
Software Wartung und Evolution
Modeling History with Metamodels

Harald Gall
Institut für Informatik

Universität Zürich
http://seal.ifi.unizh.ch

Modeling History
to Understand Software
Evolution

© 2007, Tudor Gîrba

13 27
73

 © Tudor Gîrba 3/47

Context: Reverse engineering is creating
high level views of the system

Time

Requirements
Analysis

Design

Implementation

 © Tudor Gîrba 4/47

Context: History holds useful information for
reverse engineering

The doctor always looks at my health file

Historical information is useful but, it is hidden among
huge amounts of data

The more data the more techniques are needed to analyze
it

Version 1 Version 2 Version 3 … Version n

N versions means
N times more data

 © Tudor Gîrba 5/47

Context: Many techniques were developed

[Lanza, Ducasse ‘02]
[Lehman et al. ‘01]

[Gall etal. ‘03]

…
Evolution patterns

Trend analysis

Co-change
analysis

[Eick et al. ‘02]Authors analysis

 © Tudor Gîrba 6/47

[Lanza, Ducasse ‘02]
[Lehman etal. ‘01]

[Gall etal. ‘03]

…
Evolution patterns

Trend analysis

Co-change
analysis

[Eick etal. ‘02]Authors analysis

Problem: Current approaches rely on ad-hoc
models or on too specific meta-models

Research question:

How can we build a generic meta-model?

 © Tudor Gîrba 7/47

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Version

Version

History

History

VersionHistory

Hismo:
Modeling History

Version

Version

History

History

VersionHistory

 © Tudor Gîrba 8/47

Example: Evolution Matrix reveals different
evolution patterns

Class

NOM

NOA

versions

Polymetric
view

[Lanza, Ducasse ‘02]

Pulsar
Class

Idle
Class

White Dwarf
Class

Supernova
Class

Thesis:

Evolution needs to be modeled
as a first class entity

 © Tudor Gîrba 9/47

Solution: History encapsulates and
characterizes the evolution

versions

Pulsar
Class History

ClassHistory
Idle
Class History

White Dwarf
Class History

Supernova
Class History

isPulsar
isIdle
…

 © Tudor Gîrba 10/47

Hismo: The history meta-model

System
History

System
Version

Class
Version

Class
History

 © Tudor Gîrba 11/47

… but, what about relationships?

System
History

System
Version

Class
Version

Class
History

Inheritance
History

Inheritance
Version

 © Tudor Gîrba 12/47

Hismo is obtained by transforming the
structural meta-model

History Version

VersionHistory

History Version

 © Tudor Gîrba 13/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Application:
History measurements

13
27

73

 © Tudor Gîrba 14/47

2

2

4

2

2

2

3

3

1

2

5

4

2

2

7

9

3

2

5 3 4 4

2

2

1

Problem: History holds useful information
hidden among large amounts of data

How much was a class changed?
When was a class changed?
…

 © Tudor Gîrba 15/47

|NOMi(C)-NOMi-1(C)|ENOM(C)= ∑
i=2

n

5 3 4 41

ENOM(C)= 4 + 2 + 1 + 0 = 7

History can be measured:
How much was a class changed?

Evolution of Number
of Methods

13 27
73

 © Tudor Gîrba 16/47

Latest Evolution of
Number of Methods

Earliest Evolution of
Number of Methods

LENOM(C)= ∑
i=2

n
|NOMi(C)-NOMi-1(C)| 2i - n

EENOM(C)= ∑
i=2

n
|NOMi(C)-NOMi-1(C)| 22 - i

5 3 4 41

LENOM(C)= 4 2-3 + 2 2-2 + 1 2-1 + 0 20 = 1

EENOM(C)= 4 20 + 2 2-1 + 1 2-2 + 0 2-3 = 5.125

History can be measured:
When was a class changed?

13 27
73

 © Tudor Gîrba 17/47

History measurements compress
aspects of the evolution into numbers

2

2

4

2

2

2

3

3

1

2

5

4

2

2

B

C

D

A 7

9

3

2

5 3 4E 4 5.1217

000

213

1.375.757

3.253.377

EENOMLENOMENOM

2

2

1

13 27
73

 © Tudor Gîrba 18/47

History measurements compress
aspects of the evolution into numbers

13 27
73

Late changer

Dead stable

Early changer

Balanced changer

B

C

D

A

E 5.1217

000

213

1.375.757

3.253.377

EENOMLENOMENOM

 © Tudor Gîrba 19/47

Many measurements can be defined at
different levels of abstraction …

13 27
73

Evolution
Latest/Earliest Evolution
Stability
Historical Max/Min
Historical Average
Growth Trend
…

of

Number of Methods
Number of Statements
Cyclomatic Complexity
Lines of Code
Number of Classes
Number of modules
…

… But measurements are a means not a goal

 © Tudor Gîrba 20/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Application:
Yesterday’s Weather

 © Tudor Gîrba 21/47

Common Wisdom: The recently changed
parts are likely to change in the near future

Is the common wisdom relevant?

Yesterday’s Weather metaphor:
It expresses the chances of having the same weather today as we
had yesterday
It is location specific

Sahara - 90%Switzerland - 30%

[Mens,Demeyer ‘01]

 © Tudor Gîrba 22/47

Yesterday’s Weather: For each given version
we check the common wisdom

Past Late
Changers

Future Early
Changers

Present
version

Past
versions

Future
versionshit

YesterdayWeatherHit(present):

 past:=histories.topLENOM(start, present)

 future:=histories.topEENOM(present, end)

 past.intersectWith(future).notEmpty()

 © Tudor Gîrba 23/47

Overall Yesterday’s Weather shows the
localization of changes in time

hit hit hit hithit hit hit hithit

7 hits

8 possible
hits

= 87%
3 hits

8 possible
hits

= 37%

hit

Case studies:

40 versions of CodeCrawler (180 classes): 100%
40 versions of Jun (700 classes): 79%
40 versions of Jboss (4000 classes): 53%

YW =YW =

 © Tudor Gîrba 24/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Application:
History-based Detection Strategies

 © Tudor Gîrba 25/47

Context: Detection Strategies detect design
flaws based on measurements

Example: God Class
Maintainability problem because it encapsulates a lot of
knowledge

Class ATFD > 40

Class WMC > 75

Class TCC < 0.2

Class NOA > 20

AND

AND

OR God Class

[Marinescu ‘04]

 © Tudor Gîrba 26/47

History-based Detection Strategies
take evolution into account

Example: a Stable God Class is not necessarily a bad one

History Last God Class

History Stability > 95%
AND Stable God Class

Case study: 5 out of 24 God Classes in Jun were stable
and harmless

 © Tudor Gîrba 27/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Application:
Characterizing the evolution

of class hierarchies

 © Tudor Gîrba 28/47

Context: Given the evolution of a hierarchy …

B

A

B

A

BC

A

BC

D

A

BC

D

A

ED

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

time

 © Tudor Gîrba 29/47

How were the hierarchies evolved?

… but useful information is hidden among large
amounts of data

 © Tudor Gîrba 30/47

Hierarchy Evolution Complexity View
characterizes class hierarchy histories

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

A

B

E

C

D

ENOM

ENOS

Removed

Age

Removed

Age Inheritance
History

Class
History

 © Tudor Gîrba 31/47

Case study: Class hierarchies in Jun reveal
evolution patterns

Old
Stable
Balanced
Reliable inheritance

Persistent
Unbalanced
Stable
Reliable inheritance

Old
Unstable
Unbalanced
Unreliable inheritance

Young
Unstable root
Reliable inheritance

Newborn

 © Tudor Gîrba 32/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Application:
Detecting co-change patterns

 © Tudor Gîrba 33/47

Context: Repeated co-changes reveal
hidden dependencies

A

B

C

D

E

v1 v2 v3 v4 v5 v6

Can we identify co-change
patterns like:

Parallel Inheritance
Shotgun Surgery
…

?

[Gall etal. ‘98]

 © Tudor Gîrba 34/47

Formal Concept Analysis (FCA) finds
elements that have properties in common

A

B

C

D

E

P1 P2 P3 P4 P5 P6

(A,D,E)
(P2)

(A,D)
(P2,P6)

(A,B,C,D)
(P6)

(A,B,C,D,E)
()

(D,E)
(P2,P4)

(A,B,C)
(P5,P6)

(A)
(P2,P5,P6)

(D)
(P2,P4,P6)

(C)
(P3,P5,P6)

()
(P1,P2,P3,P4,P5,P6)

FCA

To use FCA, we need to map our interests
on elements and properties

[Ganter, Wille ‘99]

 © Tudor Gîrba 35/47

Formal Concept Analysis (FCA) finds
elements that have properties in common

A

B

C

D

E

P1 P2 P3 P4 P5 P6

(A,D,E)
(P2)

(A,D)
(P2,P6)

(A,B,C,D)
(P6)

(A,B,C,D,E)
()

(D,E)
(P2,P4)

(A,B,C)
(P5,P6)

(A)
(P2,P5,P6)

(D)
(P2,P4,P6)

(C)
(P3,P5,P6)

()
(P1,P2,P3,P4,P5,P6)

FCA

To use FCA, we need to map our interests
on elements and properties

[Ganter, Wille ‘99]

 © Tudor Gîrba 36/47

We use FCA to identify entities that
co-changed repeatedly

A

B

C

D

E

v1 v2 v3 v4 v5 v6

(A,D,E)
(v2)

(A,D)
(v2,v6)

(A,B,C,D)
(v6)

(A,B,C,D,E)
()

(D,E)
(v2,v4)

(A,B,C)
(v5,v6)

(A)
(v2,v5,v6)

(D)
(v2,v4,v6)

(C)
(v3,v5,v6)

()
(v1,v2,v3,v4,v5,v6)

FCA

Elements = Histories
Properties = “changed in version X”

 © Tudor Gîrba 37/47

Example: Parallel inheritance denotes
children added in several hierarchies

0 1 1 1 2 4A

AA A A A A

Elements = ClassHistories
Properties = “changed number of

 children in version X”

v1 v2 v3 v4 v5 v6

Case study: JBoss

ServiceMBeanSupport
JBossTestCase

EJBLocalHome
EJBLocalObject

9
versions

14
versions

 © Tudor Gîrba 38/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Application:
Ownership map

 © Tudor Gîrba 39/47

Context: The code history might tell you what
happened, but not why it happened

files

time

[Rysselberghe, Demeyer ‘04]

Who is responsible for this?

Case study: Outsight

 © Tudor Gîrba 40/47

We color the lines to show which author
owned which files in which period

File History A

File History B

Green author
large commit

Green author
ownership

Blue author
small commit

 © Tudor Gîrba 41/47

The commit history shows what happened

 © Tudor Gîrba 42/47

Ownership Map shows which author
owned which files in which period

 © Tudor Gîrba 43/47

d(A, B) = ∑ min2{ | a - b | b ∈ B }

We cluster the file histories to favor
colored blocks inside each module

We use the Hausdorf distance between the commit
timestamps

a ∈ A

B

A

 © Tudor Gîrba 44/47

Ownership Map on alphabetically ordered
files is not very useful, but …

 © Tudor Gîrba 45/47

The ordered Ownership Map reveals
developer patterns

DialogueMonologue

Edit Takeover

Familiarization

 © Tudor Gîrba 46/47

Version

Version

History

History

VersionHistory

Overview

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Implementation:

Both Hismo and its applications
are implemented in

one single infrastructure

 © Tudor Gîrba 47/47

Implementation: All tools are integrated into Moose

Van

Moose

CodeCrawler Chronia

13 27
73

ConAn

Integration mechanismModel repository Extensible meta-model

 © Tudor Gîrba 48/47

Conclusion: Hismo offers a uniform way of
expressing evolution analyses

Hismo

Applications

Yesterday’s
Weather

History-based
Detection
Strategies

Hierarchy
evolution

Co-change
patterns

Ownership
Map

Historical
measurements

13 27
73

Questions?

Version

Version

History

History

VersionHistory

 © Tudor Gîrba 49/47

Hismo: History is a sequence of Versions, where
a Version adds the notion of time to Snapshot

History Version Snapshot

date: Date

Class

Method

Class
Version

Method
Version

Class
History

Method
History

… … …

*1 * 1

 © Tudor Gîrba 50/47

The techniques are orthogonal to the type of data

Node = class

Edge = inheritance

Node = Class History

Edge = Inheritance History

 © Tudor Gîrba 51/47

The current versioning systems record snapshots

What we would like
Preserve the identity in the environment
Record changes as they happen

Entity identity: Are two entities at different points
in time the versions of the same history?

What are the names?

What are the properties?
ver 1 ver 2

