
4. Flow of Control: Loops

Harald Gall, Prof. Dr.
Institut für Informatik
Universität Zürich
http://seal.ifi.uzh.ch/info1

© 2005 W. Savitch, Prentice Hall

Objectives

!  Design a loop
!  Use while, and for in a program

© 2005 W. Savitch, Prentice Hall

Java Loop Statements: Outline

!  The while statement
!  The do-while statement
!  The for Statement

© 2005 W. Savitch, Prentice Hall

Java Loop Statements

!  A portion of a program that repeats a
statement or a group of statements is
called a loop.

!  The statement or group of statements to
be repeated is called the body of the loop.

!  A loop could be used to compute grades
for each student in a class.

!  There must be a means of exiting the loop.

© 2005 W. Savitch, Prentice Hall

The while Statement
!  Also called a while loop
!  A while statement repeats while a

controlling boolean expression remains
true
!  If the controlling boolean expression is false

initially, the while loop is not executed

!  The loop body typically contains an action
that ultimately causes the controlling
boolean expression to become false.

© 2005 W. Savitch, Prentice Hall

The while Statement
!  View sample program, Listing 4.1
class WhileDemo

© 2005 W. Savitch, Prentice Hall

The while Statement
!  Figure 4.1

The action of
the while loop
in Listing 4.1

© 2005 W. Savitch, Prentice Hall

The while Statement
!  Syntax

while (Boolean_Expression)
 Body_Statement;

or
while (Boolean_Expression)
{
 First_Statement;
 Second_Statement;
 …
}

© 2005 W. Savitch, Prentice Hall

The while Statement
!  Semantics of the while statement

© 2005 W. Savitch, Prentice Hall

The do-while Statement

!  Also called a do-while loop
!  Similar to a while statement, except that the

loop body is executed at least once
!  Syntax
do
 Body_Statement
while (Boolean_Expression);

!  Don’t forget the semicolon!

© 2005 W. Savitch, Prentice Hall

The do-while Statement

!  View sample program, listing 4.2
class DoWhileDemo

© 2005 W. Savitch, Prentice Hall

The do-while Statement
!  Figure 4.3 The Action of the do-while Loop

in Listing 4.2

© 2005 W. Savitch, Prentice Hall

The do-while Statement
!  First, the loop body is executed.
!  Then the boolean expression is checked.

!  As long as it is true, the loop is executed
again.

!  If it is false, the loop is exited.
!  Equivalent while statement
Statement(s)_S1;
while (Boolean_Condition)
 Statement(s)_S1;

© 2005 W. Savitch, Prentice Hall

The do-while Statement
!  The Semantics of the do-while

© 2005 W. Savitch, Prentice Hall

Programming Example:
Bug Infestation
■  given

–  volume a roach: 0.002 cubic feet (=0.6 mm3)
–  starting roach population
–  rate of increase: 95% per week
–  volume of a house

■  find
–  number of weeks to exceed the capacity of

the house
–  number and volume of roaches

© 2005 W. Savitch, Prentice Hall

Algorithm for roach population program
(rough draft)

1. Get volume of house.
2. Get initial number of roaches in house.
3. Compute number of weeks until the house is

full of roaches.
4. Display results.

Programming Example:
Bug Infestation

© 2005 W. Savitch, Prentice Hall

Variables Needed
GROWTH_RATE —weekly growth rate of the roach

population (a constant 0.95)

ONE_BUG_VOLUME —volume of an average roach (a
constant 0.002)

houseVolume — volume of the house

startPopulation —initial number of roaches
 ctd. !

Programming Example:
Bug Infestation

© 2005 W. Savitch, Prentice Hall

Variables Needed
countWeeks —week counter

Population —current number of roaches

totalBugVolume —total volume of all the roaches

newBugs —number of roaches hatched this week

newBugVolume —volume of new roaches

Programming Example:
Bug Infestation

© 2005 W. Savitch, Prentice Hall

!  View more detailed algorithm
!  View sample program, listing 4.3
class BugTrouble

Sample
screen
output

Programming Example:
Bug Infestation

© 2005 W. Savitch, Prentice Hall

Infinite Loops

!  A loop which repeats without ever ending is
called an infinite loop.

!  If the controlling boolean expression never
becomes false, a while loop will repeat
without ending.

!  A negative growth rate in the preceding
problem causes totalBugVolume always to
be less than houseVolume, so that the loop
never ends.

© 2005 W. Savitch, Prentice Hall

Nested Loops

!  The body of a loop can contain any kind of
statements, including another loop.

© 2005 W. Savitch, Prentice Hall

Nested Loops

!  View sample program, listing 4.4
class ExamAverager

© 2005 W. Savitch, Prentice Hall

The for Statement

!  A for statement executes the body of a loop a
fixed number of times.

!  Example
for (count = 100; count > 3; count--)
 System.out.println(count);

System.out.println(“Done”);

© 2005 W. Savitch, Prentice Hall

The for Statement
!  Syntax

for (Initialization, Condition, Update)
 Body_Statement

!  Body_Statement can be either a simple
statement or a compound statement in {}

!  Corresponding while statement
Initialization
while (Condition)
 Body_Statement_Including_Update

© 2005 W. Savitch, Prentice Hall

The for Statement
!  View sample program, Listing 4.4
 class ForDemo

© 2005 W. Savitch, Prentice Hall

The for
Statement

!  Figure 4.5
The action
of the for
loop in
listing 4.5

© 2005 W. Savitch, Prentice Hall

The for
Statement

!  Figure 4.6
The
semantics of
the for
statement

© 2005 W. Savitch, Prentice Hall

The for Statement

!  Possible to declare variables within a
for statement

int sum = 0;
for (int n = 1 ; n <= 10 ; n++) {
 sum = sum + n * n;
}

!  Note that variable n is local to the loop

© 2005 W. Savitch, Prentice Hall

The for Statement

!  A comma separates multiple initializations
!  Example

for (n = 1, product = 1; n <= 10; n++){
 product = product * n;
}

!  Only one boolean expression is allowed, but it
can consist of &&s, ||s, and !s.

© 2005 W. Savitch, Prentice Hall

The for-each Statement

!  Possible to step through values of an
enumeration type

!  Example

enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}
for (Suit nextSuit : Suit.values())
System.out.print(nextSuit + " ");
System.out.println();

© 2005 W. Savitch, Prentice Hall

Programming with Loops:
Outline

!  The Loop Body
!  Initializing Statements
!  Controlling Loop Iterations
!  break statements
!  Loop Bugs
!  Tracing Variables
!  Assertion checks

© 2005 W. Savitch, Prentice Hall

The Loop Body

!  To design the loop body, write out the actions
the code must accomplish.

!  Then look for a repeated pattern.
!  The pattern need not start with the first

action.
!  The repeated pattern will form the body of

the loop.
!  Some actions may need to be done after

the pattern stops repeating.

© 2005 W. Savitch, Prentice Hall

Initializing Statements

!  Some variables need to have a value before
the loop begins.
!  Sometimes this is determined by what is

supposed to happen after one loop
iteration.

!  Often variables have an initial value of zero
or one, but not always.

!  Other variables get values only while the loop
is iterating.

© 2005 W. Savitch, Prentice Hall

Controlling Number of Loop Iterations

!  If the number of iterations is known before the
loop starts, the loop is called a count-
controlled loop.
!  Use a for loop.

!  Asking the user before each iteration if it is
time to end the loop is called the ask-before-
iterating technique.
!  Appropriate for a small number of iterations
!  Use a while loop.

© 2005 W. Savitch, Prentice Hall

!  For large input lists, a sentinel value can be
used to signal the end of the list.
!  The sentinel value must be different from all

the other possible inputs.
!  A negative number following a long list of

nonnegative exam scores could be suitable.

 90
 0
 10
 -1

Controlling Number of Loop Iterations

© 2005 W. Savitch, Prentice Hall

!  Example - reading a list of scores followed by a
sentinel value
int next = keyboard.nextInt();
while (next >= 0)
{
 Process_The_Score
 next = keyboard.nextInt();
}

Controlling Number of Loop Iterations

© 2005 W. Savitch, Prentice Hall

!  Using a boolean variable to end the loop
!  View sample program, listing 4.6
 class BooleanDemo

Controlling Number of Loop Iterations

Sample
screen
output

© 2005 W. Savitch, Prentice Hall

Programming Example

!  Spending Spree
!  You have $100 to spend in a store
!  Maximum 3 items
!  Computer tracks spending and item count
!  When item chosen, computer tells you whether or

not you can buy it

!  Client wants adaptable program
!  Able to change amount and maximum number of

items
!  View sample algorithm

© 2005 W. Savitch, Prentice Hall

Programming Example

!  View sample program, listing 4.7
class SpendingSpree

Sample
screen
output

© 2005 W. Savitch, Prentice Hall

The break Statement in Loops

!  A break statement can be used to end a loop
immediately.

!  The break statement ends only the innermost
loop or switch statement that contains the break
statement.

!  break statements make loops more difficult to
understand.

!  Use break statements sparingly (if ever).

© 2005 W. Savitch, Prentice Hall

!  Note program
fragment,
ending a loop
with a break
statement,
listing 4.8

The break Statement in Loops

© 2005 W. Savitch, Prentice Hall

The continue Statement in Loops

!  A continue statement
!  Ends current loop iteration
!  Begins the next one

!  Text recommends avoiding use
!  Introduce unneeded complications

© 2005 W. Savitch, Prentice Hall

Tracing Variables

!  Tracing variables means watching the variables
change while the program is running.
!  Simply insert temporary output statements in

your program to print of the values of variables
of interest

!  Or, learn to use the debugging facility that may
be provided by your system.

© 2005 W. Savitch, Prentice Hall

Assertion Checks

!  Assertion : something that says
something about the state of the
program
!  Can be true or false
!  Should be true when no mistakes in running

program

© 2005 W. Savitch, Prentice Hall

Assertion Checks
!  Example found in comments
//n == 1

while (n < limit)
{
n = 2 * n;
}

//n >= limit

//n is the smallest power of 2 >= limit

!  Syntax for assertion check
Assert Boolean_Expression;

© 2005 W. Savitch, Prentice Hall

Assertion Checks

!  Equivalent example using assert
 assert n == 1;

while (n < limit)
{
n = 2 * n;
}
assert n >= limit;
//n is the smallest power of 2 >= limit.

© 2005 W. Savitch, Prentice Hall

Loop Bugs
!  Common loop bugs

!  Unintended infinite loops
!  Off-by-one errors
!  Testing equality of floating-point numbers

!  Subtle infinite loops
!  The loop may terminate for some input

values, but not for others.
!  For example, you can’t get out of debt

when the monthly penalty exceeds the
monthly payment.

© 2005 W. Savitch, Prentice Hall

Programming Example

!  A multiface Applet
!  Uses loop to draw several smiley faces
!  Uses if statement to alter appearance

!  View sample program, listing 4.9
class MultipleFaces

© 2005 W. Savitch, Prentice Hall

Programming Example

Sample
screen
output

© 2005 W. Savitch, Prentice Hall

The drawString Method

!  Similar to methods for drawing ovals
!  Displays text
!  Example
canvas.drawString("Hello",10, 20);
!  Writes word Hello at point (10, 20)

!  Used to place "Kiss, Kiss" and
"Tee Hee" on screen in listing 4.9

© 2005 W. Savitch, Prentice Hall

Summary

!  A loop is a programming construct that
repeats an action

!  Java has the while, (the do-while),
and the for statements

!  The while repeat the loop while a
condition is true

!  The logic of a for statement is identical
to the while

© 2005 W. Savitch, Prentice Hall

Summary
!  Loops may be ended using a sentinel value

or a boolean value
!  Typical loop bugs include infinite loops or

loops which are off by 1 iteration
!  Variables may be traced by including

temporary output statements or a debugging
utility

!  The assert statement can be used to check
conditions at run time

!  Use drawString to display text in an applet

