5. Defining Classes and Methods

Harald Gall, Prof. Dr.

Institut fir Informatik
Universitét Zirich

http://seal.ifi.uzh.ch/info1

10/10/11

Objectives

Describe and define concepts of class and
object

Describe use of parameters in a method

= Use modifiers public, private

Define accessor, mutator class methods
Describe purpose of javadoc

Describe references, variables, parameters of
a class type

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2

Example: Automobile

= A class Automobile as a blueprint

Class Name: Automobile

Data:
amount of fuel
speed ___
Tlicense plate

Methods (actions):
accelerate:
How: Press on gas pedal.
decelerate:

How: Press on brake pedal.

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 3

10/10/11

Class and Method Definitions

First Instantiation:

Object name: patsCar
amount of fuel: 10 gallons
speed: 55 miles per hour
Ticense plate: "135 XJK"

Second

Object name: suesCar

amount of fuel: 14 gallon
speed: 0 miles per hour
license plate: "SUES CAR"

Third Instantiation:

Object name: ronsCar
amount of fuel: 2 gallons Objects that are
speed: 75 miles per hour . s
Ticense plate: "351 WLF" instantiations of the
class Automobile
© 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 4

Class and Method Definitions

= A class outline as a UML class diagram

Automobile

— fuel: double
— speed: double
— Ticense: String

+ accelerate(double pedalPressure): void
+ decelerate(double pedalPressure): void

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 5

Example: Automobile Code

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 6

Example: Species

= A class Species shall hold records of
endangered species.

= Each object has three pieces of data:
a name, a population size, and a growth rate.

= The objects have 3 behaviors: read/nput,
writeOutput, predictPopulation.

= Sample program class SpeciesFirstTry

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

10/10/11

Using a Class and Its Methods

= class SpeciesFirstTryDemo

Enter data on the Species of the Month:
What is the species’ name

Ferengie fur ball

What is the population of the species?

1000

Enter growth rate (% increase per year):
-20

Name - Ferengie fur ball

Population = 1000

Growth rate = -20.5%

In ten years the population will be 100
The new Species of the Month:

Name = Klingon ox

Population = 10

Growth rate = 15.0%

In ten years the population will be 40

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods

= Two kinds of Java methods
= Return a single item, i.e. return type
= No return type: a void method

= The method main is a void method
= Invoked by the system
= Not by the program

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 9

Defining void Methods

= Consider method writeOutput

public void writeOutput()

System.out.printin("Name = " + name);
System.out.printin("Population = " + population);
System.out.printin("Growth rate = " + growthRate + "%");

Method definitions inside class definition
= Can be used only with objects of that class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 10

10/10/11

Methods That Return a Value

= Consider method getPopulationInlO()

public int getPopulationInl0()

int resNg = 0;
double popyJationAmount = population;

int count - s
shiTe CleommEN if (populationAmount > 0)
result - (int)populationAmount;
return result;

= Heading declares type of valoe to be returned

= Last statement executed is return

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 1

Referring to instance variables

= From outside the class
= Name of an object of the class
= Followed by a dot
= Name of instance variable, e.g. myCar.color =
black;
= Inside the class
= Use name of variable alone
= The object (unnamed) is understood to be there
= e.g. inside Car class: color = black;

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 12

The Keyword this

= Inside the class the unnamed object can be
referred to with the name this

= Example
this.name = keyboard.nextLine() ;

= The keyword this stands for the receiving
object

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 13

10/10/11

Local Variables

= Variables declared inside a class are considered
local variables
= May be used only inside this class
= Variable with same name inside a different class
is considered a different variable
= All variables declared in method main are local
tomain

public class SpeciesFirstTry

pubTlic String name;
public int population;
pubTlic double growthRate;

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 14

Local Variables

= class BankAccount
= class LocalVariablesDemoProgram
= Note two different variables newAmount

= Note different values output

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 15

10/10/11

Blocks and scope

= Recall compound statements

= Enclosed in braces { }

= When you declare a variable within a compound
statement
= The compound statement is called a block
= The scope of the variable is from its declaration to the

end of the block

= Variable declared outside the block usable both

outside and inside the block

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 16

Parameters of Primitive Type

= public int predictPopulation (int years)
= The formal parameter is years

= int futurePopulation =
speciesOfTheMonth.predictPopulation (10) ;

= The actual parameter is the integer 10

= class SpeciesSecondClassDemo

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 17

Parameters of Primitive Type

= Parameter names are local to the method

= When method invoked
= Each parameter initialized to value in
corresponding actual parameter
» Primitive actual parameter cannot be altered by
invocation of the method
= Automatic type conversion performed
byte -> short -> int ->
long -> float -> double

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 18

Information Hiding,
Encapsulation: Outline

= Information Hiding

= The public and private Modifiers

= Methods Calling Methods

= Encapsulation

= Automatic Documentation with javadoc
= UML Class Diagrams

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 19

10/10/11

Information Hiding

= Programmer using a class method need not
know details of implementation
= Only needs to know what the method does

= Information hiding:

= Designing a method so it can be used without
knowing details

= Method design should separate what from
how

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 20

The public and private Modifiers

= Type specified as public

= Any other class can directly access that object by
name

= Classes generally specified as public
= Instance variables usually not public
= Instead specify as private

= class SpeciesThirdTry

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 21

Accessor and Mutator Methods

= When instance variables are private one must
provide methods to access values stored
there
= Typically named getSomeValue
= Referred to as an accessor method (getter)
= Must also provide methods to change the
values of the private instance variable
= Typically named setSomeValue
» Referred to as a mutator method (setter)

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 22

10/10/11

Accessor and Mutator Methods

= Consider an example class with accessor and
mutator methods

= Sample code class SpeciesFourthTry
= Note the mutator method
= setSpecies
= Note accessor methods
= getName, getPopulation,
getGrowthRate

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 23

Accessor and Mutator Methods

= Using a mutator method
= classSpeciesFourthTryDemo

Name = Ferengie fur ball

Population = 1000

Growth rate = -20.5%

In 10 years the population will be 100
The new Species of the Month:

Name = Klingon ox

Population = 10

Growth rate = 15.0%

In 10 years the population will be 40

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 24

Programming Example

= A Purchase class

= Sample code class Purchase
= Note use of private instance variables

= Note also how mutator methods check for invalid
values

= Sample code class purchaseDemo

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 25

10/10/11

Programming Example

Enter name of item you are purchasing:
pink grapefruit

Enter price of item as two numbers.
For example, 3 for $2.99 is entered as
32.99

Enter price of item as two numbers, now:
45.00

Enter number of items purchased:

0

Number must be positive. Try again.
Enter number of items purchased:

3

3 pink grapefruit

at 4 for $5.0

Cost each $1.25

Total cost $3.75

— e
©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2

Methods Calling Methods

= A method body may call any other method

= If the invoked method is within the same class
= Need not use prefix of receiving object

= View sample code, listing 5.13
class Oracle

= View demo program, listing 5.14
class OracleDemo

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 27

Methods Calling Methods

yes

I am the oracle. I will answer any one-Tine question.
What is your question?
What time is it?
Hmm, I need some help on that.
Please give me one line of advice.
Seek and ye shall find the answer.
Thank you. That helped a lot.
You asked the question:

What time is it?
Now, here is my answer:

The answer is in your heart.
Do you wish to ask another question?

10/10/11

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 28

Encapsulation

= Consider example of driving a car
= We see and use break pedal, accelerator pedal,
steering wheel — know what they do
= We do not see mechanical details of how they do
their jobs
= Encapsulation divides class definition into
= Class interface
= Class implementation

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 29

Encapsulation

= A class interface
= Tells what the class does

= Gives headings for public methods and comments
about them

= A class implementation
= Contains private variables
= Includes definitions of public and private methods

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 30

10

Encapsulation
= Figure 5.3 A well encapsulated class definition

Class Definition

Implementation.

Private instance variables Interface:

Private constants @ Programmer who
Privatemethods . Headings of public methods uses the class

Bodies of public methods Public named constants

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 31

10/10/11

Encapsulation

Preface class definition with comment on how to use
class

Declare all instance variables in the class as private
Provide public accessor methods to retrieve data
Provide public methods manipulating data

= Place a comment before each public method heading that fully
specifies how to use method.

= Make any helping methods private.

= Write comments within class definition to describe
implementation details.

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 32

Automatic Documentation javadoc

= Generates documentation for class interface
= Comments in source code must be enclosed
in /*x%x %/
= Utility javadoc will include
= These comments
= Headings of public methods

= Output of javadoc is HTML format

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 33

11

UML Class Diagram

= Recall

Automobile

— fuel: double
— speed: double
— Ticense: String

+ accelerate(double pedalPressure): void
+ decelerate(double pedalPressure): void

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 34

UML Class Diagram

Purchase

ame: String

]

etName(String newName): void
etPrice(int count, double costForCount): void
etNumberBought(int number): void

eadInput(): void

riteOutput(): void

etName(): String

etTotalCost(): double

etUnitCost(): double

getNumberBought(): int

[frevvsees]

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 35

UML Class Diagram

= Contains more than interface, less than full
implementation

= Usually written before class is defined

= Used by the programmer defining the class
» Contrast with the interface used by programmer
who uses the class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 36

10/10/11

12

10/10/11

Objects and References: Outline

Variables of a Class Type

Defining an equals Method for a Class
Boolean-Valued Methods

Parameters of a Class Type

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 37

Variables of a Class Type

All variables are implemented as a memory
location

Data of primitive type stored in the memory
location assigned to the variable

Variable of class type contains memory
address of object named by the variable

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 38

Variables of a Class Type

Object itself not stored in the variable
Stored elsewhere in memory
Variable contains address of where it is stored
Address called the reference to the variable
A reference type variable holds references
(memory addresses)

This makes memory management of class types
more efficient

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 39

13

Variables of a Class Type

SpeciesFourthTry klingonSpecies, earthSpecies;
—_

Klingonspecies.

Two memory locations
— for the two variables

earthspecies ? -

KlingonSpecies = new SpeciesFourthTryO;
earthSpecies = new SpeciesFourthTry();

Klingonspecies | 2078
earthspecies 1056

1056 |7
H
]
W T B T R
2078 |7 will be used. We used 1056 and 2078 in
? i fare, sy o b cimostany

10/10/11

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 40
klingonSpecies.setSpecies("Klingon ox", 10, 15);
earthSpecies.setSpecies("Black rhino", 11, 2);
klingonSpecies 2078
earthSpecies 1056
1056 [B1ack rhino|
11
2
2078 |Klingon ox
10
15
©2008 Pearson Educaion, Inc., Walter Savitch and Frank Carrano 41
earthSpecies = klingonSpecies;
KlingonSpecies
earthSpecies
KlingonSpecies and N
earthSpecies are now two .
names for the same object.
1056 [Black rhino|
1
2
2078 |K1ingon ox
10
15
©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 42

14

Variables of a Class Type

This is just garbage that is not
accessible 10 the program.

earthSpecies.setSpecies("Elephant”, 100, 12);

klingonSpecies 2078
earthSpecies 2078

1056 |Black rhino|
1
2

2078 [ETephant
100

12

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 43

10/10/11

Variables of a Class Type

= Danger of using == with objects!

Klingonspecies

earthspecies

KlingonSpecies = new SpeciesFourthTry();
earthSpecies = new SpeciesFourthTry();

1056 [7

2078 [7

We do not know what memory addresses
will be used. We used 1056 and 2078
i this figure, but they could be almost any

numbers,

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano a4

Variables of a Class Type

= Dangers of
using ==
with objects

klingonSpecies.setSpecies("Klingon ox", 10, 15);
earthSpecies.setSpecies("Klingon ox", 10, 15);

Kklingonspecies | 2078

earthSpecies 1056

1056 [K1ingon ox
10

15

2078 [KTingon ox
10
15

if (KlingonSpecies == earthSpecies)
System.out.printIn("They are EQUAL.");
else
System.out.print1n("They are NOT equal.

The output is They are Not equal, because 2078 is not equal 10 1056.

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 45

15

Defining an equals Method

= As demonstrated by previous figures
= We cannot use == to compare two objects

= We must write a method for a given class which
will make the comparison as needed

= View class Species

= The equals for this class method used same
way as equals method for String

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 46

10/10/11

Demonstrating an equals Method

= View sample program
class SpeciesEqualsDemo

= Note difference in the two comparison
methods == versus .equals()

Do Not match with ==.

Match with the method equals.

Now we change one Klingon ox to all Towercase.
Match with the method equals.

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano a7

Programming Example

= View class Species

Species

— name: String
— population: int
— growthRate: double

+ readInputO): void

+ writeOutput(): void

+ predictPopulation(int years): int

+ setSpecies(String newName, int newPopulation,
double newGrowthRate): void

+ getName(): String

+ getPopulation(): int

+ getGrowthRate(): double

+ equals(Species otherObject): boolean

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 48

16

Parameters of a Class Type

= Assignment operator used with objects of class
type
= Only memory address is copied
= Parameter of class type

= Memory address of actual parameter passed to
formal parameter

» Formal parameter may access public elements of the
class

» Actual parameter thus can be changed by class
methods

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 49

10/10/11

Programming Example

= View class DemoSpecies
= Note different parameter types and results
= View class ParametersDemo

» Parameters of a class type versus parameters of a
primitive type

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 50

Programming Example

aPopulation BEFORE calling tryToChange: 42
aPopulation AFTER calling tryToChange: 42
s2 BEFORE calling tryToReplace:

Name = Ferengie Fur Ball

Population = 90

Growth Rate = 56.0%

s2 AFTER calling tryToReplace:

Name = Ferengie Fur Ball

Population = 90

Growth Rate = 56.0%

s2 AFTER calling change:

Name = Klingon ox

Population = 10

Growth Rate = 15.0%

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 51

17

Summary

Classes have

Instance variables to store data

Method definitions to perform actions
Instance variables should be private
Class needs accessor, mutator methods
Methods may be

Value returning methods

Void methods that do not return a value

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 52

10/10/11

Summary

Keyword this used within method definition
represents invoking object

Local variables defined within method definition

Formal arguments must match actual
parameters with respect to number, order, and
data type

Formal parameters act like local variables

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 53

Summary

Parameter of primitive type initialized with
value of actual parameter

Value of actual parameter not altered by method
Parameter of class type initialized with
address of actual parameter object

Value of actual parameter may be altered by

method calls
A method definition can include call to another
method in same or different class

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 54

18

Summary

Utility program javadoc creates documentation
Class designers use UML notation to describe
classes

Operators = and == behave differently with
objects of class types (vs. primitive types)

©2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 55

10/10/11

19

