAF can be acted upon based on the observed effects
on software quality. First, from the developer perspective:

Research Question 2: Do developers with narrow atten-
tion focus create fewer defects?

The symmetry of our measures allows us to also ask the
converse, from the module perspective:

Research Question 3: Are modules that receive narrowly
focused activity less defective?

In summary, our goal here is to understand and generalize
previous results on developer focus in software development
contribution networks, realizing it is two-fold. We draw in-
sights from similar conceptual structures that have been de-
veloped in ecology on specialization and expect that this will
lead to more intuitively appealing, discerning, and actionable
measures of contribution patterns. We begin by introducing
some basic concepts: contribution and ecological networks.

Contribution Networks They model the total number of
contributions made by each developer to each module over
a specific period of time. Fig. 1(a) and Fig. 1(b) illustrate
contribution networks as a bipartite network (having two kinds
of nodes) consisting of modules and developers. Fig. 1(c)
shows a network formed by the many-to-many relationships
of numerous developers, each working on numerous mod-
ules. Social network analyses have been applied to these
networks [28], [23], using metrics largely derived from one-
mode projections, which project the two-mode networks into
either developers alone or modules alone. Instead, we use
ecology-based measures which preserve their bipartite nature.

Ecological Networks In the field of ecology, interaction
networks relate predator to prey, pollinator to pollen, parasite
to host, or simply organism to resource [2], [37], [26]. These
networks usefully capture resource-consumption relationships,
and their effects on the relative abundance of different species
in an ecosystem. They can, e.g., help quickly identify species
critical to ecosystems, or species whose survival is threatened.
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In our context, the analogy gives some useful insights, but
raises other questions. We can view artifacts as “consumers”,
and developers’ resources as the “food source”. Clearly, cog-
nitive capacity is limited, and no one can work an unlimited
amount of time. If a person’s capacity is excessively spread out
or diluted, two factors come into play. First, as diversity of an
individual’s (“food source”) contribution targets (“consumers”)
increases, a given individual can only contribute a proportional
amount of time to each of them; secondly, cognitive limita-
tions, such as the difficulty of context-switching come into
play, and the quality of each contribution may go down [27].
From the other perspective, a particular module (“consumer”)
clearly benefits from contributions from a greater diversity
of developers (more “food”). On the other hand, the con-
tributions from each developer creates additional workload
for the other contributors, as they must also understand these
contributions, so additional contributors make everyone who
“feeds” this module have to work harder (and thus provide less
“food”). Thus, the straightforward analogy from food webs is
complicated by cognitive limitations that introduce non-linear
“interference” between contribution targets and contributors.

However, the above analysis-by-analogy with “food” and
“consumption” highlights the two perspectives on focus in
contributor networks. The developer focus looks at how fo-
cused developers are in their contributions, and the module
focus considers how focused the contributions to an artifact
are. We frame our contributions by first presenting existing
work in this area before we launch into the theory behind our
new measures.

II. RELATED WORK

Most previous work in this area has centered around the
aggregation of ownership, largely considering the dominant
author as a measure of artifact authorship. Our work most
closely relates to recent work by Bird et al. [5], Rahman
et al. [31], and by Mockus et al. [24]. These works study
the relationship of quality to code ownership, from an artifact
perspective. Bird et al. focus on minor contributors, viz., those
who contribute less than 5% of the content of an artifact, and
finds that these play a strong role in defects. However, this
perspective ignores the details of the contributions of these
minor committers, and in fact is agnostic about the other
activities of these contributors. What if a minor contributor
d1 contributed to a module f but didn’t do anything else?
She’s a highly focused minor contributor; on the other hand,
a minor contributor d2 to f may in reality have worked on a
great many other things. Bird et al. ignore this distinction; we
in fact find that d1 is less likely to produce defects than d2.
Mockus et al. studies the risk of software changes by defining
a measure that considers a developer’s overall experience
weighted by their experience with a particular modification
request. Rahman et al. take a similar perspective, focusing on
a developer’s experience and ownership with a specific file as
an indicator of quality of that file, regardless of the developer’s
other activities. Rahman et al. adapt the measures of Bird
and Mockus; specialized experience measures the dominant
contributors contribution to a particular artifact, and general

experience is an adaptation of Mockus’ weighted experience
measure. The findings in Rahman et al. are generally consis-
tent with Bird et al., and have similar limitations.

Shannon’s entropy was originally intended to quantify the
information content in a signal. The idea of using entropy
to measure properties of software evolution has a long his-
tory [14], [11]. It has been used in numerous software engi-
neering contexts; for space reasons we limit this discussion to
some of the most recent efforts. Entropy has been applied to
source code to measure the quality of interfaces [25], model
readability [30], and the quality of modularization [32].Recent
work applying entropy to software systems has been driven by
the wide availability of data from software repositories. Hassan
and Holt applied normalized entropy to a sliding time window
of source code changes to capture the commit state of a project
and used linear regression to predict defects in several open
source projects [18], [17]. Canfora et al. used entropy to study
the relationship between several factors, including refactoring,
design patterns, and the number of contributers, and the
entropy of changes as defined by Hassan and Holt [9]. The
experiments yielded mixed results. Taylor et al. introduced
author entropy as discussed in the introduction [35], [34].
Krien et al. extended the concept by defining author entropy
across the distinct programming languages that a developer
contributes code to within a project [20], [21]. Their analysis
showed a clear negative relationship between language author
entropy and lines of code contributed.

Hindle et al. use topic analysis to study “what” a developer
is focused on but their work does not capture the degree to
which a developer is focused specific artifacts [19]. Others
have also studied the contributions of individual developers to
artifacts. Pinzger et al. studied the effect of network metrics
taken over the contribution network on software failures [28].
However, their results do not show significance of these
measures for prediction of failure proneness even though they
are significant in a linear regression model of defect counts.
Consequently, it is difficult to derive any direct understanding
of the relationship between the aforementioned measures and
defect proneness [10]. Cataldo et al. build on earlier work
in this area using network measures to more precisely define
software and work dependencies.

Ecology has inspired other software engineering work;
Calzolari used dynamic redator prey models to study main-
tenance effort [7]. Posnett et al. studied aggregation in SE
models and the threat of ecological inference risk [29]. Baudry
and Monperrus described several approaches for ecologically
inspired software engineering [3].

Our work takes a unified approach to focus and ownership
combining artifact and developer perspectives. This leads to
important new findings. After we present our theory below
we will discuss in detail how our work builds upon existing
measures.
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III. THEORY

In this paper, we consider the relationships between devel-
opers and modules. For expository purposes, we use the term
module in a the generic sense to represent a tangible unit of
code relevant to the research question. Module could refer to
a file, a package, a component, or even simply a function.

An individual developer is denoted by dj , for j ∈ 1 . . .m
and an individual module by mi, for i ∈ 1 . . . n. The total
contribution count to module i by developer j is denoted
by wij . Summing over all developers and all modules yields
the total number of contributions to the system as A =∑n

i=1

∑m
j=1 wij . We can also calculate the total number of

contributions that developer j makes to the system by Dj =∑n
i=1 wij . Similarly, the total number of contributions made to

module i by all developers is denoted by Mi =
∑m

j=1 wij . The
contribution wij can be measured in lines of code, commits,
or any other measure of contribution relevant to the studied
context. In this work we measure proportion of contribution
as the number of commits contributed by each author.

Diversity Our specific measure is conceptually based on
Shannon’s entropy, which measures the disorder or surprise
(viz., information) in a system. The definition of author entropy
given by Taylor et al. is precisely the concept of diversity from
ecology. Theoretical ecologists were among the first to employ
Shannon’s entropy as a measure of diversity in a species [16].
A straightforward explanation of what ecologists mean by
diversity can be found in a recent discussion by Camargo [8].
We summarize here for the purposes of clearly translating the
intuition to a software engineering setting. Camargo presents
the definition as follows:

H(Species Diversity) = -
S∑

i=1

pi log2 pi

Here S represents the total number of distinct species and pi
is the proportion of individuals that are of species i. If we
compare this to the definition due to Taylor et al. we can see
that where ecologists refer to species and individuals, Taylor
refers to developers and ownership. If all species are equal
in number, then diversity is high, if one particular species
dominates in number then the diversity measure will be low.
With respect to author entropy, however, diversity simply
measures the uniformity of the commits relative to each author.
If one author makes most of the commits, then low diversity is
taken to mean that one author dominates the commit activity.
Similarly, we can also consider the diversity of authorship
commit activity with respect to a module. A module that
has only one author is not diverse at all and a package with
many authors sharing the load has a high degree of diversity.
Diversity here is simply the diversity of commit behavior for
either authors over a module, or modules over an author.

Using the notation presented above (and also in Fig. 1) one
can formulate two distinct definitions of diversity, one with
respect to the contributions of author dj to all modules Hdj ,
and the other with respect to the contributions to a module mi

from all authors Hmi
, as follows:

Hdj
= -

n∑
i=1

(
wij

Dj
ln
wij

Dj

)
, Hmi

= -
m∑
j=1

(
wij

Mi
ln
wij

Mi

)
Specialization & Focus Specialization, in a general sense, is
the opposite of diversity; the more specialized a developer’s
behavior, the less diverse is his contribution to a project. This
property, proposed by Bluthgen et al. [6] in an ecological
setting, can be measured naturally in the bipartite graph
formulation described above. To distinguish our use from
the terminology in ecology, and to better reflect the actual
cognitive phenomena of concern in software development, we
prefer the term focus.

Using the above diversity measures, applied to both sides
of the contribution network to measure focus, is not advisable.
As Bluthgen et al. point out, this approach is undesirable
in an ecological setting; their arguments also apply in a
software development setting. An appropriate measure of focus
in software development should not only consider the diversity
of artifacts that a developer interacts with, but also, the
overall amount of activity that those artifacts are subject to. A
developer who only commits a few times to a popular package
with many commits, is less specialized than a developer who
makes similar commits to an unpopular package. A good
measure of focus should increase when a developer makes
most of the contributions to a package compared with others
who contribute to that package. To accomplish this, we want
to measure the difference between the distribution of commits
made by a developer to all modules and the distribution of
commits to the system represented by those modules.
Kullback-Liebler Divergence Kullback Liebler divergence,
or relative entropy, measures the difference between two
probability distributions. For probability distributions P and
Q the Kullback Liebler Divergence (KL) is defined as:

DKL(P ||Q) =
∑
i

ln
Pi

Qi

KL is a measure of the expected number of extra bits that
are required to code samples from P when using a code
based on Q. Bluthgen et al. define a species level diversity
measure, d, using the Kullback-Liebler Divergence. We exploit
this measure in our context to relate our two probability
distributions of interest.
Our Measures: DAF and MAF We introduce two mea-
sures: Developer Attention Focus , or DAF , measures the
divergence from the developer perspective, viz., the degree of
focus a developer exercises with respect to the artifact side of
the network. From the artifact side, Module Activity Focus ,
or MAF , measures the degree to which a module receives
focused attention. We define the proportion of commits made
by developer j to module i as q′ij = wij/Dj and the proportion
of commits made to each module i as r′ij = wij/Mi. The total
proportion of commits to each package is ri = Mi/A and the
total proportion of commits by each developer is qi = Dj/A.

We adapt the Bluthgen et al. notation to be compatible with
ours and substitute δj and δi in place of d to avoid confusion
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and to convey clearly which side of the network each metric is
associated with. This (un-normalized) measure compares the
distribution of the interactions with each network partner, viz.
developers and modules, to the overall partner contribution,

δj =

n∑
i=1

(
q′ij ln

q′ij
ri

)
, δi =

m∑
j=1

(
r′ij ln

r′ij
qj

)
.

DAF Intuition The intuition behind these measures is
straightforward, seen clearly after a small transformation;
using δj (un-normalized DAF) as an example we obtain

δj =

n∑
i=1

(
q′ij ln q

′
ij − q′ij ln ri

)
=

n∑
i=1

q′ij ln q
′
ij −

n∑
i=1

q′ij ln ri

=

(
−

n∑
i=1

q′ij ln ri

)
−

(
−

n∑
i=1

q′ij ln q
′
ij

)

=

(
−

n∑
i=1

wij

Dj
ln
Mi

A

)
−

(
−

n∑
i=1

wij

Dj
ln
wij

Dj

)
.

This measure is computed for each developer, viz. we fix j,
and it is computed over all modules. There are two terms in
the δj equation, which merit separate explanation.

The left term is the cross entropy of developer j’s contribu-
tions with the module level contributions from all developers.
The intuition is that if the proportion of a developer’s con-
tributions to each module are similar in distribution to the
proportion of commits to each module overall, then we are
unsurprised; the developer’s contributions mimic the project
as a whole. He works less on modules that are just a small
part of the overall system and works a great deal on the more
substantial modules. On the other hand, if the distributions
are dramatically different, then the developer’s contribution
is unexpected, increasing cross entropy, and hence, the focus
metric. If, e.g., he works solely on modules that comprise just
25% of the system, then his contributions are out of proportion
and should be seen as focused.

The right term corrects for a complication. Suppose that
the above mentioned 25% of the system is spread out over
many tiny modules that each represent a small fraction of the
system. Then, even though our developer’s contributions are
disproportionate (limited to just 25% of the system), they are
actually quite scattered, and we would not consider him so
focused; instead he is rather distracted. In this case we want
to penalize his focus score to reflect this distraction. This is
accomplished by the right term, which is simply developer
diversity as described in the previous section. The more spread
out a developer is, the higher his diversity score. In summary,
DAF is high when a developer both monopolizes packages
and is not distracted by too many other packages.
MAF Intuition The derivation of MAF mirrors DAF , so
we present only the final line to aid understanding:

δi =

− n∑
j=1

wij

Mi
ln
Dj

A

−
− n∑

j=1

wij

Mi
ln
wij

Mi

 .

This measure is taken from the complementary side of the
network and is computed for each module, viz. we fix i, and

compute the metric over all developers. While the computation
is virtually identical, it captures a different aspect of the
contribution network.

The left term is the cross entropy of the contributions to
the module, with the developer contributions to the system. As
before, if the distributions are similar, then the module receives
minimal contributions from developers who are not major
contributors to the overall system, and sufficient attention
from those developers most responsible for the system. In this
case, the module’s focus is low, and we’re not particularly
surprised. For example, if a README file has received a frac-
tion of a percent of the commits from a particular developer,
we’re not surprised so long as the file isn’t dominating that
developer’s attention. If, in fact, it is dominating, then this
excess attention is focused attention to the module. Similar
to DAF , the right term penalizes the focus for the diversity
of contributions. Modules equally contributed to by multiple
developers do get less focused attention than modules with
high ownership. In summary, MAF is high when a package
monopolizes a developer’s attention and receives little atten-
tion from other developers.
MAF and DAF are both normalized by the theoretical

maximum and minimum possible values of the measures.
For the max, δjmax = ln A/Dj and δimax = ln A/Pi. The
theoretical minimum value of 0 is typically not attainable in
the case where the proportional counts are based on integer
values, as is the case here, so a heuristic is used to find
a suitable minimum (See [6] for more detail)2. Using these
minimum and maximum values the δj is standardized to a 0
to 1 range with the following normalization:

DAFj =
δj − δjmin

δjmax − δjmin

, MAFi =
δi − δimin

δimax − δimin

.

Since these measures specifically take into account the
contributions that each developer makes and that each module
receives, their values are independent of this variation within
a network and can be used to compare the relative focus levels
of individual developers and modules.

Each metric can be interpreted as a deviation of contribu-
tion frequencies from a null model which assumes that all
developer/module pairs are contributed from/to in proportion
to the overall contribution to the system. In the simplest case
of a fully balanced network where all q′ij = r′ij the theoretical
minimum value of 0 will be achieved. When q′ij = r′ij the
cross entropy equals the entropy and focus is minimized.

In Section V we discuss how our metrics related to existing
work and present a small case study on a real system to help
illuminate how it is able to distinguish interesting cases. In
the next section we describe the data and methods used for
the case study and for the statistical analysis in Sect. VI.

IV. DATA AND METHODOLOGY

Data We extracted a selection of metrics often used for
defect prediction for seven projects maintained by the Apache
Software Foundation, listed in Table I. For each project we

2Also the R bipartite package, http://cran.r-
project.org/web/packages/bipartite/index.html
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Project Releases # Files # Packages
Avro 1.3.2 - 1.4.1 158-238 12-17
Cassandra 0.6.0 - 0.6.8 314-332 31-33
CXF 2.11-2.3.1 3086-4097 491-598
Ivy 2.0.0 - 2.2.0 481-498 65-67
Lucene 1.9.1 - 3.0.3 1010-957 102-85
Shindig 2.0.0, 2.0.1 811-812 75-75
Wicket 1.2.7 - 1.3.7 1776-1947 240-249

TABLE I: Apache Software Foundation projects used in this study.

used data from the source code repository and the Jira issue
tracking system to extract basic process metrics such as churn
and the number of commits and developers associated with
each file and package. The specific metrics used are described
briefly with each model description.
Jira is an issue and bug tracking system that manages a
database of issue reports submitted by developers and users.
Issues can be of various types including new features, improve-
ments, or defects. Jira enforces a basic development process
by mapping issue reports to version control commit messages.
It accomplishes this by cross linking Jira issue IDs extracted
from version control system commit log messages with the
associated report in the Jira database. We extracted the Jira
issues from the XML report available on the Apache Software
Foundation’s project website for each of the projects.
Version Control Version control systems, e.g. Git, SVN, and
CVS, facilitate collaboration among developers by maintaining
a history of changes and an associated log entry for each
change. To obtain the number of commits and developers
associated with each file we parse the log data retrieved from
the version control system. We use the Jira issue IDs and the
Git version control log to link issues associated with each
commit to the files involved in the commit to associate defect
counts with each file in the release.
Bug-Introducing Change For defect issues in the Jira
database we’d like to try to locate the files that induced the
defect fixing modification. The lines of code associated with
the changes that triggered such a modification are referred to
as “fix inducing code” as coined by Sliwerski et al. [33].

To identify the fix inducing code we use the SZZ algorithm
developed by Sliwerski-Zimmerman-Zeller [33]. We extract
commits associated with each defect fix as described above.
If a fix is associated with revision n then we apply git diff
to revision n− 1 and revision n to identify the specific lines
that were changed in the fix. We then use git blame on only
the changed lines to identify the revision responsible for the
fix inducing code. If the revision was changed after the defect
introduction then we do not associate post defect changes with
the defect, otherwise we associate the unique defect ID with
the file in the fix inducing revision. This allows us to identify
the unique, modulo SZZ accuracy, defects that can be blamed
on each file in the system.
Contribution Networks We described contribution networks
in Section I. To gauge the global focused attention of each
developer over the life of the project we built a network using
all entries in the commit graph over the full period of each

project that we studied. This approach results in static focused
attention values for each developer and for each module.

V. ANALYSIS AND A CASE STUDY

With respect to the methodology described by El Emam we
want to show that our new metrics MAF and DAF capture
interesting properties not captured by other metrics [13]. We
discuss this in an analytical setting first and conclude this
section with a case study. In Section VI we strengthen this
analysis with some statistical results.
Ownership The simplest measure of focus is module owner-
ship which is usually measured as the proportion of contribu-
tions to a module. The developer with the highest ownership is
identified as the module’s owner. Not surprisingly, ownership
shows no meaningful correlation withMAF but strong corre-
lation with both betweenness measures (see Sec. V); trivially,
ownership cannot capture any significant nature of developer
or module interaction as the measure itself considers only a
single developer and module in isolation.
Betweenness In prior research, betweenness in contribution
networks has been used as a proxy for developer focus.
It is a simple measure of module connectivity, measuring
the fraction of geodesic paths between developers that pass
through that module [15]. So if a module was touched by
fewer developers who themselves touched few other modules,
then betweenness will be low indicating high focus. We also
consider the “developer network edge betweenness” (DNBe-
tweenness), a collapsed view where developers are the nodes
of the graph and the modules connecting nodes form the
edges. Betweenness measures are often highly correlated with
the number of developers. As more developers touch a file,
the likelihood of betweenness goes up; so, however, does the
number of commits, the size of the code, the number of bug
fixes, and consequently, the number of defects (see Table IV).
Thus, betweenness, in practice, rarely adds any predictive or
actionable value beyond the raw developer count.
Diversity is a more sensitive measure that represents the
commit entropy of each module. Like betweenness, high
diversity values implies a lack of contribution focus. Low
values of diversity suggest low surprise at who is going to
commit next. Diversity doesn’t distinguish cases where this
surprise might be important, e.g. a device driver, with cases
where it is largely irrelevant, e.g. a README file.
Experience Some measures of experience consider the con-
tributions that a developer has made to the system along with
his contributions to an entity; specifically, Mockus’ experience
measure, although applied in a different setting, is the closest
to ours [24]. In fact, it can be shown that this measure is
equivalent to a normalization term minus the cross entropy
H(r′ij , qj). It does not, however, fully capture the nature of
developer “focus” as it does not capture diversity, does not
have a standard range, and most importantly, does not define
a developer focus metric such as DAF .

Additionally, it is worthwhile to note that the dual nature
of our measures permits an elegant computation, viz., that
the same code can be used to calulate either measure on
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Thiruvalluvan Douglas Phillip

avro.genavro
avro.io.parsing

avro.io avro.generic avro.reflect
avro.specific

avro avro.file avro.tool
avro.util

avro.mapred.tether

avro.mapred
default

avro.idl

avro.ipc
avro.ipc.trace

avro.ipc.stats

Fig. 2: The full bipartite network of Apache Avro with developers at the top and files on the bottom. Block and edge sizes represent the
number of commits either from, or to, developers and packages respectively.

the weighted adjacency matrix that represents the contribution
network simply by transposing the matrix to obtain the dual.
Avro Case Study Apache Avro is a remote procedure call
and serialization framework. It’s primary purpose is to provide
serialization for persistent data and a format for distributed
data exchange. It is a moderately-sized project with over 200
files. We gathered 110 distinct commits of the project between
Jan 2010 and Sep 2010. During that time there were only
three committers to the project. Because of the manageable
size we use it here to illustrate some properties of various
focus metrics. The full bipartite package level contribution
network can be seen in Fig. 2. Block and edge sizes in the
graph represent the number of commits either from, or to,
developers and modules respectively. We first considerMAF
in concert with related measures and then DAF .
MAF Of interest here are the previously defined entropy
measures, the simple proportional measure of ownership, and
the concepts of node and edge betweenness.

Ownership is the simplest to discuss; consider package
avro in Fig. 2 which is owned by Douglas with ownership
of 0.78. With a MAF score of 0.04 we might conclude
that ownership and MAF are inversely related. However
avro.specific has both higher ownership, and higher
MAF . Table IV shows that MAF and ownership are
not strongly correlated. Betweenness considers more of the
network, but, since betweenness measures, as in Meneely
et al. [23], do not take into account the relative contribution
of each developer, they are often highly correlated with
the number of developers and other “size” metrics. Further,
because in this case the developers are tightly connected by the
modules, neither form of betweenness discriminates interesting
cases.

The packages avro.file and avro.specific have
identical betweenness values of 0.125 indicating that they
are unfocused artifacts. Their diversity values, however, lie
at either end of the spectrum. A total of three developers
have contributed to avro.file which has a diversity score

of 0.759. The width of the ribbon connecting Phillip to this
package indicates that he has made a modest but signifi-
cant proportion of the commits to the package. In addition
Thiruvalluvan has also made at least one commit, although
his contribution is smaller. Douglas has made most of the
commits, but even so, the total number of contributions is still
relatively small. The package avro.specific, on the other
hand, has only two contributors and Douglas clearly owns the
lion’s share resulting in a much lower diversity value of 0.234,
indicating the relative lack of surprise at who will make the
next commit.

In the previous example, diversity was able to capture
variance in contribution that betweenness cannot. Unfortu-
nately, diversity is insufficient to capture many examples of
focus. avro.ipc.trace and avro have almost identical
diversity values of 0.673 and 0.683 respectively. While their

Ownership Diversity Focus Btw DNE Bugs
MAF Btw

avro 0.78 0.67 0.04 0.12 1 1
avro.file 0.71 0.76 0.03 0.12 1 2

avro.specific 0.94 0.23 0.09 0.12 0 1
avro.tool 0.67 0.80 0.05 0.12 1 0

avro.ipc.stats 0.57 0.68 0.21 0.00 0 0
avro.io 0.75 0.56 0.34 0.12 0 0

avro.io.parsing 0.86 0.41 0.36 0.12 0 1
avro.genavro 1.00 0.00 0.23 0.00 0 0
avro.generic 0.75 0.72 0.01 0.12 1 4
avro.reflect 0.75 0.72 0.00 0.12 1 0

avro.util 1.00 0.00 0.10 0.00 0 0
avro.ipc 0.93 0.24 0.10 0.00 0 2

avro.mapred 1.00 0.00 0.12 0.00 0 0
avro.mapred.tether 1.00 0.00 0.10 0.00 0 0

avro.idl 1.00 0.00 0.02 0.00 0 0
avro.ipc.trace 0.60 0.67 0.14 0.00 0 0

default 1.00 0.00 0.00 0.00 0 0

TABLE II: MAF discriminates interesting cases better than other
ownership metrics in Apache Avro.
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betweenness values are different, again, so are their number
of developers. Package avro.ipc.stats also has a similar
diversity score of 0.683 and like avr.ipc.trace has only
two developers, thus, its betweenness value is 0. In this exam-
ple, MAF is able to discriminate between many interesting
cases that other metrics fail to capure.

DAF Diversity #Commits Bug Fixes Bugs
Douglass 0.23 2.48 71 26 7

Thiruvalluvan 0.51 1.57 25 11 2
Philip 0.30 1.94 14 2 2

TABLE III: DAF scores reflect developer role in the Avro project.

DAF From the contribution network we can see at a glance
that Thiruvalluvan probably has the greatest focus. Most
of his commits are focused in two packages whereas both
Douglas and Philip do not appear to have any packages
that dominate their contribution patterns. This distinction is
important; clearly Douglass dominates the avro package and
one can view the package as receiving focused contributions,
however, it does not dominate Douglas’ contributions to the
system. Even though it is the package that Douglas has
contributed to the most, it has received, at most, approximately
twice the contributions of the next smaller package and there
are at least three or four such packages. Compare with
Thiruvalluvan who’s largest contribution accounts for about
half of his total contributions to the system. In this instance,
developer diversity (author entropy) captures this difference
nicely ranking Thiruvalluvan as the most focused developer
and Douglas as the least focused (See Table III).

Consider again packages avro.file and avro.-
specific, which have identical betweenness values and
drastically different diversity values, the MAF values are
both fairly low at 0.034 and 0.087 respectively. The skewed
contribution from Douglas yields the low diversity score
indicating high focused attention, but the contribution from
Douglas does not represent a disproportionate focus from
his perspective. It cannot be argued that Douglas is focused
on this package, his efforts are spread out fairly evenly
over a number of packages. So MAF and DAF measures
capture focus from both the perspective of the developer and
the module. A focused package is one that receives a lot
of attention from few developers who devote most of their
attention to that package.

Interestingly, the two packages with the highest focused
activity scores are avro.io.parsing and avro.io. Both
of these packages are dominated by Thiruvalluvan. By simply
looking at the web we might conclude that Thiruvalluvan is
something of an I/O specialist, that Douglas is the project

MAF Ownership Diversity Btw DNE Bugs
MAF 1.00 -0.07 -0.18 -0.19 0.05 -0.19

Btw -0.19 -0.47 0.66 1.00 0.70 0.49
DNE 0.05 -0.49 0.85 0.70 1.00 0.53

TABLE IV: Spearman rank correlation of network measures and
MAF . (Btw=Betweeness, DNE=DNEMaxBetweenness)

Fig. 3: DAF (on left) exhibits greater mean and variance across all
projects than MAF (on right).

leader, and that both he and Phillip exhibit broader, less
focused attention. Both the MAF and DAF scores, which
are mostly low with the exception of Thiruvalluvan and his
focus on I/O, support this hypothesis.

VI. RESULTS AND DISCUSSION

We show in Fig. 3 the distribution of DAF , left, andMAF
over all projects, where the modules are files. While DAF
exhibits distinct means and variances for different projects,
there is no apparent correlation with project size (viz. Table I).
The mean MAF scores are much lower, approximately 0.10
with respect to files. Unlike DAF , however, the distributions
are similar across projects. This is to be expected as developers
touch more files than files are touched by developers due to
the asymmetry in the contribution network.

For the research questions below, we used negative binomial
regression, NBR, to model count data against parameters of
interest. NBR is a generalized linear model used to model
non-negative integer responses. It is an appropriate technique
to use here as it can handle over- dispersion, e.g., cases where
the variance is greater than the mean in the response [12]. Our
focus is on understanding the mean, within project, behavior;
consequently, we view each project as a random effect in
a pooled model incorporating it as a grouping factor. The
project factor is used to capture the between project variance
in the response. In all cases we log transformed independent
count variables to stabilize the variance and improve the model
fit [12].

RQ1: Overall and top-contributor attention focus
As we saw with the Avro project, it’s often the case in

OSS that there is a dominant project contributor. We might
expect that project leaders exhibit lower attention focus if they
contribute a significant proportion of the project’s code. As a
developer’s contribution increases, it becomes increasingly dif-
ficult to contribute a greater proportion of code than expected
to the many files currently touched. The dominant contributor
DAF for each project is listed in Table V. In each case, the
focus scores of the dominant contributors are below the mean.

To determine the level of contribution by focused devs we
regressed the number of commits against the number of files
touched and the developers DAF score. A manual exami-
nation of the data revealed that the top 5% of contributors
touch significantly more files than the remaining developers
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Ivy Avro Wicket Shindig Lucene Cassandra CXF
DAF 0.17 0.23 0.20 0.08 0.19 0.09 0.14
DAF 0.41 0.54 0.57 0.41 0.56 0.43 0.57

TABLE V: Project leaders are less focused than average.

necessating the inclusion of #files in the regression model. We
can see from the model in Table VI that the DAF coefficient is
only significant at a 10% level after controlling for the number
of files touched.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.0924 0.3061 -0.30 0.7628

log(files) 1.0037 0.0366 27.43 < 2e− 16
DAF -0.6511 0.3898 -1.67 0.0948

TABLE VI: Developers with high DAF contribute less code.

So while focused developers do contribute to fewer files,
even while controlling for this factor, viz. holding it constant,
they do not contribute as much code as more broadly focused
developers.
Result 1: Project leaders and top contributors tend to exhibit
lower attention focus than others. The effect of attention focus
on contribution by the top contributors is significant at the 10%
level after controlling for the number of files changed.

RQ2: Do narrowly focused developers create fewer de-
fects?

To answer this question we regressed the file contribution
pattern of each developer against the number of defects
introduced by that developer. We are interestd in the degree
to which focused attention could explain their contribution of
defects to the software over its lifetime.

For this experiment we evaluated the entire contribution
network for each project obtaining a mean attention focus
score for each developer over the life of the project. We
modeled the total number of induced defects attributed to
each developer against the DAF scores, wrt files. We lim-
ited the number of size-based control variables (which are
strongly inter-correlated) to avoid a high variance inflation
factor VIF [12]. We included the number of files to control
for the spread of developer focus simply based on the number
of artifacts changed. Similarly, we include the number of
commits to control for the positive relationship between the
number of changes made and the number of defects.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.4960 0.4544 -3.29 0.0010

log(commits) 0.3266 0.1260 2.59 0.0095
log(files) 0.6998 0.1434 4.88 < 2e− 16
DAF -1.2979 0.5561 -2.33 0.0196

TABLE VII: Developers with high DAF produce fewer bugs.

As can be seen from the model details in Table VII, after
controlling for the number of files as well as the number of
changes, DAF has a negative effect on the number of defects
induced by a developer, i.e. the more narrowly focused the

developer, the fewer defects that will be introduced. Our results
at the package level were quite similar which suggests that this
relationship is robust to ecological inference risk [29].

Result 2: Narrowly focused developers introduce fewer de-
fects at both the file and package level.

RQ3: Do files that exhibit narrowly focused activity have
fewer defects?

It follows that if developers with narrow focus introduce
fewer defects then we might find that files that are the center
of narrow activity focus, i.e. that have a low MAF , would
have fewer defects. We considered this question by regressing
MAF and other file properties against the number of defects
induced in each file. Here we control for file, size, the number
of commits, and the number of developers. The details of the
model are shown in Table VIII. Surprisingly, the direction of
the coefficient is positive, i.e. increasing focused activity has a
negative impact on software quality while holding other factors
constant.

We included ownership in the model to test whether this
simple measure was able to capture a similar relationship with
defects. We placed both ownership metrics in the model last
so that any collinearity with other variables would attribute the
shared variance to the control. Both the ownership andMAF
coefficients were stable in either order, however, ownership
had high collinearity with the number of commits whereas
MAF did not. We find that MAF accounts for four times
the explained deviance of ownership in this model.

When considered in concert with our RQ2 this suggests that
while it is important for a developer to focus his efforts to
avoid excessive unfocused contribution, it is also important
for files to receive some general attention. We also note
that increased ownership is negatively correlated with defects
which is in agreement with previous results, however, is not
significant at the 5% level.

There could be several factors driving this result. Files
with highMAF may be more complex and are consequently
naturally more defect prone. It may also simply be the case
that if attention is too focused in a file then this indicates that
greater diversity is necessary in order that defects are found.

Result 3: Increased file activity focus results in a greater
number of defects.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.1503 0.2499 -16.61 < 2e− 16

log(commits) 0.8733 0.0618 14.13 < 2e− 16
log(devs) 0.1697 0.0916 1.85 0.0639

log(loc) 0.2261 0.0290 7.81 < 2e− 16
ownership -0.3397 0.1901 -1.79 0.0740
MAF 0.9430 0.2647 3.56 0.0004

TABLE VIII: Negative binomial model detail for for the affect of
MAF and ownership against defects in files. The model includes
controls for the number of developers, the number of commits, and
the lines of code. MAF is significant after controlling for the number
of changes and is positively associated with the number of defects in
files.
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VII. CONCLUSION

The focus measures we introduced have roots in ecology but
are very well suited for analysis of focus and focus change in
a symmetrical setting between developers and artifacts both
globaly and localy. In addition, focus used in modeling allows
for easy interpretation of results. E.g., the effect of focus
on defect introduction is particularly clear: when developer
focus is higher, fewer defects introduced. With files, the
effect of their focus on defects is clearly not strong. This
is a welcome side-effect of the artifact/developers symmetry
of this measure: it allows for deconvolving the joint effects
into separate contributions of the artifact and the developers,
so they can be considered and reasoned about individually,
while still considering their interaction within the contribution
network.
Threats To Validity We recognize a few threats. Complex
files are more defective; it would be revealing to study the
relationship between code complexity and focus. However,
since file complexity is typically correlated with code size,
and our models do take size into account, the effects of file
complexity on our results is likely small. Since our measures
are based on information theory, they inherit the associated
benefits and challenges. In particular, information theoretic
measures are well known to necessitate substantial amounts
of data to yield appropriate results. Neither metric is suitable
when either side of the network is a singleton in which case the
metrics are undefined. However, in this case, simple diversity
paints a complete picture of focus. Finally, our focus measures
can be useful in practice as an assessment tool, as defocus
with time is correlated with defects introduced. Sound coding
practices could incorporate these measures.
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