12. Dynamic Data Structures &
Generics

Harald Gall, Prof. Dr.

Institut fUr Informatik
Universitat Zurich

http://seal.ifi.uzh.ch

(U University of Zurich s.e.a.l.

N vepanment of formatis

Objectives

Define and use an instance of ArrayList

Describe general idea of linked list data
structures and implementation

Manipulate linked lists

Use inner classes in defining linked data
structures

Describe, create, use iterators
Define, us classes with generic types

Array-Based Data Structures: Outline

The Class ArrayList

Creating an Instance of ArrayList
Using Methods of ArrayList
Programming Example: A To-Do List

Parameterized Classes and Generic
Data Types

s.e.a.l,

11/2/11

Class ArrayList

Consider limitations of Java arrays
Array length is not dynamically changeable
Possible to create a new, larger array and copy
elements — but this is awkward, contrived
More elegant solution is use instance of
ArrayList
Length is changeable at run time

Class ArrayList

Drawbacks of using ArrayList
Less efficient than using an array
Can only store objects
Cannot store primitive types
Implementation
Actually does use arrays
Expands capacity in manner previously suggested

Class ArrayList

Class ArrayList is an implementation of an
Abstract Data Type (ADT) called a list
Elements can be added

At end

At beginning

In between items
Possible to edit, delete, access, and count entries
in the list

11/2/11

Class ArrayList

= Methods of class ArrayList

public ArrayList<Base_Type>(int initialCapacity)
Creates an empty list with the specified Base_Type and initial capacity. The Base_Type
must be a class type: it cannot be a primitive type such as 1nt or double. When the
list needs to increase its capacity, the capacity doubles.

public ArrayList<Base_Type>()
Behaves like the previous constructor, but the initial capacity is ten

public boolean add(Base_Type newElement)
Adds the specified element to the end of this list and increases the list's size by 1. The
capacity of the list is increased if that is required. Returns true if the addition is success-
ful

public void add(int index, Base_Type newElement)
Inserts the specified element at the specified index position of this list. Shifts elements
at subsequent positions to make room for the new entry by increasing their indices by
1 Increases the list's size by 1. The capacity of the list is increased if that is required.
Throws IndexOutOfBoundsException if index <0 or index > size()

11/2/11

Class ArrayList

= Methods of class ArrayList

public Base_Type get(int index)
Returns the element at the position specified by index. Throws IndexOutOfBounds-
Exception if index < 0 or index > size()

public Base_Type set(int index, Base_Type element)
Replaces the element at the position specified by index with the given element. Re-
turns the element that was replaced. Throws IndexOutOfBoundsException if in-
dex <Oorindex>size()

public Base_Type remove(int index)
Removes and returns the element at the specified index. Shifts elements at subsequent
positions toward position index by decreasing their indices by 1. Decreases the list's
size by 1. Throws IndexOutOfBoundsException if index <0 or index = size()

public boolean remove(Object element)
Removes the first occurrence of e1ement in this list. and shifts elements at subsequent
positions toward the removed element by decreasing their indices by 1. Decreases the
list’s size by 1. Returns true if e]ement was removed: otherwise returns false and does
not alter the list

Creating Instance of ArrayList

= Necessary to
import java.util.ArrayList;
= Create and name instance
ArrayList<String> list =
new ArrayList<String>(20) ;
= This list will
= Hold string objects
= Initially hold up to 20 elements

Using Methods of ArrayList

= Object of an ArrayList used like an array
= But methods must be used
= Not square bracket notation
= Given
ArrayList<String> alist =
new ArrayList<String> (20);

= Assign a value with
alList.add(index, "Hi Mom") ;
aList.set(index, "Yo Dad");

11/2/11

Programming Example

= A To-Do List
= Maintains a list of everyday tasks
= User enters as many as desired
= Program displays the list

= View source code
class ArrayListDemo

Programming Example

Enter items for the Tist, when prompted.
Type an entry:

Buy milk

More items for the 1ist? yes
Type an entry:

Wash car

More items for the list? yes
Type an entry:

Do assignment

More items for the 1ist? no
The list contains:

Buy milk

Wash car

Do assignment

Programming Example

= When accessing all elements of an ArrayList
object
= Use a For-Each loop
= Use the trimToSize method to save memory
= Tocopy an ArrayList
= Do not use just an assignment statement
» Use the clone method, e.g. aList.clone ()

11/2/11

Parameterized Classes, Generic Data Types

= Class ArrayList is a parameterized class
» It has a parameter which is a type

= Possible to declare our own classes which use
types as parameters

= Note earlier versions of Java had a type of
ArrayList that was not parameterized

Linked Data Structures:Outline

The Class LinkedList

Linked Lists

Implementing Operations of a Linked List
A Privacy Leak

Inner Classes

s.e.a.l,

Linked Data Structures:Outline

Node Inner Classes

lterators

The Java Iterator Interface
Exception Handling with Linked Lists
Variations on a Linked List

Other Linked Data Structures

s.e.a.l,

Class LinkedList

= Linked data structure
= Collection of objects
= Each object contains data and a reference to another

object in the collection

= Java provides a class to do this, LinkedList
= More efficient memory use than ArrayList

= We will write our own version to learn the
concepts of a linked list

Linked Lists
= A dynamic data structure head
"Duey"
= Links items
in a list to one
another [Ecketzai]
and”
Cnn]

11/2/11

Linked Lists

= Node of a linked list object requires two instance
variables
= Data
= Link
= View sample class
class ListNode
= This example has String data
= Note the link, a reference to the type which is the class

Implementing Operations of Linked Lists

= Now we create a linked list class which uses the
node class
= View class
class StringLinkedList
= Note the single instance variable of type
ListNode
Note method to traverse and print the contents of
the list

11/2/11

Implementing Operations of Linked Lists

= Moving down a linked list

—
L.]

osition
’D—‘_,_.$

When position is at this last node,
position.getLink() == null.

Implementing Operations of Linked Lists

o s e o)
I
= Adding a node
head = 0
at the start of il

a linked list

Implementing Operations of Linked Lists

= View linked-list demonstration
class StringLinkedListDemo

List has 3 entries.
Three

Two

One

Three is on Tist.
Three is NOT on list.
Start of list:

End of Tist.

Implementing Operations of Linked Lists

= Java automatically returns memory used by
deleted node to the operating system.
= Called automatic garbage collection
= In this context, note the significance of
NullPointerException messages
= Consider the fact that our program has a
reference (name) to only the head node

11/2/11

A Privacy Leak

= Note results of getLink in class ListNode

= Returns reference to ListNode
= This is a reference to an instance variable of a class
type ... which is supposed to be private
= Typical solution is to make ListNode a private
inner class of StringLinkedList

Inner Classes

= Defined within other classes
= Example
public class OuterClass

Declarations_of_OuterClass_Instance_Variables
Definitions_of_OuterClass_Methods

private class InnerClass

Declarations_of_InnerClass_Instance_Variables
Definitions_of_InnerClass_Methods

Inner Classes

= Inner class definition local to the outer-class
definition
= Inner-class definition usable anywhere within definition
of outer class
= Methods of inner and outer classes have access
to each other's methods, instance variables

11/2/11

Node Inner Classes

= We show ListNode as a private inner class
= This is safer design
= Hides method getLink from world outside
StringLinkedList definition
= View new version, listing 12.5
class StringLinkedListSelfContained

Iterators

= A variable that allows you to step through a
collection of nodes in a linked list
= For arrays, we use an integer
= Common to place elements of a linked list into an
array
= For display purposes, array is easily traversed
= View method to do this, listing 12.6
method toArray

Iterators

= Consider an iterator that will move through a
linked list
= Allow manipulation of the data at the nodes
= Allow insertion, deletion of nodes
= View sample code
class StringLinkedListWithIterator

11/2/11

10

Iterators

= The effect of goToNext on a linked list

Before Afier

head
. - o

current - current.Tink
gives CUrTent a reference
10 his last node.

[B [
=
—

current.link

1

"
Iterators
= Adding node to linked list using
insertAfterIterator
Before After executing
newNode.link = current.link;
head ead 1
"Cheaten”
current.ﬁnk/
Esd
2
Iterators
= Adding node to linked list using
insertAfterIterator
current Tk o nestode o neiode
"Duey"” "Duey"
%~ =
“Cheaten”
e E%%E}"IIFI
"and"
newNode
"

11/2/11

11

lterators

= Deleting a node

Before After executing
previous.link = current.link;
previous] previous
"Cheaten”
current current Ly |
o
= Deleting a node
After executing Same picture, cleaned up
current = current.link; and without the deleted node
-, —
previous previous Ly]
"Cheatem" "and"
current [t]
ot]

Java Iterator Interface

= Java formally considers an iterator to be an object
= Note interface named Iterator with methods
hasNext — returns boolean value

next — returns next element in iteration
remove — removes element most recently returned by

next method

11/2/11

12

Exception Handling with Linked Lists

= Recall class stringlLinkedListWithIterator
= Methods written so that errors caused screen message
and program end
= More elegant solution is to have them throw
exceptions
= Programmer decides how to handle
= Note class which does this
class LinkedListException

Variations on a Linked List

= Possible to make a linked list where data element
is of any type
= Replace type String in definition of node class with
desired data type
= Consider keeping a reference to last node in list
= Called the tail of the list
= Constructors, methods modified to accommodate new
reference

11/2/11

Variations on a Linked List

= Consider having last link point back to head
« Creates a circular linked list

= Circular linked list

tail

13

Variations on a Linked List

= Also possible to have backward as well as forward
links in the list
= Doubly linked list
= Possible to traverse in either direction

= Doubly linked list

il AT AT T3—FT 1

Other Linked Data Structures

= Stack

» Elements removed from ADT in reverse order of initial
insertion

= Can be implemented with linked list
= Tree
= Each node leads to multiple other nodes
= Binary tree leads to at most two other nodes

Other Linked Data Structures

= Binary tree

BN
i)

[nu1[" Jnumt] a1 Jnumt]

11/2/11

14

Generics: Outline

The Basics

Programming Example: A Generic
Linked List

s.e.a.l,

Basics of Generics

Beginning with Java 5.0, class definitions may
include parameters for types

= Called generics

= Programmer now can specify any class type for
the type parameter

View class definition

class Sample<T>

Note use of <T> for the type parameter

Basics of Generics

= Legal to use parameter T almost anywhere you
can use class type
= Cannot use type parameter when allocating memory
such as anArray = new T[20];
= Example declaration
Sample <String> samplel =
new Sample<String>();

+ Cannot specify a primitive type for the type
parameter

11/2/11

15

Programming Example

= Generic linked list
= Revision of listing 12.5
= Use type parameter E instead of String
= Note similarities and differences of parameterized
class with non-parameterized classes
= View generic class
class LinkedList <E>

11/2/11

Programming Example

= View demo program
class LinkedListDemo

po e .

Hello
876543210

Summary

= Java Class Library includes ArrayList
» Like an array that can grow in length
= Includes methods to manipulate the list
= Linked list data structure contains nodes (objects)
= Linked data structure is self-contained by making
the node class an inner class

16

Summary

Variable or object which allows stepping through
linked list called an iterator

Class can be declared with type parameter
Object of a parameterized class replaces type
parameter with an actual class type

Classes ArrayList and LinkedList are
parameterized classes

11/2/11

17

