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Context: Reverse engineering is creating
high level views of the system

Time

Requirements
Analysis

Design

Implementation
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Context: History holds useful information for
reverse engineering

The doctor always looks at my health file

Historical information is useful but, it is hidden among
huge amounts of data

The more data the more techniques are needed to analyze
it

Version 1 Version 2 Version 3     … Version n

N versions means
N times more data
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Context: Many techniques were developed

[Lanza, Ducasse ‘02]
[Lehman et al. ‘01]

[Gall etal. ‘03]

…
Evolution patterns

Trend analysis

Co-change
analysis

[Eick et al. ‘02]Authors analysis
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[Lanza, Ducasse ‘02]
[Lehman etal. ‘01]

[Gall etal. ‘03]

…
Evolution patterns

Trend analysis

Co-change
analysis

[Eick etal. ‘02]Authors analysis

Problem: Current approaches rely on ad-hoc
models or on too specific meta-models

Research question:

How can we build a generic meta-model?
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Overview
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Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements
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Version

Version

History

History

VersionHistory

Hismo:
Modeling History

Version

Version

History

History

VersionHistory
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Example: Evolution Matrix reveals different
evolution patterns

Class

NOM

NOA

versions

Polymetric
view

[Lanza, Ducasse ‘02]

Pulsar
Class

Idle
Class

White Dwarf
Class

Supernova
Class

Thesis:

Evolution needs to be modeled
as a first class entity
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Solution: History encapsulates and
characterizes the evolution

versions

Pulsar
Class History

ClassHistory
Idle
Class History

White Dwarf
Class History

Supernova
Class History

isPulsar
isIdle
…
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Hismo: The history meta-model

System
History

System
Version

Class
Version

Class
History
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… but, what about relationships?

System
History

System
Version

Class
Version

Class
History

Inheritance
History

Inheritance
Version
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Hismo is obtained by transforming the
structural meta-model

History Version

VersionHistory

History Version
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Version

Version

History

History

VersionHistory
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Application:
History measurements
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Problem: History holds useful information
hidden among large amounts of data

How much was a class changed?
When was a class changed?
…
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|NOMi(C)-NOMi-1(C)|ENOM(C)= ∑
i=2

n

5 3 4 41

ENOM(C)=       4     +     2     +     1    +     0         =  7

History can be measured:
How much was a class changed?

Evolution of Number
of Methods

13 27
73
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Latest Evolution of
Number of Methods

Earliest Evolution of
Number of Methods

LENOM(C)= ∑
i=2

n
|NOMi(C)-NOMi-1(C)| 2i - n

EENOM(C)= ∑
i=2

n
|NOMi(C)-NOMi-1(C)| 22 - i

5 3 4 41

LENOM(C)=    4 2-3  +  2 2-2  +  1 2-1  +   0 20     = 1

EENOM(C)=    4 20   +  2 2-1   +  1 2-2  +   0 2-3       = 5.125 

History can be measured:
When was a class changed?

13 27
73
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History measurements compress
aspects of the evolution into numbers

2

2

4

2

2

2

3

3

1

2

5

4

2

2

B

C

D

A 7

9

3

2

5 3 4E 4 5.1217

000

213

1.375.757

3.253.377

EENOMLENOMENOM

2

2

1
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History measurements compress
aspects of the evolution into numbers

13 27
73

Late changer

Dead stable

Early changer

Balanced changer

B

C

D

A

E 5.1217

000

213

1.375.757

3.253.377

EENOMLENOMENOM
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Many measurements can be defined at
different levels of abstraction …

13 27
73

Evolution
Latest/Earliest Evolution
Stability
Historical Max/Min
Historical Average
Growth Trend
…

of

Number of Methods
Number of Statements
Cyclomatic Complexity
Lines of Code
Number of Classes
Number of modules
…

… But measurements are a means not a goal
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Application:
Yesterday’s Weather



 © Tudor Gîrba 21/47

Common Wisdom: The recently changed
parts are likely to change in the near future

Is the common wisdom relevant?

Yesterday’s Weather metaphor:
It expresses the chances of having the same weather today as we
had yesterday
It is location specific

Sahara - 90%Switzerland - 30%

[Mens,Demeyer ‘01]
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Yesterday’s Weather: For each given version
we check the common wisdom

Past Late
Changers

Future Early
Changers

Present
version

Past
versions

Future
versionshit

YesterdayWeatherHit(present):

   past:=histories.topLENOM(start, present)
   
   future:=histories.topEENOM(present, end)

   past.intersectWith(future).notEmpty()
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Overall Yesterday’s Weather shows the
localization of changes in time

hit hit hit hithit hit hit hithit

7 hits

8 possible
hits

= 87%
3 hits

8 possible
hits

= 37%

hit

Case studies:

40 versions of CodeCrawler (180 classes): 100%
40 versions of Jun (700 classes): 79%
40 versions of Jboss (4000 classes): 53%

YW =YW =
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Application:
History-based Detection Strategies



 © Tudor Gîrba 25/47

Context: Detection Strategies detect design
flaws based on measurements

Example: God Class
Maintainability problem because it encapsulates a lot of
knowledge

Class ATFD > 40

Class WMC > 75

Class TCC < 0.2

Class NOA > 20

AND

AND

OR God Class

[Marinescu ‘04]
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History-based Detection Strategies
take evolution into account

Example: a Stable God Class is not necessarily a bad one

History Last God Class

History Stability > 95%
AND Stable God Class

Case study: 5 out of 24 God Classes in Jun were stable
and harmless
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Application:
Characterizing the evolution

of class hierarchies
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Context: Given the evolution of a hierarchy …

B

A

B

A

BC

A

BC

D

A

BC

D

A

ED

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

time
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How were the hierarchies evolved?

… but useful information is hidden among large
amounts of data
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Hierarchy Evolution Complexity View
characterizes class hierarchy histories

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

A

B

E

C

D

ENOM

ENOS

Removed

Age

Removed

Age Inheritance
History

Class
History
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Case study: Class hierarchies in Jun reveal
evolution patterns

Old
Stable
Balanced
Reliable inheritance

Persistent
Unbalanced
Stable
Reliable inheritance

Old
Unstable
Unbalanced
Unreliable inheritance

Young
Unstable root
Reliable inheritance

Newborn
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Application:
Detecting co-change patterns
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Context: Repeated co-changes reveal
hidden dependencies

A

B

C

D

E

v1 v2 v3 v4 v5 v6

Can we identify co-change
patterns like:

Parallel Inheritance
Shotgun Surgery
…

?

[Gall etal. ‘98]
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Formal Concept Analysis (FCA) finds
elements that have properties in common

A

B

C

D

E

P1 P2 P3 P4 P5 P6

(A,D,E)
(P2)

(A,D)
(P2,P6)

(A,B,C,D)
(P6)

(A,B,C,D,E)
()

(D,E)
(P2,P4)

(A,B,C)
(P5,P6)

(A)
(P2,P5,P6)

(D)
(P2,P4,P6)

(C)
(P3,P5,P6)

()
(P1,P2,P3,P4,P5,P6)

FCA

To use FCA, we need to map our interests
on elements and properties 

[Ganter, Wille ‘99]



 © Tudor Gîrba 35/47

Formal Concept Analysis (FCA) finds
elements that have properties in common

A

B

C

D

E

P1 P2 P3 P4 P5 P6

(A,D,E)
(P2)

(A,D)
(P2,P6)

(A,B,C,D)
(P6)

(A,B,C,D,E)
()

(D,E)
(P2,P4)

(A,B,C)
(P5,P6)

(A)
(P2,P5,P6)

(D)
(P2,P4,P6)

(C)
(P3,P5,P6)

()
(P1,P2,P3,P4,P5,P6)

FCA

To use FCA, we need to map our interests
on elements and properties 

[Ganter, Wille ‘99]
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We use FCA to identify entities that
co-changed repeatedly

A

B

C

D

E

v1 v2 v3 v4 v5 v6

(A,D,E)
(v2)

(A,D)
(v2,v6)

(A,B,C,D)
(v6)

(A,B,C,D,E)
()

(D,E)
(v2,v4)

(A,B,C)
(v5,v6)

(A)
(v2,v5,v6)

(D)
(v2,v4,v6)

(C)
(v3,v5,v6)

()
(v1,v2,v3,v4,v5,v6)

FCA

Elements = Histories
Properties = “changed in version X”
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Example: Parallel inheritance denotes
children added in several hierarchies

0 1 1 1 2 4A

AA A A A A

Elements = ClassHistories
Properties = “changed number of 

           children in version X”

v1 v2 v3 v4 v5 v6

Case study: JBoss

ServiceMBeanSupport
JBossTestCase

EJBLocalHome
EJBLocalObject

9
versions

14
versions
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Application:
Ownership map
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Context: The code history might tell you what
happened, but not why it happened

files

time

[Rysselberghe, Demeyer ‘04]

Who is responsible for this?

Case study: Outsight
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We color the lines to show which author
owned which files in which period

File History A

File History B

Green author
large commit

Green author
ownership

Blue author
small commit
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The commit history shows what happened
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Ownership Map shows which author
owned which files in which period
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d(A, B) = ∑ min2{ | a - b | b ∈ B }

We cluster the file histories to favor
colored blocks inside each module

We use the Hausdorf distance between the commit
timestamps

a ∈ A

B

A
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Ownership Map on alphabetically ordered
files is not very useful, but …
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The ordered Ownership Map reveals
developer patterns

DialogueMonologue

Edit Takeover

Familiarization
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Version
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History

History

VersionHistory
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Implementation:

Both Hismo and its applications
are implemented in 

one single infrastructure
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Implementation: All tools are integrated into Moose

Van

Moose

CodeCrawler Chronia

13 27
73

ConAn

Integration mechanismModel repository Extensible meta-model
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Conclusion: Hismo offers a uniform way of
expressing evolution analyses

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements
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Questions?

Version

Version

History

History

VersionHistory
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Hismo: History is a sequence of Versions, where
a Version adds the notion of time to Snapshot

History Version Snapshot

date: Date

Class

Method

Class
Version

Method
Version

Class
History

Method
History

… … …

*1 * 1
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The techniques are orthogonal to the type of data

Node = class

Edge = inheritance

Node = Class History

Edge = Inheritance History
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The current versioning systems record snapshots

What we would like
Preserve the identity in the environment
Record changes as they happen

Entity identity: Are two entities at different points
in time the versions of the same history?

What are the names?

What are the properties?
ver 1 ver 2


