
5. Defining Classes and Methods

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

2 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Objectives

!  Describe and define concepts of class and
object

!  Describe use of parameters in a method
!  Use modifiers public, private
!  Define accessor, mutator class methods
!  Describe purpose of javadoc
!  Describe references, variables, parameters of

a class type

3 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Example: Automobile

!  A class Automobile as a blueprint

4 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class and Method Definitions

Objects that are
instantiations of the

class Automobile

5 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Class and Method Definitions

!  A class outline as a UML class diagram

6 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Example: Automobile Code

7 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Example: Species

!  A class Species shall hold records of
endangered species.
!  Each object has three pieces of data:

a name, a population size, and a growth rate.
!  The objects have 3 behaviors: readInput,

writeOutput, predictPopulation.

!  Sample program class SpeciesFirstTry

8 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Using a Class and Its Methods

!  class SpeciesFirstTryDemo

9 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods

!  Two kinds of Java methods
!  Return a single item, i.e. return type
!  No return type: a void method

!  The method main is a void method
!  Invoked by the system
!  Not by the program

10 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Defining void Methods

!  Consider method writeOutput

!  Method definitions inside class definition
!  Can be used only with objects of that class

11 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods That Return a Value

!  Consider method getPopulationIn10()

!  Heading declares type of value to be returned

!  Last statement executed is return

. . .

12 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Referring to instance variables

!  From outside the class
!  Name of an object of the class
!  Followed by a dot
!  Name of instance variable, e.g. myCar.color =
black;

!  Inside the class
!  Use name of variable alone
!  The object (unnamed) is understood to be there
!  e.g. inside Car class: color = black;

13 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The Keyword this

!  Inside the class the unnamed object can be
referred to with the name this

!  Example
 this.name = keyboard.nextLine();

!  The keyword this stands for the receiving
object

14 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Local Variables

!  Variables declared inside a class are considered
local variables
!  May be used only inside this class

!  Variable with same name inside a different class
is considered a different variable

!  All variables declared in method main are local
to main

15 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Local Variables

!  class BankAccount
!  class LocalVariablesDemoProgram
!  Note two different variables newAmount

!  Note different values output

16 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Blocks and scope

!  Recall compound statements
!  Enclosed in braces { }

!  When you declare a variable within a compound
statement
!  The compound statement is called a block
!  The scope of the variable is from its declaration to the

end of the block
!  Variable declared outside the block usable both

outside and inside the block

17 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of Primitive Type
!  public int predictPopulation(int years)

!  The formal parameter is years

!  int futurePopulation =
 speciesOfTheMonth.predictPopulation(10);
!  The actual parameter is the integer 10

!  class SpeciesSecondClassDemo

18 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of Primitive Type

!  Parameter names are local to the method
!  When method invoked

!  Each parameter initialized to value in
corresponding actual parameter

!  Primitive actual parameter cannot be altered by
invocation of the method

!  Automatic type conversion performed
byte -> short -> int ->
 long -> float -> double

19 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Information Hiding,
Encapsulation: Outline

!  Information Hiding
!  The public and private Modifiers
!  Methods Calling Methods
!  Encapsulation
!  Automatic Documentation with javadoc
!  UML Class Diagrams

20 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Information Hiding

!  Programmer using a class method need not
know details of implementation
!  Only needs to know what the method does

!  Information hiding:
!  Designing a method so it can be used without

knowing details
!  Method design should separate what from

how

21 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

The public and private Modifiers

!  Type specified as public
!  Any other class can directly access that object by

name

!  Classes generally specified as public
!  Instance variables usually not public

!  Instead specify as private
!  class SpeciesThirdTry

22 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Accessor and Mutator Methods

!  When instance variables are private one must
provide methods to access values stored
there
!  Typically named getSomeValue
!  Referred to as an accessor method (getter)

!  Must also provide methods to change the
values of the private instance variable
!  Typically named setSomeValue
!  Referred to as a mutator method (setter)

23 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Accessor and Mutator Methods

!  Consider an example class with accessor and
mutator methods

!  Sample code class SpeciesFourthTry
!  Note the mutator method

!  setSpecies
!  Note accessor methods

!  getName, getPopulation,
getGrowthRate

24 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Accessor and Mutator Methods

!  Using a mutator method
!  classSpeciesFourthTryDemo

25 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

!  A Purchase class
!  Sample code class Purchase

!  Note use of private instance variables
!  Note also how mutator methods check for invalid

values

!  Sample code class purchaseDemo

26 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

27 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods Calling Methods

!  A method body may call any other method
!  If the invoked method is within the same class

!  Need not use prefix of receiving object

!  View sample code, listing 5.13
class Oracle

!  View demo program, listing 5.14
class OracleDemo

28 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Methods Calling Methods

Sample
screen
output

29 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation

!  Consider example of driving a car
!  We see and use break pedal, accelerator pedal,

steering wheel – know what they do
!  We do not see mechanical details of how they do

their jobs
!  Encapsulation divides class definition into

!  Class interface
!  Class implementation

30 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation

!  A class interface
!  Tells what the class does
!  Gives headings for public methods and comments

about them
!  A class implementation

!  Contains private variables
!  Includes definitions of public and private methods

31 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation
!  Figure 5.3 A well encapsulated class definition

Programmer who
uses the class

32 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Encapsulation

!  Preface class definition with comment on how to use
class

!  Declare all instance variables in the class as private
!  Provide public accessor methods to retrieve data
!  Provide public methods manipulating data

!  Place a comment before each public method heading that fully
specifies how to use method.

!  Make any helping methods private.
!  Write comments within class definition to describe

implementation details.

33 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Automatic Documentation javadoc

!  Generates documentation for class interface
!  Comments in source code must be enclosed

in /** */
!  Utility javadoc will include

!  These comments
!  Headings of public methods

!  Output of javadoc is HTML format

34 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Class Diagram

!  Recall

35 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Class Diagram

Plus signs imply
public methods

Minus signs imply
private methods

36 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

UML Class Diagram

!  Contains more than interface, less than full
implementation

!  Usually written before class is defined
!  Used by the programmer defining the class

!  Contrast with the interface used by programmer
who uses the class

37 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Objects and References: Outline

!  Variables of a Class Type
!  Defining an equals Method for a Class
!  Boolean-Valued Methods
!  Parameters of a Class Type

38 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

!  All variables are implemented as a memory
location

!  Data of primitive type stored in the memory
location assigned to the variable

!  Variable of class type contains memory
address of object named by the variable

39 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

!  Object itself not stored in the variable
!  Stored elsewhere in memory
!  Variable contains address of where it is stored

!  Address called the reference to the variable
!  A reference type variable holds references

(memory addresses)
!  This makes memory management of class types

more efficient

40 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

41 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

42 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

43 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

44 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

!  Danger of using == with objects!

45 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Variables of a Class Type

!  Dangers of
using ==
with objects

46 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Defining an equals Method

!  As demonstrated by previous figures
!  We cannot use == to compare two objects
!  We must write a method for a given class which

will make the comparison as needed

!  View class Species
!  The equals for this class method used same

way as equals method for String

47 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Demonstrating an equals Method

!  View sample program
class SpeciesEqualsDemo

!  Note difference in the two comparison
methods == versus .equals()

48 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

!  View class Species

49 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Parameters of a Class Type

!  Assignment operator used with objects of class
type
!  Only memory address is copied

!  Parameter of class type
!  Memory address of actual parameter passed to

formal parameter
!  Formal parameter may access public elements of the

class
!  Actual parameter thus can be changed by class

methods

50 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

!  View class DemoSpecies
!  Note different parameter types and results

!  View class ParametersDemo
!  Parameters of a class type versus parameters of a

primitive type

51 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Programming Example

52 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

!  Classes have
!  Instance variables to store data
!  Method definitions to perform actions

!  Instance variables should be private
!  Class needs accessor, mutator methods
!  Methods may be

!  Value returning methods
!  Void methods that do not return a value

53 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

!  Keyword this used within method definition
represents invoking object

!  Local variables defined within method definition
!  Formal arguments must match actual

parameters with respect to number, order, and
data type

!  Formal parameters act like local variables

54 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

!  Parameter of primitive type initialized with
value of actual parameter
!  Value of actual parameter not altered by method

!  Parameter of class type initialized with
address of actual parameter object
!  Value of actual parameter may be altered by

method calls
!  A method definition can include call to another

method in same or different class

55 © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano

Summary

!  Utility program javadoc creates documentation
!  Class designers use UML notation to describe

classes
!  Operators = and == behave differently with

objects of class types (vs. primitive types)

