Embedding Spatial Information into Nearest Neighbor Joins

The 2nd Tameus Workshop, Andrej Taliun

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

・ロン ・回 と ・ ヨン ・ ヨン

- Spatial Nearest Neighbor Join in Swiss Feed Database;
- A Brute Force Approach for the SNN-Join;
- SNN-Join with R-Tree;
- Target Issues.

<ロト <回ト < 三ト < 三ト = 三

for each geographical object (point, polygon, ...) find another one which is the closest and belongs to the same input set.

origin	$Zn_{\{DM\}}$	DM	N.N.
Worb	27.48	924	Allmid
Juch	32.67	915	Allmid
Allmid		921	Hubel
Hubel	31.25	928	Allmid

"Hey samples are collected from Worb, Juch, Allmid and Hubel."

"Nutrients $Zn_{\{DM\}}$ (zinc) and DM (dry matter) are measured."

- We use Spatial Nearest Neighbor Join to compute two-dimensional Kernel regression of a selected nutrient:
 - Kernel regression is a statistical approach to estimate a continuous function that best fit the data, i.e.,
 - it is possible to evaluate the containment of a nutrient at any spatial point.
 - differently from linear or polynomial regression, Kernel regression does not assume any underlying distribution, i.e.,
 - $-\,$ can be applied to any data distribution.

■ "How much zinc, *Zn*{*FS*}, contains hey near Gasel?"

- $Zn_{\{FS\}} = Zn_{\{DM\}} * DM/1000$
- there is no hey sample from Gasel, therefore,
 - evaluate Kernel regressions for nutrient Zn_{{DM}},
 - evaluate Kernel regressions for nutrient DM,
 - apply the above formula

ৰ া চ ৰ ঐচ ৰ ইচ ৰ ইচ ই তি ৭৫ Embedding Spatial Information into Nearest Neighbor Joins

■ "How much zinc, *Zn*{*FS*}, contains hey near Gasel?"

- 1. consider all hey samples which are within radius of 30km from Gasel:
 - the radius is computed from the variance of the spatial points;

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

(人間) とうり くうり

■ "How much zinc, *Zn*{*FS*}, contains hey near Gasel?"

- 1. consider all hey samples which are within radius of 30km from Gasel:
 - the radius is computed from the variance of the spatial points;
- 2. for each sample compute the distance to Gasel:
 - from Worb to Gasel: 11 km
 - from Juch to Gasel: 12 km
 - from Allmid to Gasel: 12.5 km

ব □ ► ব ঐ ► ব ই ► ব ই ► হ তি ৭ Embedding Spatial Information into Nearest Neighbor Joins

■ "How much zinc, *Zn*{*FS*}, contains hey near Gasel?"

3. for each distance evaluate the kernel function:

 kernel function assigns higher weights for smaller distances;

- a typical choice is Gaussian kernel function:

$$\mathcal{K}(\mathsf{dist}) = rac{1}{2\pi} e^{-rac{\mathsf{dist}^2}{2 imes \mathsf{radius}^2}}$$

- 4 回 5 - 4 三 5 - 4 三 5

The 2nd Tameus Workshop, Andrej Taliun

• "How much zinc, $Zn_{\{FS\}}$, contains hey near Gasel?"

4. multiply the kernel function by the nutritive value of the target sample:

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

(人間) とうり くうり

■ "How much zinc, *Zn*{*FS*}, contains hey near Gasel?"

- multiply the kernel function by the nutritive value of the target sample:
 - if the nutritive value is not present, then, pick it up from the nearest neighbor;

Embedding Spatial Information into Nearest Neighbor Joins

A (2) × A (2) × A (2) ×

■ "How much zinc, *Zn*{*FS*}, contains hey near Gasel?"

sum up the computed values and divide the result by the sum of the kernel functions:

$$\frac{4.07 + 4.76 + 4.53}{0.148 + 0.146 + 0.145} = \frac{13.361}{0.439} = 30.43$$

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Kernel regression is sensitive to the number of distinct location:
 - according to [*Scott, D.W. (1992). Multivariate Density Estimation*] for the relative mean square error of 1% the number of distinct locations must be greater than 1000;
 - currently, there are 1050 distinct locations in the Swiss Feed Database.
- Spatial Nearest Neighbor Joins increases the number of locations and, therefore, improves the quality of the Kernel regression.

- "How much zinc contains hey across the Switzerland?"
 - the hey is collected from 876 distinct locations
 - hey samples from only 356 locations contain measurements of all required nutrients

 without spatial nearest neighbor join

The 2nd Tameus Workshop, Andrej Taliun

- Before computing the Kernel Regression we complete the data by substituting missing measures with a help of spatial nearest neighbor join:
 - **Step One**: compute two views:
 - stored_measures collects measures which are stored in the fact table;
 - absent_measures for each feed sample collects nutrients without a measure in the fact table;
 - Step Two: compute the spatial nearest neighbor join between missing_measures and absent_measures;

All nutrient measurements are stored in a vertically partitioned fact table, i.e., one nutritive measure per row:

sample_id	origin	nutrient	quantity
121-1	Worb	Zn _{DM}	27.48
121-1	Worb	ĎМ́	924
300-4	Juch	Zn _{DM}	32.67
300-4	Juch	ĎМ́	915
103-0	Allmid	DM	921
555-5	Hubel	Zn _{DM}	31.25
555-5	Hubel	ĎМ́	928
787-9	Toffen	Р	3.07
784-3	Ami	Mg	2.85
253-0	Ball	Р	3.11

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

• consider $Zn_{\{FS\}} = Zn_{\{DM\}} * DM/1000;$

■ *stored_measures* is computed with a simple SQL statement.

SELECT * FROM fact_table WHERE nutrient IN ('Zn_{DM}','DM')

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

Embedding Spatial Information into Nearest Neighbor Joins

			1				
121-1 300-4	Worb Juch	Zn_{DM} Zn_{DM}	qua 27 32	2.67	n	nutrient	quantity
555-5	Hubel	$Zn_{\{DM\}}$	31	L.25	b	Zn _{DM}	27.48
		ed measure			þ	ĎМ	924
Table	Table: stored_meas				/1	Zn _{DM}	32.67
		300-4		Ju	ch	ĎМ	915
		103-0		Alln	nid	DM	921
		555-5		Hul	bel	Zn _{DM}	31.25
		555-5		Hul	pel	ĎМ	928
		787-9		Tof	fen	Р	3.07
		784-3		Ar	ni	Mg	2.85
		253-0		Ball		Р	3.11

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

Embedding Spatial Information into Nearest Neighbor Joins

(
	sample_id	origin	nutrient	qu	antity			
	121-1	Worb	$Zn_{\{DM\}}$	2	7.48	n	nutriont	auantity
	300-4	Juch	Zn _{DM}	3	2.67		пистет	quantity
	555-5	Hubel	$Zn_{\{DM\}}$	3	1.25	b	$Zn_{\{DM\}}$	27.48
	121-1 300-4	Worb Juch	DM DM		924 915	b	ĎМ	924
	103-0	Allmid	DM	1	921	h	$Zn_{\{DM\}}$	32.67
	555-5 Hube		DM		928	h	ĎМ	915
	Table	o: store	d moaci	iroc		jd	DM	921
		e. store	u _meast	nes		el	$Zn_{\{DM\}}$	31.25
			555-5		Hub	bel	ĎМ	928
			787-9		Toff	fen	Р	3.07
			784-3		An	ni	Mg	2.85
		253-0	0			Р	3.11	

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

- consider $Zn_{\{FS\}} = Zn_{\{DM\}} * DM/1000;$
- absent_measures is computed in two steps:
 - compute all possible combinations between distinct sample ids and required nutrient names;

Embedding Spatial Information into Nearest Neighbor Joins

- consider $Zn_{\{FS\}} = Zn_{\{DM\}} * DM/1000;$
- *absent_measures* is computed in two steps:
 - compute all possible combinations between distinct sample ids and required nutrient names;
 - remove those combination which are present in *stored_measures*.

SELECT * FROM (select distinct sample_id from fact_table) samples, unnest(Zn_{DM}, DM) nutrient)

except

(SELECT sample_id, nutrient FROM stored_measures)

Embedding Spatial Information into Nearest Neighbor Joins

				\backslash	(
sample_id	origin	nutrient	quantity			sample_id	origin	nutrient	quantity
121-1	Worb	$Zn_{\{DM\}}$	27.48	-		121-1	Worb	$Zn_{\{DM\}}$?
300-4	Juch	$Zn_{\{DM\}}$	32.67	n	П	121-1	Worb	ĎМ́	?
555-5	Hubel	$Zn_{\{DM\}}$	31.25	b	Z	300-4	Juch	$Zn_{\{DM\}}$?
121-1	Worb	ĎМ́	924	6		300-4	Juch	ĎМ́	?
300-4	Juch	DM	915	D		103-0	Allmid	$Zn_{\{DM\}}$?
103-0	Allmid	DM	921	1 I	Z	103-0	Allmid	ĎМ́	?
555-5	Hubel	DM	928			555-5	Hubel	$Zn_{\{DM\}}$?
						555-5	Hubel	ĎМ	?
T .1.1		1		jd		787-9	Toffen	$Zn_{\{DM\}}$?
	e: store	a _measu	res	<u></u>	7	787-9	Toffen	DM	?
					_	784-3	Ami	$Zn_{\{DM\}}$?
		555-5	Hub	bel		784-3	Ami	ĎМ	?
		787-9	Toff	en		253-0	Ball	$Zn_{\{DM\}}$?
		704 0	1011			253-0	Ball	ĎМ́	?
		784-3	An	าเ					
		253-0	Ba			Table	e: abse	nt_meas	ures

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

Embedding Spatial Information into Nearest Neighbor Joins

				\setminus	(
sample_id	origin	nutrient	quantity			sample_id	origin	nutrient	quantity
121-1	Worb	$Zn_{\{DM\}}$	27.48			121-1	Worb	$Zn_{\{DM\}}$?
300-4	Juch	$Zn_{\{DM\}}$	32.67	n	П	121-1	Worb	ĎMĺ	?
555-5	Hubel	$Zn_{\{DM\}}$	31.25	b	Z	300-4	Juch	$Zn_{\{DM\}}$?
121-1	Worb	ĎМ́	924	h		300-4	Juch	ĎMĺ	?
300-4	Juch	DM	915	D		103-0	Allmid	$Zn_{\{DM\}}$?
103-0	Allmid	DM	921	1 I	Z	103-0	Allmid	ĎМ	?
555-5	Hubel	DM	928	h		555-5	Hubel	$Zn_{\{DM\}}$?
						555-5	Hubel	DM	?
Table	. ataxa	d maaa		jd		787-9	Toffen	$Zn_{\{DM\}}$?
Table	store	a _measu	res	<u>_</u>	7	787-9	Toffen	DM	?
				1	_	784-3	Ami	$Zn_{\{DM\}}$?
		555-5	Hub	el		784-3	Ami	DM	?
		787-9	Toff	en		253-0	Ball	$Zn_{\{DM\}}$?
		704.2	Δ			253-0	Ball	DM	?
		184-3	Am	11					
		253-0	Ba			Table	abse	nt_meas	ures

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

Embedding Spatial Information into Nearest Neighbor Joins

 sample_id 121-1 300-4 555-5 121-1 300-4 103-0 555-5	origin Worb Juch Hubel Worb Juch Allmid Hubel	nutrient Zn{DM} Zn{DM} Zn{DM} DM DM DM DM	quantity 27.48 32.67 31.25 924 915 921 928	n b b i	n Z Z		sample_id 103-0 787-9 787-9 784-3 784-3 253-0 253-0	origin Allmid Toffen Toffen Ami Ball Ball	nutrient Zn{DM} Zn{DM} DM Zn{DM} DM Zn{DM} DM	<i>quantit</i> ? ? ? ? ? ? ? ?	Ξy
Table	e: store	555-5 787-9 784-3 253-0	Hub Toffe Am Bal	el en ii	Z	D N	Table DM P Ag P	928 928 3.07 2.85 3.11	nt_meası	ires	

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

- A naive approach is to do an exhaustive search of the whole space comparing distances and sorting them:
 - for each entry in *absent_measures* compute the distances to all samples in *stored_measures* with the same nutrient;
 - sort samples in *stored_measures* in ascending order of the computed distances;
 - select the first sample of the sorted *stored_measures*.

SELECT A.sample_id, A.nutrient, (select B.quantity FROM stored_measures B WHERE A.nutrient =B.nutrient ORDER BY st_distance(A.origin, B.origin) LIMIT 1)

FROM absent_measures A

- The brute force approach is to do an exhaustive search of the whole space comparing distances and sorting them:
 - for each entry in *absent_measures* compute the distances to all samples in *stored_measures* with the same nutrient;;
 - sort samples in *stored_measures* in ascending order of the computed distances;
 - select the first sample of the sorted *stored_measures*.

SELECT DISTINCT ON (A.sample_id), A.nutrient, B.quantity FROM

FROM absent_measures A, stored_measures B

WHERE A.nutrient = B.nutrient

ORDER BY A.sample_id, st_distance(A.origin, B.origin)

イロト イヨト イヨト

(\nearrow
	sample_id	origin	nutrient	quantity	sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	Zn_{DM}	?	121-1	Worb	$Zn_{\{DM\}}$	27.48		
	787-9	Toffen	ĎM	?	300-4	Juch	$Zn_{\{DM\}}$	32.67		
	787-9	Toffen	$Zn_{\{DM\}}$?	555-5	Hubel	$Zn_{\{DM\}}$	31.25		
	784-3	Ami	$Zn_{\{DM\}}$?	121-1	Worb	ĎM	924		
	784-3	Ami	ĎMĺ	?	300-4	Juch	DM	915		
	253-0	Ball	Zn_{DM}	?	103-0	Allmid	DM	921		
	253-0	Ball	ĎM	?	555-5	Hubel	DM	928		
	Table	e: absei	nt_meası	ires /	Та	able: <i>st</i>	cored_me	asures		

Embedding Spatial Information into Nearest Neighbor Joins

($\overline{}$	(
	sample_id	origin	nutrient	quantity	1	sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	Zn_{DM}	?		121-1	Worb	$Zn_{\{DM\}}$	27.48	11.1km	
	787-9	Toffen	ĎМ	?		300-4	Juch	$Zn_{\{DM\}}$	32.67	12.2km	
	787-9	Toffen	$Zn_{\{DM\}}$?		555-5	Hubel	$Zn_{\{DM\}}$	31.25	8.7km	
	784-3	Ami	$Zn_{\{DM\}}$?		121-1	Worb	ĎM	924		
	784-3	Ami	ĎMĺ	?		300-4	Juch	DM	915		
	253-0	Ball	Zn_{DM}	?		103-0	Allmid	DM	921		
	253-0	Ball	ĎM	?		555-5	Hubel	DM	928		
	Table	e: absei	nt_meası	ures			Table:	stored_n	neasures		

Embedding Spatial Information into Nearest Neighbor Joins

((
	sample_id	origin	nutrient	quantity		sample_id	origin	nutrient	quantity	dist	
ĺ	103-0	Allmid	Zn_{DM}	?		555-5	Hubel	$Zn_{\{DM\}}$	31.25	8.7km	
	787-9	Toffen	DM	?		121-1	Worb	$Zn_{\{DM\}}$	27.48	11.1km	
	787-9	Toffen	$Zn_{\{DM\}}$?		300-4	Juch	$Zn_{\{DM\}}$	32.67	12.2km	
	784-3	Ami	Zn_{DM}	?		121-1	Worb	ĎM	924		
	784-3	Ami	ĎMĺ	?		300-4	Juch	DM	915		
	253-0	Ball	Zn_{DM}	?		103-0	Allmid	DM	921		
	253-0	Ball	DM	?		555-5	Hubel	DM	928		
	Table	e: absei	nt_meası	ıres			Table:	stored_n	neasures		

Embedding Spatial Information into Nearest Neighbor Joins

ヘロン 人間 とくほど くほとう

($\overline{}$	($\overline{)}$
	sample_id	origin	nutrient	quantity	í	sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	Zn_{DM}	31.25		555-5	Hubel	$Zn_{\{DM\}}$	31.25	8.7km	
	787-9	Toffen	ĎM	?		121-1	Worb	$Zn_{\{DM\}}$	27.48	11.1km	
	787-9	Toffen	$Zn_{\{DM\}}$?		300-4	Juch	$Zn_{\{DM\}}$	32.67	12.2km	
	784-3	Ami	$Zn_{\{DM\}}$?		121-1	Worb	ĎM	924		
	784-3	Ami	ĎМ́	?		300-4	Juch	DM	915		
	253-0	Ball	$Zn_{\{DM\}}$?		103-0	Allmid	DM	921		
	253-0	Ball	ĎM	?		555-5	Hubel	DM	928		
	Table	e: absei	nt_measi	ures		-	Table:	stored_n	neasures		

Embedding Spatial Information into Nearest Neighbor Joins

(
	sample_id	origin	nutrient	quantity	sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	$Zn_{\{DM\}}$	31.25	121-1	Worb	$Zn_{\{DM\}}$	27.48		
	787-9	Toffen	ĎМ	?	300-4	Juch	$Zn_{\{DM\}}$	32.67		
	787-9	Toffen	Zn _{DM}	?	555-5	Hubel	$Zn_{\{DM\}}$	31.25		
	784-3	Ami	Zn_{DM}	?	121-1	Worb	ĎМ	924		
	784-3	Ami	DM	?	300-4	Juch	DM	915		
	253-0	Ball	Zn_{DM}	?	103-0	Allmid	DM	921		
	253-0	Ball	ĎM	?	555-5	Hubel	DM	928		
	Table	e: absei	nt_meası	ıres /	Ta	able: <i>st</i>	cored_me	asures		

< ロ > < 回 > < 回 > < 回 > < 回 > < Embedding Spatial Information into Nearest Neighbor Joins

(($\overline{\ }$
	sample_id	origin	nutrient	quantity		sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	$Zn_{\{DM\}}$	31.25		121-1	Worb	Zn _{DM}	27.48		
	787-9	Toffen	ĎΜ	?		300-4	Juch	$Zn_{\{DM\}}$	32.67		
	787-9	Toffen	Zn _{DM}	?		555-5	Hubel	$Zn_{\{DM\}}$	31.25		
	784-3	Ami	Zn_{DM}	?		121-1	Worb	ĎМ	924	9.2km	
	784-3	Ami	DM	?		300-4	Juch	DM	915	15.4km	
	253-0	Ball	Zn_{DM}	?		103-0	Allmid	DM	921	8.4km	
	253-0	Ball	ĎМ	?		555-5	Hubel	DM	928	14.1km	
	Table	e: absei	nt_meası	ures /			Table:	stored_n	neasures		

The 2nd Tameus Workshop, Andrej Taliun

・ロン ・回 と ・ ヨン ・ ヨン Embedding Spatial Information into Nearest Neighbor Joins

(($\overline{\ }$
	sample_id	origin	nutrient	quantity		sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	$Zn_{\{DM\}}$	31.25		121-1	Worb	Zn _{DM}	27.48		
	787-9	Toffen	ĎΜ	?		300-4	Juch	$Zn_{\{DM\}}$	32.67		
	787-9	Toffen	Zn _{DM}	?		555-5	Hubel	$Zn_{\{DM\}}$	31.25		
	784-3	Ami	$Zn_{\{DM\}}$?		103-0	Allmid	ĎМ	921	8.4km	
	784-3	Ami	ĎMĺ	?		121-1	Worb	DM	924	9.2km	
	253-0	Ball	Zn_{DM}	?		555-5	Hubel	DM	928	14.1km	
	253-0	Ball	ĎM	?		300-4	Juch	DM	915	15.4km	
	Table	e: absei	nt_meası	ıres /		Table:	stored_n	neasures			

・ロン ・回 と ・ ヨン ・ ヨン Embedding Spatial Information into Nearest Neighbor Joins

(($\overline{\ }$
	sample_id	origin	nutrient	quantity		sample_id	origin	nutrient	quantity	dist	
	103-0	Allmid	$Zn_{\{DM\}}$	31.25		121-1	Worb	$Zn_{\{DM\}}$	27.48		
	787-9	Toffen	ĎΜ	921		300-4	Juch	$Zn_{\{DM\}}$	32.67		
	787-9	Toffen	Zn_{DM}	?		555-5	Hubel	$Zn_{\{DM\}}$	31.25		
	784-3	Ami	Zn_{DM}	?		103-0	Allmid	ĎМ	921	8.4km	
	784-3	Ami	DM	?		121-1	Worb	DM	924	9.2km	
	253-0	Ball	Zn_{DM}	?		555-5	Hubel	DM	928	14.1km	
	253-0	Ball	ĎM	?		300-4	Juch	DM	915	15.4km	
	Table	e: absei	nt_meası	ıres		-	Table:	stored_n	neasures		

< ロ > < 回 > < 回 > < 回 > < 回 > < Embedding Spatial Information into Nearest Neighbor Joins

- Why the exhaustive search is a problem:
 - it has quadratic runtime complexity, i.e. $O(n^2)$. It takes more than 8 min to compute the spatial nearest neighbor join between 1050 locations.
 - accurate computation of a distance between two spatial points is expensive since the Earth is not flat, i.e., expensive trigonometric functions are involved.

An alternative approach to the exhaustive search is to use an indexing structure such as R-Tree.

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

(日) (同) (目) (日) (日) (日)

Embedding Spatial Information into Nearest Neighbor Joins

- The R-Tree partitions spatial data with a help of minimum bounding rectangles, i.e. MBR's:
 - MBR at the bottom of the R-Tree encloses spatial objects;
 - MBR at a higher level encloses MBR's from the previous level;
 - MBR's can overlap.

Embedding Spatial Information into Nearest Neighbor Joins

Embedding Spatial Information into Nearest Neighbor Joins

The R-Tree partitions spatial data with a help of minimum bounding rectangles, i.e. MBR's:

- MBR at the bottom of the R-Tree encloses spatial objects;
- MBR at a higher level encloses MBR's from the previous level;
- MBR's can overlap.

Embedding Spatial Information into Nearest Neighbor Joins

The R-Tree partitions spatial data with a help of minimum bounding rectangles, i.e. MBR's:

- MBR at the bottom of the R-Tree encloses spatial objects;
- MBR at a higher level encloses MBR's from the previous level;
- MBR's can overlap.

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

The R-Tree partitions spatial data with a help of minimum bounding rectangles, i.e. MBR's:

- MBR at the bottom of the R-Tree encloses spatial objects;
- MBR at a higher level encloses MBR's from the previous level;
- MBR's can overlap.

The 2nd Tameus Workshop, Andrej Taliun

- The idea of the nearest neighbor search with the R-Tree:
 - traverse the tree depth-first starting from the root MBR;
 - visit an MBR only when necessary.
- The approach to find the nearest neighbor with the R-Tree relies on the priority queue:
 - **the priority queue** consists of the promising MBRs, i.e., from the MBRs which are likely to contain the nearest neighbor;
 - the MBRs in **the priority queue** are ordered based on the expectation to contain the nearest neighbor.

The Algorithm to find the nearest neighbor:

- 1. compute **the priority queue** from the MBRs which are children of the root node;
- 2. iterate through the **the priority queue** until is empty:
 - 2.1 if a child MBR is a leaf node, then, compute the distance and update the best nearest neighbor so far;
 - 2.2 if a child MBR is not a leaf node, then, initialize another **priority queue** and apply steps 2 3.;
- based on the current nearest neighbor reduce the priority queue of the parent MBR ;

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

"Which data point is the closest to the red spot?"

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

イロン イヨン イヨン

- 1. Compute the priority queue for MBRs of the root node:
 - r_2 is pruned since it is too far away from the red spot;
 - the remaining are ordered as $\{r_4, r_5, r_3\}$.

Embedding Spatial Information into Nearest Neighbor Joins

2. Compute the priority queue for r_4 : - { r_6 , r_7 };

The 2nd Tameus Workshop, Andrej Taliun

Embedding Spatial Information into Nearest Neighbor Joins

- 2. Compute **the priority queue** for r_4 :
 - $\{r_6, r_7\};$
- 3. Compute the distances to data points enclosed by r_6 and r_7 . Update the nearest neighbor.

4. Remove *r*₃ from **the priority queue** of the root note since it is more distant from the red spot than the current nearest neighbor.

Embedding Spatial Information into Nearest Neighbor Joins

(本間) (本語) (本語)

5. Continue with the **the priority queue** of r_5 ...

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

イロン イヨン イヨン

 Computation of the priority queue is based on distances MINDIST and MINMAXDIST between the target point and MBRs.

MINDIST(r) is the smallest possible lower bound and MINMAXDIST(r) is the smallest possible upper bound for a distance between a data point enclosed by r and the target point;

The 2nd Tameus Workshop, Andrej Taliun

Downward pruning: r_1 is discarded if there exists another r_2 such, that $MINDIST(r_1) > MINMAXDIST(r_2)$.

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

Upward pruning: r_1 is discarded if there exists a data point t such, that $MINDIST(r_1) > DIST(t)$.

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

ヘロン 人間 とくほど くほとう

 Indexing of spatial data with R-Tree dramatically decreases the computation time of the SNN-Join;

	without R-Tree	with R-Tree
1% of measures are missing	< 1 sec.	< 1 sec.
10% of measures are missing	< 1 min.	< 2 sec.
50% of measures are missing	> 5 min.	10 sec.

- However, the traversing of the R-Tree is not optimal:
 - MBRs inside the priority queue are ordered according to MINDIST or MINMAXDIST;
 - in both cases unnecessary MBRs can be visited.

Target Issues Embedding Spatial Information into Nearest Neighbor Joins

- Simultaneous computation of the SNN-Join for multiple nutrients;
 - Can we from one spatially nearest sample collect all required nutrients?
- Computation of the Kernel regression with the R-Tree:
 - for each location find all the samples within the given radius and, at the same time, find the nearest neighbor in case of missing measure.

Thank You

The 2nd Tameus Workshop, Andrej Taliun Embedding Spatial Information into Nearest Neighbor Joins

(□) (□) (□) (Ξ) (Ξ) (Ξ)