
Exam Preparation
Software Maintenance & Evolution



Final Exam Info
• Written Exam

• Same time slot, same room as the lecture

• Covers the entire course

• Be as concise and short as possible, but 
no shorter with your answers

• Use non-red permanent ink pencils

• Write down only one single solution



In the following...
• Possible answers are presented

• There are not exhaustive

• There might be other answers or additional 
points to consider

• The title of a slide indicates the task number 
from the exam, date of the lecture relevant to 
answer the questions, and if available slide 
numbers

• No warranty!



• “the modification of a software product after delivery to 
correct faults, to improve performance or other attributes, 
or to adapt the product to a modified environment”

• “standard for software life cycle processes depicts 
maintenance as one of the primary life cycle processes”

• “as the process of a software product undergoing 
modification to code and associated documentation due 
to a problem or the need for improvement. The objective 
is to modify the existing software product while 
preserving its integrity” 

1a, 22.2 Slides 7, 28



1a, 22.2 Slides 29

• Corrective Maintenance

• Preventive Maintenance

• Adaptive Maintenance

• Perfective Maintenance



1a, 22.2 Slide 29



2a, 1.3 & 8.3 
• Process of improving the internal structure of the 

code

• During this process the external behavior, i.e., the 
functionality, of the system does not change

• Part of reverse engineering, e.g., refactor to 
understand

• Refactor to test

• Part of reengineering, e.g., remove duplicated code

• Can also occur during daily development work 
outside/without a larger reengineering project



1c, 22.02 Paper

• A series of Law’s that describe 
principles of software evolution

• Discusses the driving forces behind the 
software evolution

• http://www.ifi.uzh.ch/seal/teaching/
courses/SWEvo13/lehman-IEEE-80.pdf



1c, 22.02 Paper
• Law of increasing Entropy: As an evolving 

program is continually changed, its complexity, 
reflecting deteriorating structure, increases unless 
work is done to maintain or reduce it.

• Untangle dependency structure

• Extract Method

• Make function calls simpler

• In general: Refactoring as ‘‘cure’’ from a 
deteriorating structure



2 a

• Not explicitly mentioned on slides

• Postconditions: Adapt all method calls 
with the new method name (if not there 
will be compile and build errors)

• Precondition: Code needs to be 
compile-able to find all method calls



2b, 22.3
• Does not take into account the control flow

• Does not take into account the dependency 
structure

• Depends significantly on the programming 
language 

• Are 10 methods with 20 LOC as complex as 1 
big method with 200 LOC?

• Just a single, plain number: Hard for 
developers to deal with them 



2b, 22.3

• Better: Metrics based on reference points 
or metrics that are independent of 
system size (or other individual 
characteristics of a system)

• FAN-IN & FAN-OUT

• Cyclomatic Complexity



2c, 1.3
• Changing one module leads to a rat-tail of 

changes in other modules

• More defects

• More difficult to understand

• Longer build times

• Changes take longer to implement

• More testing needed

• ...



2d, 22.2 Slide 12 Part II



2e
• Not explicitly mentioned in lecture slides

• Source configuration management tool: Any tool 
(suite) that facilitates the management of code 
and artifacts: Version control systems, automated 
build and test system, continuos integration

• Defect tracker: Database for reporting new 
defects, discuss current defects, submit patches, ..

• There are products that integrate both 
functionalities



2f, 1.3

• Captures the context of a system

• Can give information about the 
rationale of the current implementation

• Can help to identify the important parts 
of a system



2g, 22.3



2h 1.3 & 17.5
• Identify experts & code owners: Who are the 

active maintainers fixing defects

• Identify the critical parts of a system

• Get overall impression of the state of the 
system: How many critical bugs? How long 
does it take to fix a bug?

• Software business analyst

• Build defect prediction models to forecast the 
location of defects in the next release



3a, 22.3



3e, 3.5 Slides 14-18
Evolution of the number of methods 
(NOM) of classes of a system



3e, 3.5 Slides 14-18



4a, 10.5
• In particular see mentioned paper:”Cloning Considered 

Harmful” Considered Harmful”

• Pragmatic: If clones do not change, and hence, cause no 
additional effort (or defects) do not refactor

• Due to language or framework features: Boilerplate code

• Intentionally created clones: Hardware variation, e.g., 
Linux SCSI Driver -> for each platform code is cloned 
and modified

• Inconclusive results from empirical studies: Questioning 
at least the general bad reputation of code clones 

• There are tools that support clone management


