Exam Preparation

Software Maintenance & Evolution



Final Exam Info

Written Exam
e Same time slot, same room as the lecture
e Covers the entire course

e Be as concise and short as possible, but
no shorter with your answers

e Use non-red permanent ink pencils

 Write down only one single solution



In the following...

Possible answers are presented
There are not exhaustive

There might be other answers or additional
points to consider

The title of a slide indicates the task number
from the exam, date of the lecture relevant to
answer the questions, and if available slide
numbers

No warranty!



la, 22.2 Slides 7, 28

® “the modification of a software product after delivery to
correct faults, to improve performance or other attributes,
or to adapt the product to a modified environment”

e “standard for software life cycle processes depicts
maintenance as one of the primary life cycle processes”

e “as the process of a software product undergoing
modification to code and associated documentation due
to a problem or the need for improvement. The objective
is to modify the existing software product while
preserving its integrity”



la, 22.2 Slides 29

Corrective Maintenance
Preventive Maintenance
Adaptive Maintenance

Perfective Maintenance



la, 22.2 Slide 29

Arten der Software Wartung

= (1) Korrektive Wartung (21%)

« ,Bug fixing“; reaktive Natur

= (2) Praventive Wartung (4%)

« Finden von latenten Fehlern, bevor sie effektive Fehler werden
= (3) Adaptive Wartung (25%)

« Neue Hardware, Betriebssystem; neue Anforderungen

= (4) Perfektionierende Wartung (50%)

« Verbesserungen in Performance und Wartbarkeit
(Restructuring, Reverse Engineering, Dokumentationspflege,
etc.)

= Corrections = (1) + (2) ~ 25%
= Enhancements = (3) + (4) ~75% —



2a, 1.3 & 8.3

Process of improving the internal structure of the
code

During this process the external behavior, i.e., the
functionality, of the system does not change

Part of reverse engineering, e.g., refactor to
understand

Refactor to test
Part of reengineering, e.g., remove duplicated code

Can also occur during daily development work
outside /without a larger reengineering project



lc, 22.02 Paper

e A series of Law’s that describe
principles of software evolution

e Discusses the driving forces behind the
software evolution

e http:/ /www.ifi.uzh.ch /seal/teaching/
courses /SWEvo013/lehman-IEEE-80.pdf




Ic, 22.02 Paper

Law of increasing Entropy: As an evolving
program is continually changed, its complexity,
reflecting deteriorating structure, increases unless
work is done to maintain or reduce it.

Untangle dependency structure
Extract Method
Make function calls simpler

In general: Refactoring as “cure” from a
deteriorating structure



e Not explicitly mentioned on slides

e Postconditions: Adapt all method calls
with the new method name (if not there
will be compile and build errors)

* Precondition: Code needs to be
compile-able to find all method calls



2b, 22.3

Does not take into account the control flow

Does not take into account the dependency
structure

Depends significantly on the programming
language

Are 10 methods with 20 LOC as complex as 1
big method with 200 LOC?

Just a single, plain number: Hard for
developers to deal with them



2b, 22.3

® Better: Metrics based on reference points
or metrics that are independent of
system size (or other individual
characteristics of a system)

o FAN-IN & FAN-OUT

® Cyclomatic Complexity



Changing one module leads to a rat-tail of
changes in other modules

More defects

More ditficult to understand
Longer build times

Changes take longer to implement

More testing needed



2d, 22.2 Slide 12 Part |l

10%

Change Change
documentation implementation Chan.e
5% 10% planning

Change Testing

Source code e

comprehension
50%



2e

Not explicitly mentioned in lecture slides

Source configuration management tool: Any tool
(suite) that facilitates the management of code
and artifacts: Version control systems, automated
build and test system, continuos integration

Defect tracker: Database for reporting new
defects, discuss current defects, submit patches, ..

There are products that integrate both
functionalities



e Captures the context of a system

e Can give information about the
rationale of the current implementation

e Can help to identify the important parts
of a system



The left side: System Size & Complexity

Direct metrics: NOP NOC, LOC, CYCLO
Derived Metrics: NOC/P, NOM/C, LOC/M, Cyclo/LOC

The right side: System Coupling

Direct metrics: CALLS, FANOUT
Derived Metrics: CALLS/M, FANOUT/CALL

The top: System Inheritance
Direct metrics: ANDC, AHH




2h 1.3 & 17.5

Identify experts & code owners: Who are the
active maintainers fixing defects

Identify the critical parts of a system

Get overall impression of the state of the
system: How many critical bugs? How long
does it take to fix a bug?

Software business analyst

Build defect prediction models to forecast the
location of defects in the next release



—

internal access
-« >

external I

ACCess

invocations
—>

=

Attribute

Method

el Regular . Constant

Invocation 4 :
—_— Overriding . I Delegating

Extending . . Setter
Abstract D . Cetter



m O O W >

3e, 3.5 Slides 14-18

Evolution of the number of methods
(NOM) of classes of a system

N
H

]| [Lo]] (L

ENOM

7

7

3

LENOM

3.37

5.75

1

0

1

EENOM

3.25

1.37

5.12



m O O T »

3e, 3.5 Slides 14-18

Balanced changer

Late changer

Dead stable

Early changer

LENOM

3.37

2.75

EENOM

3.25

1.37

5.12



In particular see mentioned paper:”Cloning Considered
Harmful” Considered Harmful”

Pragmatic: If clones do not change, and hence, cause no
additional effort (or defects) do not refactor

Due to language or framework features: Boilerplate code

Intentionally created clones: Hardware variation, e.g.,

Linux SCSI Driver -> for each platform code is cloned
and modified

Inconclusive results from empirical studies: Questioning
at least the general bad reputation of code clones

There are tools that support clone management



